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Note that the application of equation (4.301) requires expression of the acceleration
energy through kinematic parameters €, (A =1,...,). This can be done with the help of
relation (4.296).

4.4.5 Case studies

4.4.5.1 Constant speed drive

In order to show the manner in which these three kinds of equations function we shall
apply them, consecutively, to modelling of a mechanism which was first analysed by
V. S. Novoselov (see Novoselov (1957)). This mechanism is shown in Fig. 4.19. Its
purpose is to transmit the rotation of a driving shaft 1 (motor) to a drive shaft 2 (machine)
by means of a disc mounted on the roller 3 so that it is free to rotate, and to have the
speed of the driven shaft remain sensibly constant even though that of the driving shaft is
not. The principle of functioning is as follows:

The vertical driving shaft has a rigidly attached horizontal disc. A intermediate hori-
zontal shaft 3 has a thin disc of radius a. The disc can translate along its axis of rotation
in both directions: to the left (towards the centre of the horizontal disc) owing to a
centrifugal governor, and to the right owing to the spring with the stiffness k. The disc
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located on the shaft 3 drives a drum of radius R, which is rigidly attached to the driven
shaft 2; mounted on 2 there is also a governor, whose two weights have mass my, each.
When the sliding sleeve, my, translates, it does so against a spring with the stiffness k.
This sleeve is connected by a cable, running over two pulleys Py and P,, to the intermedi-
ate shaft 3 in such a way that the translation of this shaft is the same as that of the sleeve.

Given rotation speed of the shaft 2, that of the shaft 3 is determined by location of the
pulley on shaft 3. It can be seen in the scheme of the mechanism that translation of pulley
3 counteracts the changes of rotation speed of shaft 2—an increase in the angular speed
of shaft 2 causes translation of the pulley 3 towards the centre of the disc, due to the
action of the centrifugal governor (the governor opens, x and therefore p are reduced, and
this reduces the speed of shaft 2; in the case of a decrease in angular speed of the shaft 2,
the spring moves the pulley 3 in the direction of the edge of disc 1.

Assume that:

(1) the cable is inextensible, thus of constant length, ¢, and value of ¢ depends upon the
dimensions of construction elements of the governor (i.e. the positions of pulleys);

(2) the resistance of the pulley located on shaft 3 when moving along the disc of shaft 1
can be neglected;

(3) the rolling of pulley 3 between the cylinder 2 and disc 1 takes place without
slipping;

(4) the reducer transmits power without losses (it is ideal);

(5) the springs are massless and linearily elastic (or rate k);

(6) the rods of the regulator, cable and pulleys are massless;

(7) the devices coupled to the motor and the machine are not accounted for.

The motion of the system can be described with three generalized coordinates:

¢, is the rotation angle of the driving shaft 1,
¢, is the rotation angle of the driving shaft 2,
x is the translation of sleeve mg on shaft .

From assumption 3 we have

Py = Ripy (4.304)
and taking into account assumption 1,
(x—=c)@, —Rp, =0. (4.305)

This is a nonholonomic constraint. The system has three generalized coordinates, but
only two degrees of freedom (s =3, b=1,1=3-1=2),
In order to follow the course of modelling let us specify the following parameters:

I, is the moment of inertia of the disc together with shaft 1 about its rotation axis;

I, is the moment of inertia of the cylinder together with shaft 2 about its rotation axis;
I3 is the moment of inertia of the pulley about the axis of shaft 3;

my is the mass of the pulley together with shaft 3;

m is the mass of the sleeve of the governor;

my, is the mass of the ball of the governor;
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1 is the length of the governor rod;
ky, ky are the stiffnesses of the springs of governor and pulley, respectively;
M/, M, are the external moments applied to shafts 1 and 2.

We now determine the quantities needed in all of these three kinds of equations, i.e.
the Lagrange equations with multipliers, Maggi equations and Gibbs—Appell equations:
(1) Kinetic energy of the system

T=T+T+T3+T,, (4.306)
where:
=1net, T=inL03, T=imp?+ingd
T, =5 Loy, 2 =500, 3=7mp” +5 13
; 2

Some of the terms have to be expressed in terms of selected generalized coordinates.
Note, for this purpose, that

— on the basis of assumption 1 we have

p= i (4.308)
— on the basis of assumption 3
@3a= )R, (4.309)
and hence
B =R ¢, (4.310)
a

— on the basis of Fig. 4.20, presenting a detail of Fig. 4.19,

v = (hd,)? +(19)%. (4.311)
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Fig. 4.20,
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Since
2

h= [12-(%] ]:%\1(4:2-;:2)

x=2lcos?®
then

: . £ X

x=-2l0cos??, O=—-———+— 4312

V(4 -x%) CRIE0
and
: 1252
0 =14 - x*)¢3 +Ef_§?' 4.313)

Having introduced the formulae (4.307)-(4.131) to equation (4.306) and grouped expres-
sions at the corresponding generalized coordinates, we obtain the kinetic energy of the
whole system in the form

. RY ;
T=3ho! +%[*’z +[;) Iy + 3 my, (417 'x2)}°%

{ o) o ] 2
+ ms + myg +ﬁmb 5 il
41" -x (4.314)

(2) Generalized forces

We use, for potential forces, the formula (4.159). In order to do this we must calculate
potential energy. It consists of the energy of elastic forces. (Assume that there is no
contribution from the gravitational forces of the governor balls because of their symmetry
with regard to the axis of rotation.) We assume an initial state for calculating the energy
of elasticity forces. Assume, then, that there exists a steady state in which @, = @f,
¢, = @3 and x=x, Now, let us calculate the change of potential energy when this
steady state is disturbed. From assumption (5) we have

V=Lky +k3) (x—x,)% (4.315)
Generalized potential force is expressed as
av
Qx =—E= —(kz + k3) (I—Io). (4316)

We shall calculate the nonconservative generalized forces according to the method
given in section 4.3.1.4. For this we first calculate the elementary work of
nonconservative forces, which, in the case considered, are represented by external torques
M, and M, acting upon shafts. We have
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dA = M de, + M, dp, (4.317)
and therefore, by application of the mnemonic rule (4.2.2.2)

OA =M, 8¢, + My 6¢,. (4.318)
This means that the generalized potential forces are simply external torques. Thus

Qp, =M, Qp, =M,. (4.319)

(3) Determination of the coefficients of nonholonomic constraints
Because s =3 and b = 1, on the basis of (4.258) we have

3
Z‘Bﬁc‘?a + Bg = B 1) + By + Bi3x3 + B =0. (4.320)

o=]

Comparing coefficients of the corresponding generalized velocities in equations (4.305)
and (4.320), we get

Bll =x-c, 312 =—R, B]3 = 0, Bl =0. (4.321)

We could now write down the Lagrange equations with multipliers. To preserve of the
‘step-wise’ nature of procedure, and to ensure clarity, we will not be doing this at this
stage.

(4) Determination of the coefficients of kinematic parameters

Now turn to the coefficients ej, (A= 1,..., ) in equation (4.275). It would in fact be good
to back-track a little and recall again the example of section 4.4.1. Since constraint
equation has the form (4.305), as kinematic parameters we adopt one of the angular
velocities and, specifically, that of the motion of the ring, i.e.

l'}.)l = él : I = éz. (4322)
Then
X=C . x—=L

P2 = R =g é. (4.323)

Now write down equations (4.275), taken into account that s=3,b=1,l=5—b=2, and
use

G = @ =C 16 +Cyyéy +Cy = ¢

=

@ = §2 = Cioéy + Cppéy + G =4y (4.324)
g3 = x=Ci3é +Cpéy + Gy = é.

From the comparison of coefficients standing at corresponding e (A = 1, 2) we get

Ch =1, Cy; =0, C, =0,
=25, 2% G=0 (4.325)
Cp=1, C3=0.

C13 = 0,
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(5) Modified generalized forces
Due to the formula (4.285) and taking into account that A = 1, 2, we have
c x—c

x —_
=C Q +C Q +C = + =M, + M 3
()] 111G +C120p + €303 pra R Qp, 1 R 2 (4.326)

92 =C Q) +C 0y +Cr3Q3 =0, =—~(ky +k3)(x—x0),

where the coefficients (4.325) and the forces (4.316) and (4.309) are used.

We have now all the information necessary for writing down the Maggi equations, but
again we bypass these, and proceed to the Gibbs—Appell equations. Since at the previous
stage we calculated forces ¢3 (1 =1, 2), it remains only to calculate the energy of accel-
eration. In view of the length of the procedure we perform this in two steps.

(6a) The energy of acceleration in the generalized coordinates

We will use the formula (4.301) given in section 4.4.4; similarly as in stage 1 (calcula-
tion of kinetic energy), we perform calculations separately for each component. Taking
into account the relations (4.308) and (4.310), previously obtained, gives

S=8+8+85 + Sg' (4.327)

where:

_ 12 wlia2 =Llm.p?+ 102
Si=7h01, S=7hLe,  S3=57mp+51503, (4.328)
S, = —%msfz +2X'%?"bw§'

We thus see that only the acceleration of the governor ball remains to be determined. We
shall use Coriolis' theorem for that purpose and refer to Fig. 4.21a (see also Fig. 4.20):

Wy, =W, + W, + W, (4.329)
where
W, =2w, XV,

We identify easily

9y =W, v, =10, (4.330)
due to which
We = 20,0, Sin(@,,v,) = 219, D cos B. (4.331)

For the relative motion, which is the motion over the circle of radius [, we get

wh =192,  wi=19. (4.332)
For the transport motion, being the motion about the axis 2, we have

wl =h@3 =1¢3sin®,  wl=h{, =1, sinD. (4.333)

Adopting the system of orthogonal coordinates (Fig. 4.21b), we get
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W = W +we =120, cos O+ 5in D)

Wy = wy +we sin 0 = 1(3% + @3 sin® V)

wy = wh+—wl cos 9 = I(D — @3 sin ¥ cos 1Y)
2 2 2

Wh = Wg +w +w§ =12 (2 sin® O + 4@, D, sin ¥ cos 9 + H?

~23 sind cos 9) + [ + ¢3 sin” ¥ +2¢3 D> (1 + cos® 9)]. 4334

After substitution of (4.334) into (4.328) and summation according to (4.327), we obtain

2
— % gp, [}’2 +13 ](pz 4 (m3 + g )x

+mypl? (3 sin O + 4¢,Dpy sin B cos B + % —28¢3 sin B cos V)
+ myl2[ D+ ¢F sin® 0 +2¢F 5% (1+cos? ). (4.335)

Note the following useful point: the energy of acceleration, expressed by formula (4.335),
is expressed not only in terms of three generalized coordinates, i.e. ¢}, ¢, and x (more
precisely by their second derivatives), but also in terms of the coordinate #. This provides
a good illustration for the comments put forward in section 2.2.3 as to the generalized
dependent variables—in the present case 19 is related to x through the relation (4.20)

x =2lcos V. (4.336)



Sec. 4.4] Modelling of nonholonomic systems 211

Replacement of coordinate % and its derivatives would lead, however, to an even more
complicated formula, and this is already sufficiently complex. On the other hand this is
not necessary, for we ultimately aim at presenting function § with the help of kinematic
parameters €, (A =1,2).

(6b) Energy of accelerations in the kinematic parameters

With the help of relations (4.322) and (4.323) we shall be able to express function § in
terms of é; (A =1,2). For that purpose it is sufficient to differentiate these relations with
regard to time, and obtain

P1=¢6, =&, (4.337)
o R KOs B R

g = + , 4.338
L) Rﬂ R e Rﬁ e (4.338)

At this point we must replace the coordinate ¥ and its derivatives with parameters ey
and their derivatives. Precisely, we must replace sin 9, cos ¥, ¥ and ¥, and we use the
following relations for this purpose (see Fig. 4.21a)

wl(tz ~(12%) @2 -x?)
! = oy

sin ¥ =

v--.[:r-

cos = _x_.
2
Hence
~Osin 0 =i,
21

R x Lo
20sin®d  N@2-x?) @2 -x?)

.2 2_ 2\
" xey +(41° —x")é,
v=- . (4.339)
V@ - x%)}

Having substituted (4.339) into (4.335) we ultimately get

2 2 2
S=%[}’1 (12+_13J(*' )" , (x=o)"(4l” - )]é-]z

R? 4R?

+1 my +me +m L“z— &2
D) 3 s brfz—xz 2

R? e I my, 2
+|| I +—=-1 (x c)(4l -3x3 +2cx) |ééqé
[[ 2 az 3] Rz 2R ] 1%2+1

2
(x—c) .2 21 oI
+rnbxl2 R2 l +(412—x2)2 ey |e

+ terms not depending on &; . (4.340)




212 Modelling using variational principles [Ch. 4
We can now write all the three equations:

(I) Lagrange equations with multipliers
On the basis of (4.274) we have

d Jar oT

Sool, 08 2B

% oo oo O, + 4181

d Jr or

UL Sl AB 434

&t 30 9o Qp, +11B12 (4.341)
d ar oT _
A

where T was determined at stage 1, Q5 (o= 1, 2, 3)—at stage 2, and Bgs (B=1)—at
stage 3. We have, therefore,

ﬁ:f{b .El-..i?‘_.=f¢
o UV drag "

oT R? 2.1 .
e O J§ RS, S PR ,
s [2 =R 2 My ( x )]Ef’z

d or o R: . 4 2 2
Ea—%z—mbﬂvz'l-[fz +?*13 +§mb(4! -x“) @2,

E—m+m+mii
Er R U TN i

d or  4lmyx N 212
dr % (42 —x2) GRS T |

and
or or or 2 20%myxi?
—=0, —=0, —=-lmxp?+ 0 _ 4.342
Iy 29, PR ST e
Having substituted (4.319), (4.321) and (4.342) into (4.341) we get
Loy =M+ A(x~c),
Rz 1 2 o [ o
1, + _aT I3 + 5 My (417 —x°) Py —MpxxQy = My — /11 R, (4.343)

22 ).  28m
ma +mg+m + b i
(3 ’ "4:2-.:’-} @r x5

+ L myx@F =—(ky +k3) (x — xg).
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Since it is a system of three equations with four unknowns: ¢;, ¢,, x and A, we
complement it with the constraint equation (4.305).

(1) Maggi equations
From equation (4.284) we have

d o or d aT or d
Cu[——.-—)+clz(—‘—.-—]+C13(5%T;"%)=‘Pl-

dor or) . [(dor or ) [i£_£_¢
2dt dpy, opy ) Bldrox ox) ™

| U=1!2|3|

were determined in (4.342), and the coefficients Cpa and forces ¢, (A= 1, 2) were deter-
mined at stages 4 and 5. Thus, substituting appropriate expressions we get

2

w o B0 R 5 ey xX—c
Lo +T|:]2 +a—213 +%mb(4f2 —xz )P -—mbqu92:|= Ml +

M,

20%my,
(41% - x%)

2

o N, .
(m3+ms+mb 4‘J.‘,__x2]x+ +%mbxf,0%=—(kz +k3) (x = xp).

7 XX
(4.345)
Thus, we have two equations (the same number as the number of degrees of freedom

of the nonholonomic system), but with three unknowns ¢y, ¢; and x. Again, we have to
complement these equations with the constraint equation (4.305).

(Ill) Gibbs—Appell equations
From equation (4.301) we obtain

(4.346)

It now remains to differentiate function S (4.340), since the forces ¢; (A= 1, 2) have
already been determined in stage 5. We have
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as R? (x—c:)2 (x —0)2 (4!2 —xz) i
£3[11+[12+;—72—13J RZ + 2R2 €

R? x—c my 2 3 iy
+| B += 1 |Y——+—(x—c)(4]” =3x" +2cx) | &€&
[[2 a® 3] R? 2R 12
and

oS 212 Y.
—_—= +m +my—5—7 |€
9%, [’"3 LT sz 2

2 2
1 (x—c¢) .2 21 i)
+my |:§— Rz ey + (412 “xz )2 ey [X. (434?)

Having introduced (4.347) into (4.346) and accounted for (4.325) we obtain

R2 Yax-¢) (x-0)@r-x%|.
L+ L, +—1T + €
[ 1 ( 2 az 3] Rz 2R2 1

R? xX=c  my 2 3 s x=c
+| L +—= 5L |——+—%(x—-c)(4]“ =3x" + 2cx) |16, = M| + M,,
[{2 az 3J Rz 2R2( )( 1+2 1 2
ma + mg ++m o & +m 1G=0) é2 + 212 és |x
3 s b412—x2 2 bl ?2 R2 (412_x2)2 2
=—(kg — k3)(x—xp). (4.348)

Finally we have yet again two equations with three unknowns, but different from those
obtained by the Maggi method, for they are now e|, e, and x. We now add the constraint
equation (4.305) which entails the inclusion of the relations

P =é, x=é. (4.349)

Let us look now at the results of modelling, that is, at equations (4.343), (4.345),
(4.348) augmented by the constraint equation (4.305). At the first glance it seems that
only the constraint equation is the same. Whereas the difference between (4.343) and
(4.345) is natural, for there is the constraint multiplier (the equation with regard to X is
even identical), equation (4.348) may come as a surprise, for quite unexpectedly the
model is expanded to five equations. We shall demonstrate that the differences are only
apparent and not fundamental.

In the Maggi equations (4.345) the multiplier of constraints, 4;, which appears in
Lagrangian equations (4.343), is not obvious. We shall therefore try to eliminate it from
the latter. To do this it is sufficient to determine A, from the first equation and substitute
it into the second. We obtain
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}v] = !i‘i‘)l _Ml 3

Xi=iC

R? . . . R
[12 +aT’3 +‘%mb(‘”2 -xz)]fpz - mpXx@y = My — (1,9 — Ml);__c-

If we multiply the second equation by (x - ¢)/R and move the term 1;, to the left side,
we obtain an equation identical to (4.341). This is not a coincidence. The method of
Maggi does in fact eliminate the multiplier, but, in the case of a large number of con-
straint equations (and therefore also of multipliers) this is not as easy as in the case
considered.

Regarding equations (4.348), it can be said that they constitute an excessive model
(see section 1.2.5), for in fact we are interested only in those variables which describe
motion, i.e. @y, ¢, and x. In order to obtain an adequate model, it is sufficient to trans-
form the first equation from the system (4.348) in the following manner: retain &, = ¢, at
the term [}, and reduce the other terms using the transformed relation (4.338), i.e.

R . @x
L 4 LB
X=c X—=c

élz

In the second case it is sufficient to replace the magnitude ey by corresponding general-
ized coordinates. After these relatively simple operations we exactly obtain the Maggi
equations (4.345).

We shall try now to draw somewhat more general conclusions. It should first of all be
emphasized that the simplicity of the Gibbs—Appell equations is quite misleading. The
true nature of these equations becomes apparent when the acceleration energy is being
determined, and again when it is differentiated.

The difference between modelling using the method of Lagrange with multipliers and
the Maggi method is slight, and it in reality reduces, in the case of application of the
Maggi method, to the additional determination of the coefficients of kinematic param-
eters (see stage 4). However, it may also be relatively simple to eliminate the constraint
multipliers from the Lagrange equations, especially when the number of constraints is not
too great. Our practice indicates that when there are two multipliers there is no need to
apply the method of Maggi.

Although the Lagrange equations with multipliers make it possible to construct math-
ematical models for a majority of technically important nonholonomic systems, they
become insufficient when we want to write down equations in simple form. This simplic-
ity cannot consist solely in uncoupling the equations. Let us concentrate now on the fact
that in all the three models of the reductor a common feature appears, that the dynamic
equations of motion had to be complemented by the constraint equation to complete the
model. In the case considered this equation had a very simple form. We known, however,
at least from the example in section 4.4.1 (ball rolling without slipping), that the con-
straint equations may be more complicated. A question, then, arises as to whether it is
possible to separate the dynamic equations from the kinematic ones. It turns out that there
are situations when the answer is positive—namely for the so-called Chaplygin systems.
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However, because of limited space we will not deal with these systems, nor with the
Chaplygin equations.

There are many more modelling methods developed for specific cases of nonholo-
nomic systems (see e.g. Neimark and Fufaev (1967)). However, we believe that the
Lagrange equations with multiplier provide the most general method of nonholonomic
system modelling. A proper application of these equations always gives a mathematical
method, although the form of the model may be more complicated than for application of
the other method. To exemplify the last statement we solve the problem of modelling a
rotary hydropulsator using the Lagrange equations with multipliers. The mathematical
model of this device is known, although for its derivation a sophisticated method, involv-
ing the so-called Voronetz equations, was used.

4.4.5.2 Rotary hydropulsator

Among the various devices for experimental research an important place is occupied by
machines for performing fatigue tests of materials, and structure components, since fa-
tigue often leads to failure and sometimes to dangerous accidents (e.g. the DC-10 catas-
trophe in 1978 was caused by fatigue failure of wing bolt). In order to reduce the time of
lengthy and costly studies, the use of high-frequency oscillations is required. There are a
number of methods of generating these oscillations, such as electromagnetic,
magnetostrictive or piezoelectric. A widely used method of generation in the study of
machine elements is hydraulic excitation, and this is most often achieved by the rotary
type of hydropulsor. The fundamental parts of such a device are a rotor with sliding bolts
and a movable disposer (see Fig. 4.22). The rotor and the disposer are set in rotational
motion by means of two mutually independent electric motors. Due to the rotary disposer
the fluid output changes from the maximum to minimum value depending upon the
position of the shutter with respect to the line of centres of the rotor and the starter.
Further rotation of the shutter again causes an increase in output, but in the opposite
direction, causing a vibratory motion of the platform on which the object studied is
standing.

An interesting phenomenon takes place in the device described—the resonant interac-
tion of the vibratory system with the two sources of energy of limited power. We would
like to draw the reader’s attention to the fact that in the usual course on the theory of
vibrations it is assumed that only unilateral influences exist, that is, an external
nonreciprocating force acts upon the system. The first scholar who turned attention to this
fact was Kononenko (1964). He considered the manner in which the properties of one
source of energy of limited power influence the resonance behaviour of the vibrating
system. The equation of motion of the pulsator is derived in the specialized literature by
the so-called Voronetz method. We would like to demonstrate that the Lagrange equa-
tions with multipliers can be used to derive equations of motion. Thus, we are proposing
the following objective of modelling: to build a mathematical model of the dynamics of
the hydropulsator, suitable for the analysis of resonance of the vibrating system with two
sources of energy of limited power.

We make the following assumptions:
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Fig. 4.22.

(1) the drives of the rotor and the disposer are mutually independent;

(2) the output of the hydropulsator is proportional to the angular velocity of the rotor;

(3) the fluid is incompressible (how to take account of compressibility has been shown
in modelling the booster (see section 3.4.3);

(4) there are no leakages out of the installation;

(5) the characteristics of driving engines and resistance torques are known;

(6) any external and internal damping is neglected.

From the first assumption and when the discrete model of the platform and the object
is considered, the whole system has four degrees of freedom: specifically the rotation of
the rotor and of the disposer, and the displacement of the platform and the object. We
therefore chose the following generalized coordinates: @, the rotation angle of the rotor;
y, the rotation angle of the disposer, x|, the displacement of the object, and x,, the
displacement of the platform.

Before we start to develop the mathematical model, we need to demonstrate that the
functioning of the hydropulsator leads to the emergence of nonholonomic constraints,
which is why the example has been introduced in the present section. On the basis of
assumptions (2) and (3) we have

Q=co, (4.350)

where Q denotes a volume output efflux and ¢ is a known coefficient of proportionality, a
characteristic of the geometry of the hydropulsator. The quantity of the fluid which is
supplied to the cylinder of the platform depends upon the angle y: for full opening
(y=0) it is the maximum quantity, while for complete closure (y = 7/2) there is no
inflow, Thus, in the intermediate positions the flow is given by the formula
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Q = Fecd(l+cos2y). (4.351)
Since
= 93. (4.352)

where Q denotes the volume of fluid, then as the rotor of the pulsator turns around by the
angle d¢, the resulting flow will be

dQ = Q dr=Le(1+cos2y) do (4.353)

under assumption (4). The fluid of volume given by (4.353) flows through the input tube
of cross-section surface A. Using assumptions (3) and (4), the relation

dQ = A dx, (4.354)
takes place. Comparison of the equations (4.352) and (4.354) yields

dx, = %(1 +cos2y) dg (4.355)

or, in a differential form

%g = 2iA(l +cos2y)9. (4.356)

Since the constraint equation (4.356) is not integrable, it constitutes a nonholonomic
constraint. We have thus demonstrated that the hydropulsator constitutes a nonholonomic
system with three degrees of freedom (s=4,b=1,l=5~b =3).

As previously state, we shall apply the Lagrange equations with multipliers (4.284) to
derive the equations of motion. We have thus

%[%)— gg = QO +A1B, (4.357)
%[%)— % = Q) + A48y, (4.358)
%[%]_%= 0 + 4yBy3, (4.359)
%[%}%: 04+ AyBys. (4:360)

If we denote by /, and I, the moment of inertia of the rotor and the disposer, respectively,
then, using the notation from Fig. 4.22, we can write
T:-zi-mli12+%m2.i%+%!ré2 +-é—fdljf2, (4.361)

V=1k(x —x,)2. (4.362)
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Constraint multipliers Bﬂa(ﬁ= 1,0=1,2,3,4) will as usually be determined from
the comparison of the deployed form and the concrete form of constraints (4.356). We
have, therefore,

By1q) + By2q; + By3g3 + Bigqe + By = X3 —5%(1 +cos2y)g,
$ ¢ 3
P v

and hence

B, =0, Bj=1, B,3=-5”;(1+cos2w), By =0, B =0. (4.363)

From the potential (strain) energy (4.362) and using (4.159) we get
ov

-——__— —k — X
Q o (x;—x2)
vV
Qz =—a— =k(x1 - Xy )
X2
On the basis of assumptions (5) and (6) we have (4.364)
=M_-H_,
Q5 = M; ~ H; (4.365)
Q4 =My —Hy,

where M, and M, as well as H, and H are driving and resistance torques of the rotor and
the disposer, respectively.

Now, having introduced expressions (4.361), (4.363)-(4.365) to equations (4.357)-
(4.360), we obtain the following system of four equations with five unknowns xy, x3, ¢, ¥
and A;:

my%) +kxy = hkxy (4.366)
m:jfz +k.x2 = kxl = 1] (4.367)
I.§+H, =M, -2, ﬁ(l +cos2y) (4.368)
Idl;('/+ Hﬂ =Mﬂ' (4369)

The system (4.366)—(4.369), together with the equation of constraints (4.356), constitutes
the complete model of the problem.

Before proceeding one must eliminate the unknown multiplier A,. For this purpose,
multiply equation (4.367) by

%(l +cos2y),

add the equation obtained to equation (4.368) and use equation (4.356); then
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1.9+ mz(v;;) [(14cos2 y)¢ —2¢rsin2y](1+cos2y)
—k-éa—(xi —xp) (14 cos2y) + H, = M,.

There are also equations
mlfl + k\fl = kxz,
[d I{f + Hd = Md .

Xy = -;; @cos y.

[Ch. 4

(4.370)

(4.371)
(4.372)

(4.373)

Finally, the model for the problem is composed of four equations (4.371)-(4.373) with
four unknowns xj, x, ¢, and y. One must also remember that M, = M, (9),
Mg =My(y), H,=H.(¢, ) and Hy = Hyq(9, ¥); we are dealing with a coupled sys-
tem (this remark concerns, in particular, equation (4.373) which, at a first glance, seems

to be solvable independently of the other equations).

Thus, it has been shown that the Lagrange equations with multipliers may be substi-

tuted for more refined methods such as the Voronetz equations.



