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3.3.4 Force

Existence of stimuli is the causal agent of each physical phenomenon. Considering
purely mechanical phenomena the role of stimuli is played by forces, whereas in thermo-
mechanical processes both forces and heat streams can be regarded as stimuli and this
must be reflected within each mathematical model of a thermomechanical process.

The effectiveness of modelling relies upon the concise and accurate expression of the
effects of the action of stimuli, and therefore different measures, characteristic of forces
and heat streams are to be considered in this group.

Several notions, relations, rules and theorems listed below may be considered as
examples of elements belonging to the group known as force.

F-1. Resultant of several concurrent forces. Consider a particle A acted upon by
several concurrent Fy, F,..., F,, i.e. by forces which are all directed through the same
point A (Fig. 3.10). The force

R=YF (3.53)
i=1

acting through the point of concurrency is called the resultant force or just the resultant.

Fig. 3.10

F-2. Moment of force about a point. Let F be a force gctin g at point A whose position

vector with respect to a chosen origin O is given by OA =r (see Fig. 3.11). Then the
moment M of the force F about O is defined to be

M=rxF (3.54)

F-3. The work of force. Suppose a force F acts on particle constrained to move along a
curve ¢, joining points A and B (Fig. 3.12). The work W done by the force F as it moves
along the path from A to B is given by the line integral

B 3.55)
W=j F.dr. (
A

. F-4. The impulse of force. The impulse of the force F is the time integral of the force,
i.e.
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Fig. 3.11.

Fig. 3.12.

Imp= j:lz Fdt. (3.56)

There are various equivalent representations of a system of forces and couples, listed
in the following paragraphs.

F-5. The polygon rule. The resultant of several concurrent forces may be easily ob-
tained graphically by use of the so-called polygon rule (compare Figs. 3.13a and 3.13b).
The resultant vector R is drawn from the origin of the first vector A to the terminus of
the last vector D, closing the polygon.

F-6. Resolution of a given force into a force through a point and a couple. Any force
F acting on a rigid body may be moved to an arbitrary point O provided that a couple is
added, of moment, M, = r X F, equal to the moment of F about O (see Fig. 3.14).

F-7. Reduction a system of a forces to one force and one couple. Any system of forces,
however complex, may be reduced to an equivalent force—couple system acting at a given
point O (Fig. 3.15). The equivalent force—couple system is defined by the equations

R=YF, M=M=y (;xFE), (3.57)

which express that the force R is obtained by adding all the forces of the system, while
the moment Mg of the couple, called the moment resultant of the system, is obtained by
adding the moment about O of all the forces of the system.
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(b)

Fig. 3.13.

(b) (c)

Fig. 3.14,

F-8. Varignon’s theorem. If several forces F|, F,,..., F,, are applied through a point A
(Fig. 3.16), and if we denote by r the position vector of A, then the moment about a given
point O of the resultant of several concurrent forces is equal to the sum of the moments of
the various forces about the same point 0, i.e.

rX(Fi+F+...+F)=rxF +rxE +...+rxF, (3.58)

This property was originally established by the French mathematician Varignon (1654
1722), long before the introduction of vector algebra, and is known as Varignon's theo-
rem.

3.3.5 Motion

The famous Heraeklite's statement, panta rhei, is not accidental. Motion surely is one of
the most frequently observed physical phenomena. Motion, or more generally a state
change of a physical system, is often considered as a result of application of stimuli to the
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(c)

Fig. 3.15.

system. Numerous kinematical problems are provided in, for example, the process of
calculating flight trajectories for aircraft, missiles, and spacecraft, and also in the design
of cams, gears, and linkages in order to control or to produce certain desired motions.
Thus, a concise mathematical description of motion is a fundamental requirement of
modelling. Kinematics is just concerned with this kind of problem, and this part of
mechanics may be identified with the group known as motion. (Since kinematics deals
with position in space as a function of time it is often referred to as the geometry of
motion).

The examples of kinematic relations listed below belong to this group.

M-1. Definition of velocity and acceleration. The velocity of the particle A is de-
fined as
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A:

Fig. 3.16.
v= lim ac dr (3.59)
Ar—0 At dr
where r is a position vector of the particle A.
The acceleration of the particle A is defined as
a= i 2= v (3.60)
A0 At dr

M-2. Absolute velocity and acceleration of a particle. Consider a fixed frame of
reference Oxyz and a frame Aén¢ moving in a known, but arbitrary, fashion with respect
to Oxyz (Fig. 3.17). Let P be a particle moving in space. The position of P is defined at
any instant by the vector r in the fixed frame, and by the vector p in the moving frame.
Denoting by ry4 the position vector of A in the fixed frame, we have

r=ry+p. (3.61)
The absolute velocity, v, of the particle is
V=vVatoXp+vp, (3.62)

where @ is the angular velocity of the frame Aén¢ at the instant considered, while
VR =(P) pene is the velocity of P relative to the frame A&n{.
The absolute acceleration, a, of the particle P may be expressed as

a=a,teXp+twX(@Xp)+2wXVy+ag, (3.63)

where € is the angular acceleration of the frame A£n¢ at the instant considered, while
ap= (ﬁ)A§ ¢ i the acceleration of P relative to the frame A&n(.
The absolute acceleration, a, may be also expressed in the following concise form:

a=ap+actag, (3.64)
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Fig., 3.17.

where ar =a4 +€ X p +w X (w X p) represents the acceleration of the P’ of the moving
frame which coincides with P at the instant considered and ac =2w X vy is called the
complementary, or Coriolis acceleration.

M-3. Decomposition of angular velocity @. The reader who has met the Euler angles
in a first course in mechanics may have been frustrated by the fact that the final formulae
are not the same in all books on mechanics. It seems that there are two reasons for this
state of affairs. First, the same name is assigned to essentially different sets of three
angles with identical notation ¢, 6, y. Euler angles are thus differently defined for a rigid
body spinning about its axis which itself rotates about a fixed point (see Fig. 3.18) and for
an aircraft flying along a certain trajectory (Fig. 3.19. Second, if we consider cases when
the meaning of the Euler angles remains the same, the sequence of carrying out the Euler
rotation is not always the same, and so far no standard sequence has been agreed upon.
Several different types of Euler angle systems are in common use. Two of them will be
presented in what follows,

Let us first consider the rigid body rotating in any manner about a fixed point O (Fig.
3.18). For this type of motion it is convenient to introduce two sets of coordinates to
specify the motion. In Fig. 3.18 the coordinates x, y, z are fixed in space, and plane A
contains the x-, y-, z-axes and the fixed point O on the rotor axis. Plane B contains point
O and is always normal to the rotor axis. Then intersection of these two planes is the so-
called line of nodes, n, which is located at an angle y from the x-axis. Angle 6 measures
the inclination of the rotor axis from the vertical z-axis and is also the measure of the
angle between planes A and B. The angles y and 6 completely specify the position of the
rotor and turn with it about axis £, The angular displacement of the rotor in plane B is
specified by the angle ¢ between the &-axis attached to the rotor and the n-axis.

The three angles y, 6, ¢ completely specify the position of the rotor and are known as
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Fig. 3.18.

Euler’s angles. The time rates of change of these angles V/, 6,¢ specify, respectively,
the precession, nutation and spin of the rotor. The angular velocity of the rotor is then

© = Y, + Be, + geg. (3.65)

In many instances the components of angular velocity @ on a body-fixed & n, ¢
coordinate system in terms of Euler angles are required. Inspection of Fig. 3.20 yields

@g = YsinBsin ¢ + 6 cos ¢,
@p = ysin 6 cos ¢ — Bsin ¢, (3.66)
@p = Ycos6+ 9.
Now consider the Euler angles used in flight mechanics for description of the angular
position of an aircraft. In order to describe the motion of the aircraft with respect to the

Earth or inertial space, it is necessary to be able to specify the orientation of one axis
system with respect to another. For this purpose we introduce three coordinate systems
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Fig. 3.19.

The origin of the first one is, by definition, located at the centre of gravity, C, of the
aircraft. In general, the axis system C&nd is fixed to the aircraft and rotates with it. Such
a set of axes is referred to as aircraft axes. The axis is taken with C& forward, C1 out the
right wing, and C{ downward as seen by pilot to form a right-handed axis system (see
Fig. 3.19).

Since the frame C&nd is fixed to the aircraft and moves with it, the position and
orientation of the aircraft cannot be described relative to it. For this purpose we introduce
an Earth-fixed frame of reference Ox,y,z,. Let Oz, be taken vertically downwards, and
Ox, horizontal in the vertical plane containing the initial vector of the mass centre. The
origin O is assumed to coincide with Catr=0.

The origin of the third coordinate system Cxyz is assumed to be at the centre of
gravity, C, and its axes remain parallel to the respective axes of the Earth-fixed frame
(see Fig. 3.19).

Orientation of the aircraft is then given by a series of three consecutive rotations,
whose order is significant (Fig. 3.19). The aircraft is imagined first to be oriented so that
its axes are parallel to Oxgygz,. Tt is then in the position Cxyz. The following rotations are
then applied:
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Fig. 3.20

(1) a rotation y about Cz, carrying the axes to Cxy,z; (bringing C& to its final azi-
muth);

(2) a rotation @ about Cy,, carrying the axes to Cxyy,z, (bringing C& to its final
elevation);

(3) a rotation ¢ about Cx,, carrying the axes to their final position C&n¢g (giving the
final angle of bank to the wings).

In flight mechanics the angles y, 6, ¢ are referred to as yaw, pitch and roll, respec-
tively.

In flight mechanics, the components of the angular velocity @ on the aircraft-fixed
axes &, 7, ¢ are traditionally denoted by P, O, R, respectively. Thus we have

w=Pe¢ +Qeq+Re;, (3.67)
and

P= ¢—\sin,

Q = 6 cos @ + yrcos Bsin @, (3.68)

R=—Bsin ¢ + jcos O.cos 9.

M-4. Euler’s theorem. The most general displacement of a rigid body with a fixed
point O is equivalent to a rotation of the body about an axis through O.
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3.3.6 Specific laws of mechanics

Each material object can interact with its surroundings both when it is at rest and when it
moves. The measure of interaction used in mechanics is force, and the vast majority of
the specific laws of mechanics are devoted simply to specification of force in dependence
upon the physical properties of the object, its surrounding with which it interacts, and
possibly also the kinematic characteristics of the object’s motion.

As before, in order to better present this set, whose elements enter mathematical
models, we shall refer to examples.

SLM-1. Newton’s law of gravitation. This law states that two particles of mass m,
and my are mutually attracted with equal and opposite forces F and —F of magnitude F,
given by the formula

F=GM72, (3.69)
r
where r is the distance between the two particles and G is the gravitational constant.

It may seem somewhat strange that such an important law as the law of universal
gravitation be classified as a specific law of mechanics. Note, though, that this law
specifies just one kind of force—force of attraction.

SLM-2. Resistance laws. There exist many formulations of resistance laws and their
form depends upon such factors as the kind of object in motion, the medium with regard
to which the motion takes place, or the purpose of application of a given law. Consider
the following:

(a) Stoke's law for the force acting on a moving sphere. The resistance force F acting
on a rigid sphere moving in a incompressible viscous fluid is

F = 67pu,,r, (3.70)

where u is the coefficient of dynamic viscosity, v., is the velocity of free stream
flow, and r is the radius of the sphere.
(b) The drag acting on an aerofoil segment of width dy is

2
dD = cpp.. -vzi!(y) dy, 3.71)

where cpy is drag coefficient, p.., v, are respectively the density and velocity of the
undisturbed air, I(y) is the width of a chord of a wing.

SLM-3. Constitutive laws. A broad group of specific laws is made up of constitutive
laws for various media. We shall cite some of them:

(a) Hooke's law. Probably the best known among the constitutive laws is Hooke’s law
in its simplest form relating the tensile stress, g, in a uniform wire to the tensile
strain, g, through the equation

o = Eg, (3.72)

where the constant E is Young’s modulus of the wire.
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(b)  Constitutive law of ideal fluid. The simplest constitutive equations encountered in
continuum mechanics are those for an ideal fluid. These equations are

0;; =—P(p, 9)5;, (3.73)
i.e.
o =-P(p, V), (3.74)

where the positive quantity P, a scalar function of density p and temperature 9, is
called the ‘pressure.

3.3.7 Characteristics of bodies in motion

We have distinguished five fundamental groups whose elements are used in modelling.
The question arises of whether, once we have selected some specific laws and the basic
laws of mechanics, and some kinematic relations, and perhaps introduced the interactions
and relevant complete information on the properties of the modelled object, we obtain a
complete model, that is one in which the number of unknowns is equal to the number of
equations. However, the model obtained at this stage is, as a rule, incomplete. Why is
that? When using fundamental laws in their general formulation, e.g. (3.9), (3.10) or
(3.11), we refer to the quantities appearing there, such as momentum p, angular momen-
tum, H, and energy, E, which are aggregate quantities and in reality depend in a
unique manner upon the properties of the object and upon its current state. Simplifying,
we may talk of characteristics of bodies in motion. This simplification results from the
fact that energy of a system may not only consist of kinetic energy, but also of potential,
thermal, electromagnetic energies, etc., which do not or may not depend upon the kin-
ematic state of a body.

Let us therefore create a subset of characteristics of bodies in motion, denoted BM.
This subset is not shown in the diagram of Fig. 3.4, but we can image that it is located on
the edge of the tetrahedron linking sets B and M. Now we shall present several examples
of relations belonging to subset BM.

BM-1. Linear momentum of a particle. Consider a particle of mass m moving with a
velocity v. The vector

p=ny (3.75)

defines the linear momentum or simply momentum of the particle at the instant.

BM-1. Angular momentum of a particle. Let us denote the position vector of the
particle with respect to a fixed reference point O by r. The moment of momentum or
angular momentum about O is given by the vector

H=rxmv. (3.76)

BM-3. The angular momentum of a rigid body rotating about a fixed point. Consider
a rigid body rotating about a fixed point with the angular velocity w. Let us assume that
the reference point is at the origin O of the Cartesian coordinate system (Fig. 3.21). Then
the angular momentum of the body may be expressed as

H=lw, (3.77)
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A:

Fig. 3.21.

where | is the inertia tensor defined by (3.50), and © = [@,, w,, a)z]'r is the column matrix
representing the angular velocity vector in the x, y, z coordinate system.
BM-4. Kinetic energy. The kinetic energy of the particle is

T=1md?, (3.78)
where v is the absolute speed of the particle.
Kinetic energy of the rigid body relative to an inertial system is

T=1mvf + Ty, (3.79)

where v, is the speed of the centre of mass of the body, and T, = %mTIm where, in turmn,
| is the inertia tensor defined by (3.50), and  is the angular velocity of the body, and the
origin of the x, y, z coordinate system is at the centre of mass.

3.3.8 Final hints

We have classified problems of mechanics into five fundamental groups described in five
sections 3.3.2-3.3.6. How is this classification used in modelling? Let the starting point
for the answer to this question be the observation that when building a mathematical
model we usually have in mind one of four purposes mentioned below, i.e.

(1)  determination of the motion of the object/body,

(2) identification of forces causing a given phenomenon,

(3) determination of properties of the object/body,

(4) establishment of specific laws governing a given phenomenon or characterizing the
object (e.g. constitutive laws of the media).

It is essential that in each case we make use of the basic laws of mechanics. These
laws constitute the foundation for the mathematical model of any complex mechanical
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phenomenon. We draw the other group in different degrees, depending upon the purpose
of modelling. Thus, if the purpose is the determination of the motion of a body (which is
a common task in modelling), we have to complement the basis with information on the
properties of the body, on forces and on how forces acting upon the body depend upon
the characteristics of motion and properties of the body itself. Alternatively when the
purpose is to identify the forces causing a motion of a body, then it is necessary for
modelling to have information on the physical properties and motion of the body.
Information on the motion, forces and properties of a body entail the following:

— complementing the system of dynamic equations of motion with equations resulting
from either kinetic relations such as (3.63), (3.66) or resulting from constraints,

— specification of forces, using for this purpose specific laws of mechanics,

— use of relations between the properties of a body.

This should bring the system of equations to the state in which the number of equa-
tions of the model is equal to the number of unknowns.

The identification of problems of mechanics means that in every mathematical model
of dynamical phenomena there must appear at least one element from each set distin-
guished above, i.e. BLM, B, F, M and SLM. Thus if the system of equations is incom-
plete at a certain stage of modelling, one should verify that all the available information
from all the sets indicated has been used.

We finish at this point with a survey of the tools of modelling used in mechanics. How
they are used will be discussed in subsequent sections.

3.4 APPLICATIONS

3.4.1 Parachute with a payload

When we speak of resistance, our first reaction is to think of it as a disadvantageous
phenomenon. A parachute is an example of a device in which the phenomenon of resist-
ance to motion is exploited.

Parachutes are classified according to their various purposes: rescue, sports, military
or transport (airborne supply of medical aid, food, etc.). For a parachute to perform its
duties, it must behave in a stable manner. However, the reason for the various dynamic
instabilities of a parachute have not been fully explained. One problem is that dynamic
stability testing of parachutes is difficult. The theory of parachute instability requires a
nonlinear three-dimensional analysis with several assumptions that are difficult to justify.
Modelling itself is not easy, for because of the fact that the mass of parachute is usually
small and rate of change of velocity great, one should consider the so-called apparent
masses.

It is known that under appropriate conditions the apparent masses of the body can play
an important role in the determination of dynamic characteristics, and this is certainly the
case with parachute systems.

According to classification of airborne vessels a parachute is an aerodyne without an
engine-driven propulsion unit, with the total aerodynamic force acting in the opposite
direction to motion. Under the assumption that the parachute is already open—that is,
omitting the initial opening shock from consideration—the general motion of a parachute



