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in time. It is therefore better to speak about discrete and continuous mechanical models as
models with lumped and distributed parameters, respectively.
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Fig. 1.16.
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Fig. 1.17.

1.6 STOCHASTIC VERSUS DETERMINISTIC MODELS

We know already from previous considerations that if real-world observations are obvi-
ously in contradiction with the solution of a model, then we have ben employing an
inadequate model. In this situation we must try to find another, better model. Examples of
this type of problem were shown in section 1.4. In the practice of modelling, though, it
can happen that this type of consecutive modification does not ultimately yield satisfac-
tory results, and it might be necessary to take up an entirely new approach. This could
entail application of an entirely different mathematical tool.

A very instructive example for this situation is provided by the event described by
A. C. Hall in Oldenburger (1956). In 1941 MIT and Sperry Company were jointly elabo-
rating a control system of aircraft radiolocator. Hall and his friend worked through the
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whole day, but they were disappointed, for although they had constructed a good study
system, they completely forgot the importance of noise, so that their system was unstable
and totally unsatisfactory. It is only when noise was taken into account that the system
could be made stable, while ensuring that the output dispersion was smaller by an order
of magnitude. It took three months to make all these improvements.

Thus, consideration of noise leads us to this new branch of mathematics, which is
termed theory of random processes. It is, however, not our goal to present this theory
here, and we think that a comprehensive treatment of the modelling problem for complex
mechanical systems cannot neglect the effects which influence the overall behaviour of
systems in such a decisive manner, as described by Hall.

In order to realize the difference between the deterministic and stochastic approaches
let us consider two examples. The first one will be constituted by a compound pendulum,
whose motion is described by the relation: (p — Acos(0)nt + P), where COn ="v(mg//70)
(see (1.15)). Assume that pendulum was inclined from the equilibrium position by the
angle q> Q, and then let go freely at the time t-0. We have then

= <pQ cos cont, (1.30)

whence we see that the inclination of the pendulum is strictly determined for any time t in
future. It should be emphasized that, now and at any specific future moment, this is true
only when q>o = const, and con = const, which means that the parameters of pendulum,
(m, /, 7Q) a r e a ' s o constant. Because of the fact that the inclination of the pendulum, given
the assumptions made, can be strictly described, we say that the motion of the pendulum
is a deterministic phenomenon. All the models considered up till now are of this
character.

Another example is provided by the so-called Brownian motion. In 1827, the English
botanist Robert Brown (1773-1858) observed that particles suspended in a liquid per-
form particularly irregular movements. This phenomenon is now referred to as Brownian
motion. The kinetic theory of matter explains the mechanism of this phenomenon in the
following way: particles change their state because of impacts with particles of liquid,
which are in chaotic motion. This impact chaos causes the state of the observed particle
to be a random magnitude, or—as it is referred to in probabilistic theory—a random
variable. Even knowing the state of a particle at the initial instant does not ensure the
capacity to predict its exact state in the future. We can at most try to give the probability
of the particle's being in a certain spatial area. Thus, we are saying that Brownian motion
is a random phenomenon.

Now let us present some situations which necessitate the construction of a stochastic
model.

We start with noise, since it was with noise that our considerations of stochastic
effects began. Basically, there are two important types of noise: shot noise and thermal
noise. Shot noise is present in both vacuum tubes and semiconductor devices. In vacuum
tubes shot noise arises due to random emission of electrons from the cathode. In semicon-
ductor devices this effect arises because of the random diffusion of majority carriers and
because of the random generation and recombination of the hole-electron pairs. The
second type of noise—thermal noise—arises due to the random motion of free electrons
in a conducting medium such as a resistor. Each free electron inside a resistor is in
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motion due to its thermal energy. The motion of an electron is random and it zigzags due
to collisions with the lattice structure. We thus see that both types of noise are very
similar in nature to Brownian motion.

Although noise is, as it appears to us, a good example for a random phenomenon, a
mechanical engineer is dealing with such phenomena usually in situations of measure-
ment. Let us now then give some instances in which the nature of phenomena is random.

(1) Missile flight. It is not possible to strictly determine the actual location where a
missile hits, since many factors influence the missile trajectory: imprecision of
aiming, dispersion of powder mass in the missile, speed and direction of wind,
humidity and temperature of air. In some cases these factors are treated as deter-
ministic, as for example in classical external ballistics, but this is just a concession
caused by the difficulties resulting from randomness.

(2) Driving or taxiing of a vehicle. Unevenness of the surface entails continuously
changing accelerations in various elements of the vehicle (a car on the road, an
aircraft on the runway). If the surface irregularities could be described in a deter-
ministic manner (e.g. as a kind of harmonic excitation), then we would be able to
calculate relatively easily the resulting acceleration (using traditional methods of
theory of vibrations). But real-life surface profiles are by their very nature random.

(3) Earthquake. Recurring tragedies caused by this terrible phenomenon indicate
clearly the inability to predict its occurrence. Thus, the very occurrence of an
earthquake is a random event of energy release in a certain point of the Earth's
crust. Secondly, movements of the ground, on which buildings are founded, consti-
tute a random phenomenon because of multiple diffraction and interference of
seismic waves. This, in turn, results from the extreme variability of the structure of
the Earth's crust. In spite of the obviously random character of this phenomenon
there have been efforts at a deterministic treatment of its appearance and course.

Many more examples could be given, but it may be more useful to provide a short
comment. There could be an interest in, or even a doubt about, the proper basis on which
certain phenomena are considered random. The question is even more valid than initially
surmised, since in the three examples cited, deterministic approaches parallel the stochas-
tic ones. In our opinion, the fundamental significance in distinguishing the deterministic
and probabilistic relevance lies in experiment. Thus, the decision on the selection of
attributes for a given phenomenon is made depending on whether or not the phenomenon
may be repeated under experimental conditions. Indeed, the question is how to proceed
when experiment is yet far ahead and its details unknown (for instance, we are only
designing a shock absorber for a car to be driven on uneven roads, or for an aircraft
which will be taxiing over irregular runways). In such cases, typical for modelling, one
can only use the following advice: it is necessary a priori to already have a broad
knowledge of the phenomena which we would like to study with the help of models.
Such knowledge is of course provided by practice, but experiment confirms and deepens
it. Experiment often also indicates new effects which have to be considered in descrip-
tion, in order for the results obtained to have practical significance. This is the inspiring
role of experiment, a very important role, sometimes underestimated by the theoreticians.
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When starting to model a phenomenon one uses to a large extent the results of experi-
mental studies.

The purpose of the above comments is to note that the overlapping of theoretical and
experimental studies and to emphasize the need for mutual interaction of both types of
studies. Let us now present a list of phenomena whose modelling accounted for the above
remarks and involved random effects:

— aircraft flight in a turbulent atmosphere;
— rolling of a ship on irregular waves;
— dynamic load of engineering constructions (towers, masts, bridges, smoke stacks) due

to gusty winds;
— laminar flow of liquids in tubes with rough walls;
— variable load of aircraft constructions in conditions of fluctuating pressure in reaction

engines;
— river flow accounting for precipitation and evaporation;
— destruction due to fatigue in deformable bodies.

This list is by no means complete, but it is sufficiently rich to persuade doubters to
treat seriously the alternative approach—in similar cases the deterministic approach may
not be adequate and acceptance of the stochastic approach should be considered a real
possibility. Transition from one approach to the other requires the breaking of some
habits related to the traditional manner of formulating the problems of mechanics. This
might even turn out more important than the need to grasp the concepts of the theory of
random processes.

Consequently, mathematical description of physical phenomena in terms of suitable
equations for appropriate functions must be modified in order to account for stochastic
effects. This can be achieved by regarding the values of these functions not as determinis-
tic variables, but rather as random variables with associated probabilistic, i.e. stochastic
properties. Such a change of interpretation corresponds to the change of the point of view
from the deterministic to the stochastic mathematical model.

Because of the introductory nature of the present section we shall not be dealing here
directly with stochastic modelling in phenomena. As in deterministic modelling, causal
and empirical models can be distinguished, as well as discrete and continuous ones.
Besides that, in order to better understand the final conclusions, let us state that it is
convenient to distinguish three basic types of stochastic differential equations according
to the form in which random elements enter the equations:

(1) random initial conditions,
(2) random forcing functions,
(3) random coefficients.

These three types are not mutually exclusive, and most of the technical situations
involve equations of mixed type (see the exemplary situations described, notably 'missile
flight').

Finally, we shall consider in more detail a situation in which a deterministic model is
wrong (see section 1.2.5). For this purpose consider the simplest stochastic model of the
third type, i.e.
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— = [a + b(t)]x(t), (1.31)
At

where .x(r) is a random magnitude of zero mean, while b(i) is so-called white noise (see
Bendant and Piersol (1971)).

Note that if b(t) = 0, we are dealing with the usual deterministic model. This corre-
sponds to the situation when we are disregarding small fluctuations around the mean
value given by the expression

jc = Jt0 exp(af). <L32)

It can be shown that variance of x is expressed as

D2(x) = xl exp(2af)[exp(cr20 -1], (1.33)

where a2 is variance of the white noise b(t). On the basis of (1.32) and (1.33) we get

- l ] d-34)

which means that deviations of x from the mean value increase with time. In other words
the deterministic model

^- = ax (1.35)
at

is not stable. It seems that this is the way to explain the error depicted earlier by Hall;
thus it can be concluded that in some situations random factors must of necessity be taken
into account.

Finally it would be appropriate to note the question of the nature of the laws of
physics, but without taking up philosophical arguments. The direct question is: are laws
of physics deterministic or stochastic? The followers of the concept of random nature of
phenomena tend to agree with Richard Bellman, who said that 'deterministic models are
very useful, but stochastic ones are more real". On the other hand the adversaries of the
randomness concept repeat after Albert Einstein that 'der Alte wiirfelt nicht' (the Old
One does not toss dice). We, as the authors of a book on modelling, think that resolution
of this argument, very important in the cognitive aspect, is interesting for a mechanical
engineer insofar as it facilitates reasonable modelling for the purposes of providing a
proper solution to the practical problem he faces. Thus, for instance, an engineer is rather
indifferent as to whether reliability of an aircraft over a given period of use is random or
deterministic, provided he is able to establish precisely the states of stress in the craft, and
thus ensure the avoidance of faulty functioning during use. Yet another example: when
analysing wave phenomena a situation is considered in which a wave encounters an
obstacle. The most important difference between smooth and rough surfaces is that a
smooth surface reflects the wave, while a rough one disperses it. However, this depends
also upon the wavelength, so that a non-polished metal surface is smooth for radio waves,
but is rough for light. In the latter case a stochastic description is necessary. The nature of
a given phenomenon is decided upon on the basis of the purpose of modelling, as we
have already emphasized many times. Generally speaking, we recommend that problems
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in which knowledge of the phenomena occurring is scanty or imprecise should be treated
by an engineer with special care and analysed against the background of wider knowl-
edge.

1.7 MODELS RELATED TO THE DIFFERENTIAL MODEL

On the basis of examples given hitherto it might seem that mathematical models of
dynamical phenomena consist of ordinary or partial differential equations. Since this
impression might be reinforced by later chapters of the book, in which we shall be
obtaining just this type of model, we would like to present now some examples of
formulation of models other than the differential ones.

Equations other than differential ones may arise from two causes. First, they can be
obtained through expression of the essence of the nature of the phenomenon described
(see Examples 1.1. and 1,2). Second, they can appear through transformations of the
original differential equation into other forms (see Example 1.3). In other words, one
could say that in the first case we have to abandon the differential form of the model,
while in the second case, we want, for some reason, to substitute some other form,
usually more convenient for qualitative analysis or numerical solving, for the differential
one.

Example 1.1. Self-induced oscillations in machining with a lathe. Let us first consider an
example of a problem leading to the formulation of a differential equation with a delayed
argument. In the processes of machining with machine tools (polishing, milling, turning)
unwanted oscillations are often observed, due to which the surface of the object of
machining becomes undulating. Dynamic phenomena which take place during cutting are
very complicated. It is, however, sufficient to employ a relatively simple physical model
in order to obtain a rough explanation for the oscillations. In order to focus attention
consider cutting on a turning machine; assume that the object subject to machining is
revolving on a rigid bearing, while the cutting edge is moving with respect to this object
with a constant speed and is perfectly rigid in this direction. The cutter can undergo
deformations and oscillate only in the direction perpendicular to the longitudinal axis of
the object subject to machining (see Fig. 1.18).
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Fig. 1.18.
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The analysis of the process of cutting leads to the conclusion that the forces of cutting
depend not only upon the mutual motion of cutter and object in a given instant, but also
upon their mutual position one revolution before. It can therefore be said that there is a
feedback between the cutter position x and cutting force Px. This feedback is brought
about via the delay element constituted just by the surface being machined, which 're-
members', through the shape, for the period of one revolution of the object, its displace-
ment, and after this period introduces this magnitude back to the process in the form of
the variable thickness of the cutting layer, and hence also the cutting force Px. This type
of turning is defined in the literature as regenerative chatter. When this image of the
machining process is accepted, the thickness of the layer being currently cut is expressed
as

a{t) = ao+Aa = aQ+ x{t) - Xx{t - T), (1.36)

where a0 is the thickness of the layer taken off when the cutter does not oscillate,
X G [0, 1] is the coefficient of overlapping of machining traces, x(t) and x(t - r) are the
positions of the cutter at current time t and at the time earlier by one revolution, t - x.

The cutter is loaded by three forces: the cutting force Px, the elasticity force exerted by
the cutter-carriage system, which will be modelled as kx, and the sum of various resist-
ance and damping forces depending on cutter velocity in the ^-direction, which can be
expressed as bx. Because cutting force depends, first of all, upon the thickness of the
cutting layer, the equation representing the cutter oscillations can be represented as

mx + bx + kx = Px[a(t)l (1.37)

where m is the reduced mass of the cutter-carriage system.
After linearization of the force Px[a(t)] with respect to x, accounting for (1.36) and

substituting into (1.37), this equation takes the form

mx + bx + (k - Px)x + XP'xx(t - x) = 0, (1.38)

where P'x = &Pxj&x flQ . The force referred to as Px[a(t)] is produced due to the revolving
motion of the object (or, more precisely, the drive of the lathe). In the linear form
presented above, this force was broken down into two components: one Pxx(t), analo-
gous to the 'ordinary' elasticity force kx(t), and the other is XPxx(t - T), which can be
referred to as action with delay. It is just this component of the cutting force that can
increase the energy of oscillations of the cutter-carriage system. And this energy inflow
appears through instability. The energy is provided to the system by the revolving object.
Oscillations of this type are called self-induced oscillations.

Equations of the form of (1.38), which are characterized by the fact that the unknown
magnitude depends not only upon / but also upon t- x are called differential equations
with delayed argument. They appear everywhere where we do not neglect the delays.
Typical delays are the ones arising from transport phenomena (such as in the mixing of
liquids with various concentrations), as well as information delays (e.g. transmission of
signals from the control column to the helm in the automatic stabilization of a ship's
course).
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Example 1.2. Fundamental equation of finite-wing theory. Let us consider now a prob-
lem, which leads to an integrodifferential equation. The main problem of finite-wing
theory is determination of the spanwise distribution of airloads on a wing of given
characteristics (e.g. geometry) that is flying with a given speed and orientation in space.
This airload can be determined on the basis of the known distribution of circulation
T = r(y), where y is the axis along the wing (see Fig. 1.19). The circulation of a velocity
is a linear integral of the velocity vector v along an arbitrary closed curve.

Fig. 1.19.

The first rational attempt at predicting circulation distribution on subsonic, three-
dimensional wings was a method due to Prandtl, which was especially adapted, in an
approximate sense, to the large aspect-ratio, unswept platforms prevalent during the early
twentieth century. From the standpoint of the aerodynamicist, practically all important
characteristics of these wings are predicted by the so-called thin airfoil theory. This
means that the section of the finite wing behaves just as though it were a section of an
infinite wing. Thus the flow about each unit span of the finite wing is two-dimensional
and the force experienced by every differential element dy of the wing is given by

Ay (1-39)

or

• = \poovlc{y)Ch(y) dy, (1.40)
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where pro and v«, are the air density and the velocity of undisturbed flow, respectively,
c(y) is the local chord of the wing, and CL(y) is the local lift coefficient.

By comparing (1.39) and (1.40) we get

(1.41)

i.e. the relation between circulation of a velocity and the lift coefficient at the section y of
the wing. According to the two-dimensional flow model we have

where ae is the effective incidence of the wing at the y-section. Let the geometric
incidence at the same section be a(y), which may vary across the span. Both these angles
be measure, not from the free stream velocity vector, but from the local zero-lift angle.
Then

o e (y )»o(y ) -o / (y ) I (1-43)

where a,(y) is the induced incidence, caused by the induced velocity v;. A simple applica-
tion of the Biot-Savart law (Milne-Thomson (1948)) yields

(1-44)
J-s 77 -y

We assume that v,- is small compared with v^, so that

(1.45)

If we now insert (1.42)—(1.45) into (1.41) we obtain the following integrodifferential
equation for F(y):

( y ) ^ y ) \1 da y Am,*, J-S rj~y

This equation enables determination of circulation distribution along the wing, whose
form is known, if we know both the function dCL(y)/da, i.e. airfoil distribution along the
wing, and the function a (y).

Example 1.3. Transformation of the standard model of control theory into an integral
model. The standard model of control theory is a differential model of the form

x = A(r)x + B(f)u (1.47)

where X and u are vectors of state and control, respectively, while A and B are matrices
of state and control, respectively. The problem is to determine the control vector which
ensures a satisfactory course of the process as described by model. There are several
methods of solving this problem. One of them consists in obtaining the integral form, to
which the differential form (1.47) can be transformed.
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Assume that the initial state of the system is given:

together with the terminal state

x(/f) = Xf. (1.49)

The general solution to equation (1.47) has the form (see, e.g., Hartman (1964)):

f X- ' (T)B(T)U(T) dr, (1.50)
•"o

where X(0 is the normed fundamental matrix of the uncontrolled system, i.e.

X = A(0X. (1.51)

After premultiplication of (1.50) by X~'(r) we obtain

X-1(r)x(0 = xo + f X"1(T)B(T)U(T) dr, (1.52)

whence, for t = tf, using condition (1.4), we get

X~l(t)x{ = xo+J'fX-'(T)B(T)u(T)dT. (1.53)

Equation (1.53) can be transformed into

(1.54)

where

a(*f)«X"1(tf)xf-x0
 ( L 5 5 )

and ,

H(r)^X-1(r)B(/). (1.56)

Since a given by formula (1.55) is known (as XQ and Xf are assumed known and X(t) can
be calculated for a given uncontrolled system), equation (1.54) is an integral equation
with regard to the unknown function u(0-

For a better understanding let us illustrate the above considerations with a simple
example; consider the simple pendulum described in section 1.5, but with the following
viewpoint; what external force should be applied to the ball in order to bring the pendu-
lum to equilibrium in a predefined time with minimum expense of work. The most
effective method of solving this problem consists simply in the transformation of the
differential equation into an integral equation.

Equation of the controlled pendulum (see Fig. 1.20) has the form

ml ip + mglq> = F(t)l, (1-57)

whence we obtain
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Fig. 1.20.

(1.58)

where (OQ = g/l is the natural frequency of free oscillation of the pendulum, and
u(t) = F(t)/ml is an unknown control function. Thus, a control needs to be determined
which in the predefined time T will bring the pendulum from the initial state

to the terminal state

<p(0) =

q>(T) = 0.

(1.59)

(1.60)

Let us first present the model according to the general format. Then equation (1.58)
takes the form (1.47), in which

x =
<P A =

0 1
(1.61)

L-®o °J'
Conditions (1.48) and (1.49) take, with due account of (1.59) and (1.60), the form of

T
^o(^o) =[*Po» *Po] » (1.62)
X f(r)=[0, 0]T . (1.63)

The fundamental matrix for the uncontrolled oscillator has the form

1

0)0 (1.64)

whence

ft)0
 s m G0of cos co0t

On the basis of formula (1.56) we obtain functions hj(t), j = 1, 2:

(1.65)
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1
AIJ = sm coot,

0)0 (1.66)
h2 = cos 0)0t,

and on the basis of formula (1.55)—numbers 0Cj, j = 1, 2:

1 ° (1.67)
a2=-(Po-

When (1.66) and (1.67) are accounted for, the general equation (1.54) takes the form

lo'811(sin i
(1.68)

(COS Q)nt)u(t) dt = -<Pn-
JO

Now, let us finally compare the initial differential model (1.58) with the final integral
model (1.68). This shows clearly the advantages of the integral model—initial conditions
(1.62) and terminal conditions (1.63) are already contained in equation (1.68).

It should perhaps be noted that we mentioned in section 1.5, when commenting on the
discrete-continuous model, that mathematical representations of such a physical model
are integrodifferential equations. These equations are not obtained out of 'physics', but
after transformations of the differential model.


