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Equation (4.135) now becomes

j'25(T-V)dt + j'25Wncdt = 0 (4.161)

or, if use is made of the definition of the Lagrangian function L = T-V and of the
property (4.98),

5\'2 Ldt+\'2SWncdt = 0. (4.162)

Thus, it has the same form as the engineering form of Hamilton's principle (4.145), since
5W now denotes the virtual work of only the nonconservative forces. One could therefore
assign to (4.162) the label 'D', as it arises by derivation of the engineering form of
Hamilton's principle from d'Alembert's principle, and to (4.145) the label 'P*, indicating
that it is the result of postulation.

Hamilton's principle could be considered not as a consequence of Newton's second
law (although, of course, it is in agreement with the latter) but as an equivalent postulate
of mechanics. There is nothing new in the idea that it is very useful in cases in which
direct application of Newton's second law is cumbersome. We maintain, namely an
engineer may find himself in a practical situation in which application of the method of
Newton is not only cumbersome but impossible. This usually occurs when we are dealing
not with a purely mechanical system but with coupled systems. Recalling section 4.2.4.3,
and through the example, we would like to encourage beginners in modelling to be bold,
leave the footprints of the past and go where the familiar track—that is, the relation
between the Newton's second law and Hamilton's principle—is no longer visible. There,
only the 'compass of analogy' can be used if for some reasons the variational principle is
chosen. More simply, a well-founded tool in classical mechanics is a general instrument
for developing the equations in integrated mechanics.

4.3 MODELLING OF HOLONOMIC SYSTEMS

Quite numerous complex mechanical systems encountered in engineering practice may
be presented in the form of models with holonomic constraints. The equations of motion
of such systems can be obtained with the help of Lagrange's equations of the second
kind. These equations constitute the most important instrument for modelling complex
holonomic systems and that is why the present action begins with various methods of
derivation of Lagrange's equations. However, in some specific cases, it may be more
suitable or even necessary to use other types of equations. That is why the Boltzmann—
Hamel and Lagrange-Maxwell equations are presented in sections 4.3.2 and 4.3.3.

4.3.1 Lagrange equations of the second kind
We shall show two methods of derivation: one originating from d'Alembert's principle in
the Lagrange form, which is also called the fundamental equation, and the second from
Hamilton's principle in the standard form. The fundamental equation in generalized
coordinates (4.130) has been found to have the form
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= 0 ' ( 4 - 1 6 3 )

where the kinetic energy, T, and the generalized forces, Qa, are generally functions of all
the generalized coordinates qa and the generalized velocities qa (CT = 1, ...,$), and of
time t.

Because the system is holonomic and the coordinates qa are independent, the 5qa are
completely arbitrary. Thus, one may deduce directly from (4.163) that

d dT dT „ . .. ,,..
—— - — = Qo, o=\,...,s. (4.164)
At dqa dqa

Equations (4.164) are called Lagrange's equations of the second kind. We now
consider the action in Hamilton's sense defined by the formula

(qaqa)t, (4.165)

'o

where

L = T«,qa,qa)-V(t,q<,) (4.166)

denotes the Lagrangian function. According to Hamilton's principle
8S = 0, (4.167)

and applying the Euler-Lagrange equations (4.103), we obtain

d dL dL
At dqa dqc

• = 0, a = l,.,.,S. (4.168)

Equations (4.168) are also called Lagrange's equations of the second kind.
Although equations (4.164) and (4.168) bear the same name, they are not equivalent.

Having substituted (4.166) into (4.168) we obtain

At dqa dqa dqa

Now, taking account of definition (4.159) we can transform equation (4.169) to

d dT dT pot
At dqa dqa

 a

(4.,69)

(4.170)

The essential difference between the equations is constituted by the fact that the left-hand
side of (4.164) is more general, since relation (4.158) holds. Similarly in the opposite
direction, i.e. introducing (4.158) into (4.164) and accounting for (4.159) and (4.166), we
get the form

-T--T. - j — = GaC, (4.171)
At dqa dqa
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which we prefer, because it is short and also more general than (4.168). This, however,
by no means proves that the d'Alembert principle is more general, at least not in terms of
the equations of motion. In the case considered this means only that Hamilton's principle
was not taken in the general form (4.145). For purposes of modelling there is no need,
however, to repeat the derivation of equations (4.171) in a different manner. It is much
more important to be able to calculate the generalized nonconservative forces Q£c.

There exist two methods of calculations of Q™. The first method is apparently more
direct, as it is based upon the definition (4.110) adopted for the present goal. Thus, we
have

Gnc = £ F n c . | l V i CT = ] > ^ . ( 4 1 7 2 )

The second method is based upon the definition of virtual work (4.111), i.e.

< T = 1

Thus, we calculate the differential of work, apply the mnemonic rule (see section 4.2.2.2)
and the generalized forces are obtained as coefficients at variations of generalized coordi-
nates. Although the second method seems to be in a way roundabout, we advise applica-
tion of this method, since, in fact, it is much quicker than the first one.

4.3.2 The Boltzmann-Hamel equations
These equations differ from the well-known Lagrange equations of the second kind in
that quasi-coordinates are used in them in place of generalized coordinates. They were
obtained by Ludwig Boltzmann (in 1902) and George Hamel (in 1904). Since Hamel
published them under the name of the Lagrange-Euler equation, one still encounters this
name in the literature. Because of the formal similarity with Lagrange's equations of the
second king these equations are also referred to as Lagrange's equations in quasi-coordi-
nates.

We have commented already in section 2.2.6 on the advantages resulting from the use
of quasi-coordinates in classical mechanics. We shall try to use them here to illustrate the
modelling of a holonomic system consisting of an aircraft, although the principle purpose
of the Boltzmann-Hamel equations, according to the intention of their authors, was to
model nonholonomic systems.

For derivation of the Boltzmann-Hamel equations we shall use the fundamental equa-
tion (4.130), which we shall write down as

°8q°- (4-n3)

The method of derivation consists in the presentation of equation (4.173) with the help of
quasi-coordinates using relations (see section 2.2.6)
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cr=l

qo=i;bopVp> cr = l,...,s. (4.175)
p=l

On the basis of (4.174) we can obtain relations

dtp--apa (4.176)

and

From (4.175), using the mnemonic rule, we obtain the formula

ap5i}p. (4.178)
p=l

Introducing (4.178) into (4.173) and using the property of independence of variation
of quasi-coordinates <5i?p (p = l,...,s) we get

£b°pTir--£b°p4L=pP> (4-179)

where the notation

PP = ^Zb<JPQa> p = l...,s (4.180)
cr-1

is used. Since Qa are generalized forces, we shall refer to the quantities Pp as quasi-
generalized forces.

Denote by T the function obtained from function T by substitution of the generalized

velocities qa (CJ=1,...,S) with quasi-velocities t?p (p = l,...,$) using relation (4.175),
that is

ffal ft (4.181)
p=l

We can now calculate expressions appearing on the left-hand side of equation (4.179)
with the help of this function T *. Using (4.176) and (4.177) we obtain
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dT
(4.182)

and

dT* dT* d&i = dT* *n qT. (4.183)
r=l "o

Having introduced expressions (4.182) and (4.183) to equation (4.179) we obtain

Jop
CT=1

At

dT*

o=l

s s

<T=1 p=l

57*
(4.184)

r=l

After differentiation with respect to time the sum in the first term (accounting for the fact
that aia - ai(J(qa) as well as for relation (2.65)) equation (4.184) can be expressed in the
form

cr=l T= l
df

(4.185)

where the purely conventional notation

dT* ± . dT*
(4.186)

was used. The quantities ypax (a,p,r=l,...,s) denote the so-called Boltzmann sym-
bols given by the formula

(4.187)

s)

Equations (4.185) are called the Boltzmann-Hamel equations. They describe the
motion of holonomic systems in quasi-coordinates. If -dp (p = l,...,s) are the usual gen-
eralized coordinates, implying that relations (4.174) are integrable, then the symbols j p a x

given with formula (4.187) vanish and equations (4.185) take the form of the usual
Lagrange equations of the second kind.

In practical applications the antisymmetric property of the Boltzmann symbols is very
useful. From the definition (4.187) we have
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and one can conclude that

Ypat = -YpTo> <r,p,T = l,...,s, (4-189)

where, in particular,

0 ex 0 = 1 * (4.190)

Finally it is worth emphasizing that values of the Boltzmann symbols depend only

upon the definition of quasi-velocity tip through generalized velocities qa (see (4.174)

and do not depend upon the motion of the modelled system.

4.3.3 The Lagrange-Maxwell equations
Electromechanical analogies presented in section 2.2.3 suggest the idea of using the
method of Lagrange in modelling the dynamics of electromechanical systems. A first step
was to admit that electrical charge has the nature of a generalized coordinate.

The second step requires recalling the elementary information from electricity and
magnetism (see e.g. Rogers (I960)). We learned there that in certain circumstances an
electrodynamic force arises. This force can set the conductor in motion, and that is what
in fact happens and is the basis for the functioning of an electric motor. We may also
remember an experiment in which the appearance of electromotive force in a coil due to
motion of a magnet was demonstrated. These facts together mean that we cannot treat the
electromechanical system as a straightforward combination of electrical and mechanical
parts. Speaking of this we mention that the electrical part alone could well be described
with the help of Kirchhoff's laws, and the mechanical part alone by means of linear and
angular momentum balance laws. In view of the mutual influence of both parts, neither of
these kinds of laws is applicable separately. In such situations it seems that the ideal issue
is to use the energy approach, since energy is an additive quantity. An energy approach of
this type suggests the use of the Lagrangian method. We must only define two energies
components, viz.

T&x=\He2, (4.191)

where the notation for induction of the coil has been changed from L to H, in order to
avoid confusion with the Lagrangian, and

VcX=lce2' (4-192)

In order to illustrate the above, consider a simple electromechanical system composed
of an oscillator and an electric circuit (see Fig. 4.13). The current state of the system can
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E(t)

Fig. 4.13

be described by means of two coordinates: displacement x of the mass from the equilib-
rium position and the electric charge e carried by the current flowing in the circuit.

Now comes the most important moment—and not only for the system currently con-
sidered—the combination of energy of both subsystems, i.e.

L = Anech + A

where, in our example,

~~ "mech = ~2mx ~~2'cx

and on the basis of (4.191) and (4.192)

L e ] T e l V & ] H ( x ) e e .

The Lagrange equations (4.171) take the form

(4.193)

(4.194)

(4.195)

dt dx dx

dt de

(4.196)

where Qx and Qe are nonconservative forces corresponding to coordinates x and e, re-
spectively. We shall determine these forces in the same way as for a 'usual' mechanical
system (see section 4.2.3.2). From (4.111) we have

whence
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Qx=F-bx and Qe = E-Re. (4.197)

Having used (4.193)-(4.195) and (4.197) in equations (4.196) we obtain

2 dx ( 4 1 9 g )

—e E(t)
C dx

Comparing (4.198) with equations (2.39) and (2.40) we observe now the appearance
of new expressions: in the first equation of the system (4.198) the quantity

2(f) (4.199)

appears, while in the second equation of the system, (4.198), the quantity

dx
( 4 2 0 0 )

appears, where relation (2.37) has been made use of.
Quantity (4.199) is an electrically induced force acting upon the oscillator, while

quantity (4.200) is voltage induced in the circuit due to a change of magnetic resistance
of the coil circuit; note that this voltage depends upon the velocity of the coil motion. It is
that term which is responsible for the effects observed during classroom experiments in
electromagnetic induction.

One can state therefore that application of the method of Lagrange to the modelling of
a simple electromechanical system has been successful. Now, the question arises as how
universally applicable this method is. It turns out that this has so far remained unknown,
which is surprising, since this natural manner of treating the electromechanical system
was formulated by James C. Maxwell (1831-1879) some 120 years ago in the form of a
hypothesis. Thus, Maxwell formulated the hypothesis that the equation describing the
behaviour of a complex electro-acoustic-mechanical system can be represented in the
following form:

df dqp dq p dqp dqp

where 7 = !Tmech + Te\, V= Vmech + Vei, J is a dissipation function of both parts of the
system, Qp

c is the nonconservative external generalized force corresponding to the gen-
eralized coordinate qp, and r = s +/with s denoting the number of degrees of freedom of
the mechano-acoustic part of the complex system, and /denoting the number of degrees
of freedom of its magneto-electric part.

In order to obtain a more concise formulation used for the electro-mechanical systems,
we refer to the definition of the Lagrangian function (4.193), while dissipation forces will
be included in the nonconservative forces. We then obtain
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d dL dL _ c
— 3 : -z— = QpC, P = l,...,r, (4.202)
tit dqp dqp

where

(4.203)

Equation (4.202) and function (4.203) will be called, respectively, the Lagrange-
Maxwell equation and function.

Since we have not presented a decent derivation of the Lagrange-Maxwell equations,
we present three assumptions whose fulfilment is necessary for application of these
equations:

(1) we assume that the behaviour of the mechanical part of an electromechanical sys-
tem can be described by means of a discrete model having s 'mechanical' degrees
of freedom;

(2) we assume that in every system electrical circuits are closed, meaning that conduc-
tors do not touch each other; the possibility of contact, for instance, via a commuta-
tor gives rise to nonholonomic constraints and would require separate treatment;

(3) a continuous electrical part of the electro-mechanical system can be described with
the help of a finite number of 'electrical' generalized coordinates, if the condition
of quasi-stationarity is satisfied; that is, changes over time in the intensity of an
electromagnetic field do not influence the value of magnetic induction.

4.3.4 Case studies

4.3.4.1 Does a bell always ring?
This problem has a certain historical interest due to experiments performed with the giant
bell Kaiserglocke of the famous Cologne Cathedral in Germany. In some situations a bell
does not ring owing to the failure of the clapper to strike the side of the bell; we will
establish the condition under which a bell fails to ring. A bell, together with its clapper, is
modelled as a mechanical system composed of two compound pendulums. The pendulum
which represents the shell rotates about the fixed, horizontal axis through O, called the
axis of suspension, while the pendulum representing the clapper rotates about the axis A,
connected to the first pendulum at the hinge axis (Fig. 4.14a). We assume that the bell
and its clapper move in one plane. Then, the system has two degrees of freedom. The
coordinates are the angular displacement a of the first pendulum, and the angular dis-
placement [5 of the second one relative to the vertical direction (4.14b). Both a and /? are
assumed to be small. We use the following notations:

mb, mc are the masses of the bell and the clapper, respectively;
/o is the moment of intertia of the bell about its axis of suspension;
/ c is the moment of intertia of the clapper with respect to its centre of gravity C;
a is the distance between the axis of suspension and the hinge axis;
b is the distance of the centre of gravity, B, of bell from the axis of suspension;
c is the distance of the centre of gravity, C, of clapper from the hinge axis.


