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Fig. 1.5. Scheme of the process of investigation of the phenomena.

which are symbolized by broken lines will be called modifications. It should be stressed
that in practice most modelling does not take the precise form shown in Fig. 1.5. The
figure is there just to give some idea of the underlying relationship between real-world
problems and the mathematical techniques used to find solutions to them.

1.3 AN EMPIRICAL AND A CAUSAL MODEL

Each observed phenomenon may be described in many different ways depending on
factors such as required exactness, the purpose of modelling, calculation possibilities at
the stage of model analysis, etc. Even if all the mentioned factors have been established,
two different approaches to mathematical model formulation may still be distinguished.
These two approaches result in different kinds of models. However, before naming them
let us consider an example in which two methods of mathematical model formulation will
be presented.



26 Basic notions of modelling [Ch. 1

Example. A simple rigid beam AB is loaded by a force F applied at point C (see Fig. 1.6).
The direction of action of the force is known and given by the angle a. The reaction YB of
the support B has to be determined.

Fig. 1.6.

Two different approaches to this problem solution may be used. The experimental
approach is simply to weigh the loading of the support. By performing a series of
measurements of the reaction Yg for different loadings F at fixed angle a, and then
drawing a graph (as for example in Fig. 1.7), we may easily establish a relation between
the reaction YB and the loading F. This relation has the form

where k\ = tan 7 is a positive constant, and 7 is the angle shown in Fig. 1.7.

0

Fig. 1.7.

If we perform measurements for different loadings F and for different angles a, we
can also, by further examination of experimental data, find out how the coefficient k±
depends on the angle a. It would have the form k{ = k sin a, and, consequently, reaction
YB may be expressed as follows:

YB = kF sin a

where k is a positive constant.
(1.9)
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The theoretical approach to problem solution requires the writing of only one equilib-
rium equation, namely that for moments about point A. Thus we have

£ M A =Fdsina-YBl = O

Hence

YB=jFsina. (1.10)

The example considered has shown that different ways of model formulation may
result in different models. It is reasonable to distinguish the two kind of model. We shall
call the model obtained via experimental procedure an empirical model, and the one
obtained via a theoretical procedure a causal model. Thus a causal model is one obtained
by means of certain physical laws. The experimental method of model formulation is also
referred to as identification.

When evaluating the usefulness of models with respect to an a priori settled modelling
purpose, we cannot perceive substantial differences between the two kinds of models. An
important advantage of a causal model is that its formation requires usually much less
work than in the case of an empirical one. In carrying out the experiments and then
establishment of data, the obligatory stages of elaboration of any empirical model, are
usually extremely laborious and expensive. But the main advantage of the causal model is
constituted by its generalization possibilities. It is sufficient to change the point in which
the force F is applied, and the result obtained (1.9) will not be valid any more. A great
part of the work invested in the empirical model preparation is then lost. At the same time
the causal model (1.10) after the same change remains still valid. This preservation of
model validity despite some changes of the parameters is really a great advantage of the
causal model.

The above considerations may suggest that there is always a clear, sharp division
between an empirical and a causal model. Such an impression is, however, not true. The
notion of 'causal model' is to some extent relative and depends on the investigator's
enquiries and on the current state of knowledge about the class of phenomena considered.
Moreover, an empirical model can have the same form as the causal one. A good illustra-
tion for the last two sentences is provided by the following well-known historical
example.

Suppose we are interested in how the pressure P of a perfect gas changes when its
volume Q. varies at constant temperature i}, i.e. during a so-called isothermal process. If
we knew nothing about the laws governing this process, we should perform an experi-
ment and put relevant measurements on the P-Q. chart. The next stage of modelling
would be an approximation of the experimental data by means of a curve, whose equation
would provide an empirical formula for the isothermal process. That is what Robert
Boyle (1627-1691) did, and in 1661 he announced his discovery, known today as Boyle's
law:

PQ. = constant (# = constant).
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Note that to some extent this simple model may already be treated as a causal model,
and if we were to ask why two state variables, P and Q, of a perfect gas in isothermal
conditions vary in an exactly unique manner, we might answer that the isothermal proc-
ess is governed by Boyle's law. But this answer would be insufficient for an inquiring
mind. Benoit Clapeyron (1799-1864), who gave a more general formula

PQ, = nRi} (1.11)

(where n is the number of moles in the system, and R is the universal gas constant),
known today as Clapeyron's equation, certainly thought so. Thus, Boyle's law is a
particular case of (1.11). Although Clapeyron's equation (1.11) was first obtained in
experimental way, the same result may be obtained by means of theoretical considera-
tions within the frames of statistical mechanics. In this case, fundamental laws of statisti-
cal mechanics together with assumptions specifying interaction forces between gas
molecules, have to be used. Thus (1.11) may be treated as a causal model of perfect gas
behaviour. But now we may also ask about the ultimate cause of the fundamental laws of
statistical mechanics, and we shall find ourselves in a similar position to the time before
Clapeyron's equation had been announced.

The above considerations give rise to the following conclusion: a notion of causal
model is relative and depends on the actual state of knowledge and the enquiry of the
investigator. Despite this relativity of both notions concerning empirical and causal mod-
els we shall use the following simple practical indicator in order to distinguish them: a
model obtained by means of an identification procedure will be called an empirical
model, while one obtained by using the physical laws will be called causal.

1.4 THE INFLUENCE OF PURPOSE OF MODELLING ON THE FINAL FORM
OF THE MODEL

The choice of a physical model depends substantially on the purpose of modelling, i.e.
which properties of the investigated phenomenon are we interested in. A single factor
may be unimportant for the investigation of one property and very important during the
investigation of another. This means that a physical model has always a limited range of
applications and is useful only for investigation of a certain subset of all the properties of
a phenomenon. A good example illustrating the last statement is provided by the model-
ling of the motion of a rigid body about a horizontal axis, i.e. the compound pendulum.
Probably everyone is familiar with the compound pendulum oscillating about its equilib-
rium position. We may observe that free motion is nearly periodic, decaying in time, and
that after a certain time the body stops moving.

Let us assume that we are interested in the following properties of the pendulum in its
motion about the horizontal axis:

PI. period T,
P2. decay time to half-life oscillation, i.e. time to halfTh,
P3. time after which pendulum stops, i.e. dead time.

In order to obtain information about the three properties mentioned above let us consider
several physical and corresponding mathematical models:
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Physical model PM-1. We shall consider a rigid body of a mass m rotating about a
horizontal axis x through the point 0, the axis being distant / from mass centre C (see Fig.
1.8). Let Jo be the body moment of inertia about the axis x. Additionally, we shall
simplify the description of the real object assuming that:

Fig. 1.8.

Al. frictional resistance in a bearing is negligible,
A2. drag is negligible also,
A3. the body moves around the equilibrium state oscillating with small angles (p.

During rotational motion of the body many physical laws are fulfilled simultaneously
but two of them directly influence the shape of mathematical model. They are

(1) law of rate of change of the angul ar momentum,
(2) Newton's law of gravity.

Mathematical models for physical model PM-1. The law of rate of change of angular
momentum for rotational motion of a body about the *-axis states that

d/7
dt

x _= MX, (1.12)

where Hx is a projection on the jr-axis of the vector of angular momentum of the body
about this axis, and Mx is a projection on the x-axis of the moment of external forces
about this axis. Then, Newton's law of gravity enables us to express the force of gravity,
which gives the nonzero moment about the x-axis. We have G = mg, where G is the force
of gravity, and g is the acceleration due to gravity. Taking into account assumptions Al
and A2, as well as the relations HX=JQ<P and Mx = - Gl sin (p = -mgl sin cp, and



30 Basic notions of modelling [Ch. 1

substituting them into (1.12), we get the first mathematical model, MM-1.1., correspond-
ing to the physical model PM-1, i.e.

MM-1.1.: JQip + mgl sin <p = 0. (1-13)

The nonlinear equation (1.13) thus obtained may be simplified due to assumption A3 and
we get

MM-1.2: jQ(p + mgl(p = 0. (1.14)

Equation (1.14) describes the well-known simple harmonic motion, and its solution has
the following form:

(1.15)

where con = ̂ (mgl/Jo) is the undamped natural frequency. The amplitude A and initial
phase angle /? are constants which are evaluated from initial conditions <p (0) and <p(0).
The solution (1.15) of the mathematical model MM-1.2 provides the answers to the three
interesting properties:

PI. period T = 2K/(On = 2K^(JQ/mgl),
P2. time to half 7^ is infinite, since the solution (1.15) is periodic,
P3. dead time is also infinite, for the same reason.

The solutions obtained with respect to properties P2 and P3 are evidently contradictory
with the phenomenon described before. Thus we can try to change the physical model
hoping that this would improve the resulting model of the phenomenon.

Physical model PM-2. All elements from physical model PM-1 remain unchanged
except for the assumption A2. Now we shall assume the existence of a drag, which will
damp the oscillations of the pendulum. As a consequence of this new assumption the set
of data has to be supplemented with the damping coefficient denoted by B. Insofar as we
shall further assume the oscillatory character of pendulum motion the damping has to be
light. Hence, B < Bc, where Bc = 2ma>n is 'critical damping'.

Mathematical models for the physical model PM-2. Since the resistance moment about
the x-axis caused by drag is B(jp, the mathematical model is

MM-2.1.: JQ(j> +Bip + mgl sin (p = 0. (1.16)

Due to the assumption A3 the nonlinear model (1.16) may be simplified and we get

MM-2.2.: J0(j> + Bq> + mgl(p = 0. (1.17)

The solution of (1.17) is

C~Za>' P), (1.18)
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where f = B/Bc is the damping factor, (Od=mn^{\- £2), C and p are constants, whose
values are evaluated from the initial conditions. For the detailed explanation of the
meaning and evaluation of £, cod, C and J5 see, for example, Walshaw (1984).

The solution (1.18) provides the following answers for interesting questions:

PI. period T = 2K/a)d=27i/con^(\-t;2),
P2. time to half Th = In 2/£con,
P3. dead time is infinite (since the function exp(—^cont) is always positive).

Since the solution of the model MM-2.2 does not give a proper answer concerning
property P3, there is a necessity of further improvement of the physical model.

Physical model PM-3. In order to improve a physical model we shall change the model
PM-2, now assuming the existence of frictional resistance in a bearing. We shall assume
that in the bearing O the dry friction forces result in a resistance torque M, which is
characterized by the three graphs of Fig. 1.9.

The graph in Fig. 1.9(a) describes the relation between the moment of dry friction
forces and the angular velocity ip. We see that if ip *• 0 the moment is uniquely deter-
mined. This is not the case when <p = 0. The situation of ip = 0 is described in turn by the
graph of Fig. 1.9(b). In this case the moment depends on the angular acceleration ip of
the pendulum. When this acceleration differs from zero (ip'^0), i.e. when the velocity
changes its sign, the moment is uniquely defined and has a constant value. If, however,
both angular acceleration and angular velocity are simultaneously equal to zero, i.e. the
body does not move, the moment of dry friction forces may assume any value from a
range (-A% ^o) a nd >ts exact value depends on the position in which the body stopped.
The quantitative relation between the moment of dry friction forces and the angular
position is shown in Fig. 1.9(c). As we see, the introduction of dry friction into the
bearing substantially complicates the physical model. All the other elements of the physi-
cal model remain the same as in model PM-2.

Mathematical models for physical model PM-3. In the first stage of mathematical
modelling we have to form the mathematical description of frictional resistance. First of
all note that the moment of dry friction forces depends on the angular acceleration ip, and
thus we may write M = M{<p, ip, ip). In any case the moment M does not exceed a certain
constant value MQ, SO that we can write

M=KMQ, (1-19)

where

•p-7 w h e n (p —) 0

m
<P when<p = 0, and <p * 0 (1.20)

fmglshup] w h e n (p = Oi and ^ = 0

I Mo J
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The function i/f appearing in (1.20) is defined as follows:

| sign z for |z| > 1

z for |z| < 1,

where, in turn,

sign z =
+1

-1

when z > 0

when z < 0.

(1.21)

(1.22)

Now we are in a position to formulate the equation of motion, i.e. the mathematical
model

MM-3.1.: J0(p + B<p + mglsin(p=KM0. (1.23)

where K"is defined by the expressions (1.20).
Equation (1.23) has no analytical solution and if we need to get the answers concern-

ing the interesting properties PI, P2, and P3 we have to simulate a corresponding initial
value problem on a computer.

The time-dependent behaviour of the system can be illustrated if three instantaneous
values of displacement are plotted against time (Fig. 1.10); shown are the 'decay curves'
for
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(1) undamped motion which is, of course, simple harmonic—equation (1.14),
(2) viscous damped motion with damping factor £ = 0.1—equation (1.17),
(3) motion influenced by viscous damping and frictional resistance, with M0/JQ =

0.3 s~2.

We can see that when dry friction forces are accounted for in the model, the body stops,
according to this model, after a certain finite time. This result, read out directly from
computer plots, and approximately conforming with the true course of the phenomenon,
allows us to think that the MM-3.1 model is adequate.

Obviously it is possible to formulate subsequent physical models which may give
equally good or even better resulting models, but this is not our aim now. Here we want
to focus our attention on the fact that a given modelling purpose (in the example consid-
ered it was determination of period, time to half-life, and dead time), may require a
change in the physical model and consequently in the mathematical ones.

In this example the changes of the physical model were relatively small. They con-
cerned only these assumptions, which cause introduction of two kinds of forces into the
model, i.e. the viscous damping force and the dry friction force. All the other assumptions
concerning the object remained unchanged. It often happens that the purpose of model-
ling has much greater consequences. Modelling of aircraft provides a good example of
this kind of change.

An aircraft may be modelled as

(1) a particle,
(2) a system of rigid bodies,
(3) a system of deformable bodies,

and the choice depends on the problem we have to solve. If we are interested in optimiza-
tion of flight trajectory with respect, for example, to fuel consumption, then a sufficient
and a good model of the aircraft is a particle. When considering the problem of flight
stability, i.e. when studying aircraft behaviour on a flight trajectory under small distur-
bances, we need to model the aircraft as a rigid-body system. Finally, when performing
flutter analysis, i.e. determining the so-called critical speed of flutter, we have to model
the aircraft as a system of deformable bodies (Fig. 1.11).

Thus, on the basis of the two examples considered, we see that the purpose of model-
ling has substantial influence on the final form of the physical and mathematical models.

1.5 DISCRETE AND CONTINUOUS MODELS

One of the most important decisions, made usually at the initial stage of the modelling
process, is whether a given object should be transformed into a discrete, continuous or
mixed (i.e. discrete-continuous) model. Let us note that the notions 'discrete' and 'con-
tinuous' concern the model, and not the object. To demonstrate that difference let us
again refer to the example considered in section 1.4. A real object such as an aircraft,
depending on the modelling purpose, may be modelled as a mass particle, a system of
rigid bodies or a system of deformable bodies. Every aircraft possesses a structure, i.e. a
unique system of element interconnections, such as wings, fuselage, stabilizer, elevator,
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Fig. 1.11.

rudder, aileron, engine, propeller, etc. Moreover, some of the aircraft elements are mas-
sive, heavy and relatively rigid, while others are light and flexible. This complex struc-
ture of the object is transformed at the very beginning of modelling into a substantially
simplified structure of the physical model. After this transformation, physical models of a
different kind may be obtained, namely discrete (as for example particles or rigid bodies),
continuous (like deformable bodies), or mixed, i.e. consisting of both kinds of compo-
nents—discrete and continuous. Of course this means, however, that the choice of the
kind of a model depends strongly upon the aim of modelling. At the same time the
properties of the object are its attributes and they can be accepted or not. It is known from
physics that the microstructure of matter is in fact grainy, i.e. discrete. It consists of
molecules and atoms. All processes occurring on micro-level, such as collisions, absorp-
tion or emission of energy, have discontinuous character, i.e. they are of quantum nature.
However, in engineering mechanics only the phenomenological effects, which appear in
the macroscale, are practically important. There the individual behaviour of the mol-
ecules as well as the granulation of the matter gets blurred. The matter can then be treated
as a spatially continuous medium, and all phenomena occurring in it are recognized as
time-continuous. The fundamental simplification related to the objects to be considered in
this book relies upon neglecting their discrete structure, i.e. abandoning the fact that from
microscopic viewpoint material substance is composed of discrete particles—molecules
and atoms. In other words an object will be (and already has been) treated, in the first
instance, as a continuous medium, or continuum, for simplicity.

The above statements can be expressed in a more formal form as a so-called con-
tinuum postulate.

The continuum postulate assumes that
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every element volume of a body contains a tremendous number of molecules and that
the average statistical properties of the molecules contained in an elementary volume
represent the macroscopic properties of the body in the region of that elementary
volume.

Consequently, the continuum model is a satisfactory one only for those situations where
the characteristic dimensions of the body under consideration are very large when com-
pared with the average molecular distance between the molecules constituting the body.
When considering phenomena on the macro-level for solid bodies or liquids, the con-
tinuum postulate is fulfilled, of course. However, in the case where a gas is at a low
pressure (e.g. atmospheric air at high altitudes), the gas density may be so low that the
applicability of the continuum postulate may be an open question. It is, therefore, essen-
tial that analytical criteria be available for determination of the limitations to the applica-
tion of the continuum postulate. In order to obtain them let us introduce the notion of
mean free path. Under normal conditions of pressure and temperature a gas molecule
moves only a short linear distance, called the molecular free path, before it collides with
another gas molecule. The average value of the free path for an assemblage of molecules
is termed the mean free path, denoted by X.

For a gas to satisfy the continuum postulate, the molecular mean free path must be
small compared to a significant characteristic linear dimension L pertinent to the flow
field. By definition, the ratio X/L is termed the Knudsen number, and is denoted by Kn.
Thus,

Kn = A/L. (1.24)

The continuum postulate is applicable to those flows of gas for which the appropriate
Knudsen number is less than approximately 0.01. Accordingly, when Kn > 0.01, the gas
should be treated as an assemblage of discrete particles.

The continuum postulate, having a purely physical nature, is, from the mathematical
viewpoint, equivalent to the assumption that the functions describing the motion of this
medium are continuous. This, in turn, makes it possible to apply a relatively simple
apparatus of mathematical analysis.

Now a question arises: how, for a continuous object, may its different models, particu-
larly the continuous one, be obtained? In addition which model should be applied for a
proper representation of a continuous object?

Generally, the model will be referred to as continuous if its mathematical description
requires introduction of variables depending not only on time but also on spatial coordi-
nates. This kind of model may be mathematically represented by means of partial differ-
ential equations. Continuous models are alternatively called distributed-parameter
models. If, however, an idealization made at the initial stage of modelling, enables the
description of the object be made by means of a finite number of variables, then such a
model is referred to as a discrete or alternatively a lumped-parameter model. For this
kind of physical model the mathematical model consists of ordinary differential equa-
tions. The process of passing from a continuous object to a discrete model is called
discretization. The question as to when a continuous object may be represented by a
lumped-parameter model without a considerable decrease of exactness of the final results
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is quite serious, and the answer to this question is not unique. The choice of a physical
model made at the very beginning results from the existing structure of the object consid-
ered, and from the aim of modelling. However, a proper choice depends also on the
experience, sometimes called intuition, of an engineer who deals with a given modelling
problem.

To develop one's skills and learn the art of modelling, let us first consider variorj
simple examples of both the discrete and the continuous kinds.

A typical example of a discrete model is the vibratory system of Fig. 1.12. Its math-
ematical model has the form

= F(t) (1.25)

x(t)

Fig. 1.12.

Another, probably more complicated system, which also may be modelled as a dis-
crete one, is provided by the torsional vibrations of a ship propeller shaft. It can be
described to within a close approximation by neglecting the mass of the shaft and replac-
ing the propeller and the turbine by two discs, located at each end of the shaft. The
scheme of such a system is shown in Fig. 1.13, while its mathematical model is given by
the two following equations:

Il0[+k{6l-62) =

(1.26)

where torsional stiffness k = GJ/L.

Fig. 1.13.
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We would like.to point out that although absolutely discrete objects do not exists in
reality, investigation of their discrete models provides, in a relatively simple way, impor-
tant information about the behaviour of objects. Thus, for example, the transmission of
force from an unbalanced spring-mounted machine to its foundation may usually be
described by the model (1.25) (the machine being considered as a concentrated mass
mounted on a simple equivalent spring).

One must recognize the high degree of idealization of a discrete model, for in reality
springs and dampers possess some mass, and a mass possesses some deformability and
damping capabilities. To realize the influence of the continuous-parameter distribution on
both the form of the mathematical model and on some object properties, let us consider a
typical example of a continuous model—a cantilever bar excited in vibration by a longi-
tudinal loading/(;c, f), which is assumed to vary arbitrarily with position and time (Fig.
1.14). The significant physical properties of this bar are assumed to be Young's modulus
E, cross-sectional area A(x), and the mass per unit length /i(x).

u(x, t)

Fig. 1.14.

If damping effects can be neglected, then the equation of motion takes the form (for a
derivation see Meirovitch (1967))

dx (1.27)

where u(x, t) denotes the displacement of the cross-section given by the coordinate x.
Assuming in (1.27) \i = const, A - const, and/(*, t) = 0, we get

"a?"Va (L28)

i.e. the standard model of free longitudinal vibration of an elastic bar, known also as the
wave equation. The velocity for longitudinal waves in a bar is thus

c^(EA/n) = yl(E/p). (1.29)

This gives velocities of the order of 5000 ms"1 for typical values of E and p for steel.
This result tells us that any longitudinal disturbance travels along the bar with a finite
speed. The finite speed of disturbance propagation is probably the feature in which the
discrete and continuous models differ the most. The speed of disturbance propagation
resulting from a discrete model is infinite, if quantifiable.
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Except for purely discrete or continuous models there are often situations encountered
in modelling practice, in which a mixed model provides the best results. Here are several
examples:

(1)

(2)

(3)

Smoke stacks with heavy, compact installations, such as a platform or an
electrofilter on it. Such a smoke stack can be modelled as a beam (a continuous
subsystem) with attached lumped masses (-lumped subsystem) (see Fig. 1.15). The
longitudinal vibrations of a liquid fuel propulsion rocket may be investigated by
means of the same physical model. Fuel in tanks is modelled as a mass-spring
lumped subsystem while a rocket body is often modelled by a beam.

Y7///77//////A '//////////A
Fig. 1.15.

Antiseismic buildings in regions subject to earthquakes or frequent motions of the
rocks forming the Earth's crust are constructed on special elastic foundations, which
may be modelled as a spring-dashpot lumped subsystem, while a multistorey build-
ing may be modelled as a continuous subsystem—a beam (see Fig. 1.16).
A bridge along which a heavy vehicle moves. The vehicle is usually modelled as
lumped system, while the bridge is represented again by a beam (see Fig. 1.17). A
similar physical model but with an immovable lumped subsystem may be used for
modelling the suspension-turboengine system of a helicopter.

The mathematical models for mixed physical models are either combined ordinary and
partial differential equations or integro-differential equations. Both classes of equations
present serious difficulties in solving them.

It should be added that both notions—discrete and continuous—may also concern
time. This meaning is very popular among automatic engineers where, for instance, the
phrase 'continuous model' means a model in which input signals may vary continuously
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in time. It is therefore better to speak about discrete and continuous mechanical models as
models with lumped and distributed parameters, respectively.

7///////////A

Fig. 1.16.

7777)

Fig. 1.17.

1.6 STOCHASTIC VERSUS DETERMINISTIC MODELS

We know already from previous considerations that if real-world observations are obvi-
ously in contradiction with the solution of a model, then we have ben employing an
inadequate model. In this situation we must try to find another, better model. Examples of
this type of problem were shown in section 1.4. In the practice of modelling, though, it
can happen that this type of consecutive modification does not ultimately yield satisfac-
tory results, and it might be necessary to take up an entirely new approach. This could
entail application of an entirely different mathematical tool.

A very instructive example for this situation is provided by the event described by
A. C. Hall in Oldenburger (1956). In 1941 MIT and Sperry Company were jointly elabo-
rating a control system of aircraft radiolocator. Hall and his friend worked through the


