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dy ax dy

must hold. This is the famous Euler-Lagrange equation and its solution is called the
extremal.

All our results till now may be generalized in a natural way for the multidimensional
case—that is, the case of a multidimensional functional space of functions that still
depend upon just one variable, x. If we then denote by {y} the set of functions y\,---,yn,
we will be analysing the extremum of the functional /[{y}]. After an adequate generaliza-
tion of the notions of proximity, variation of a functional etc., we can obtain the Euler-
Lagrange equations in the form

i = l n. (4.104)
dy-, Ax dy-

4.2.3 Differential variational principles

4.2.3.1 The common property of differential principles
Before we pass over to consideration of selected differential principles we would like to
turn attention to some questions which, in our opinion, are essential. First of all we recall
the remark from section 4.2.1 that variations should be understood in a broader sense and
must not necessarily mean extremalization. That is why there is no objection to including
differential non-extremal principles to variational ones. It is only essential that admissible
variations of certain functions appear; in classical mechanics they may be those of the
positions of mass particles (the d'Alembert principle), and in thermodynamics they are
the variations of the so-called local dissipative potentials (the Onsager principle).

The fact that in section 4.2.2.1 only virtual displacements were considered does not
imply that they are the 'construction material' of all the differential principles. True,
virtual displacements are the central concept and a difficult one, and that is why they
were taken up at the beginning of this section. This should not hinder the proper percep-
tion of the fact that other quantities could be equally 'good', for instance virtual velocity
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or virtual acceleration. This is a suitable place for emphasizing that the principle of
virtual work in a form elaborated by Lagrange contained the very notion of 'virtual
velocity'! That is why we want to emphasize that all the differential principles known in
theoretical mechanics have a common property, namely that each of them contains one
element from the set of elements rv , v v = rv, av = rv , and eventually higher differen-
tials r[/^ of the position vector.

Let us try , in the light of the above, to grasp the essence of differential principles in
classical mechanics. There is, it seems, no need to prove that actual motion fulfils New-
ton's second law:

/ n v r v = F v + R v , (4.105)

in which F v are active forces, and Rv are reactions of constraints. In this connection, it is
suggested that the actual states taken for comparison with the imagined ones (see 4.1.2)
are called 'Newtonian states'. Thus, we can write down the general form of the differen-
tial variational principle

F v -m v r v )5 r ( p ) =0. (4.106)
v=l

We assume in this that 5t = 0 (synchronous variation), <5rv =0,...,<5r[/'~1) =0,
and 5i"y * 0. Particular forms of principles known in mechanics can be obtained from
equation (4.106). Thus, for instance, for p = 2 we would have the principle of Gauss (see
section 4.2.3.6).

4.2.3.2 The principle of virtual work
In 1717 Johann Bernoulli proposed the principle of virtual work, which is essentially a
definition of equilibrium for the mechanical system. Obviously, every engineer in me-
chanics knows that the necessary and sufficient conditions for a rigid body to be in
equilibrium are that the resultant force and the resultant couple be zero vectors every-
where. The question therefore arises: why are we recalling such an old-fashioned device?
The answer is that in the study of statics we have followed the procedure of isolating a
body to expose certain unknown forces and then writing equations of equilibrium that
include all the forces acting on the body. Such a method of establishing the conditions of
equilibrium is less useful for constrained multi-body systems. This is even more obvious
when applied to the study of the equilibrium of deformable bodies. An invaluable tool is
the principle of virtual work, which reflects in a simple manner the dependence of the
internal strain state upon the external load, but we shall be writing about this in Volume
2. Here we present only the principles valid for mechanical systems composed of a finite
number of particles.

Assume, then, that a system of n particles is tied with holonomic scleronomic bilateral
and perfect constraints. The necessary and sufficient condition for the equilibrium of this
system is that equation

V -<5IV=0 (4.107)
v=l
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hold. Note that equation (4.107) results from (4.106) if we accept the assumption that
r v = 0 .

Since 5cv is a displacement, the whole expression on the left-hand side of equation
(4.107) has the dimensions of work. That is why the quantity from the definition is called
virtual work and is denoted by SW:

n
8W=Y,Vv-5rv. (4.108)

v=l

Beware of the misunderstanding that may arise here: the virtual work SW is not, in
general, the variation of the work W and, to avoid confusion, it must be remembered that
SW is merely a shorthand notation for the quantity

v=l

As we remember from section 2.2.3 it is best to present the description of constrained
systems with the aid of generalized coordinates. Let us see how they help in the formula-
tion of equation (4.107), and for this purpose we use relation (4.60). Taking the latter into
account virtual work (4.108) can be represented as

tit>£(iv£).
The quantities

(7 = 1,...,* (4.110)

will be called generalized forces and expression (4.110) takes the form of

CT=1

and expresses virtual work in generalized coordinates. If qa(<7= 1,..., s) are generalized
independent coordinates, then variations Sqa are independent and, on the basis of (4.107)
and (4.111) we have

2a = 0, o-=l s, (4.112)

which means that the vanishing of the generalized force Qa for each independent general-
ized coordinate qa is a concise way of writing down the conditions of equilibrium of a
system of particles subject to constraints.

Hence, we see that we can obtain as many conditions of equilibrium as there are
independent variations Sqa (a= 1,..., *) which can be realized in the system. In other
words this means that the number of conditions of equilibrium which can be obtained for
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the system is equal to the number of degrees of freedom s. Thus, the principle of virtual
work makes it possible to obtain all the conditions of equilibrium of a system of particles.

From the point of view of modelling, though, something else is most interesting. We
shall see, in many instances, that we have to determine non-potential generalized forces.
It turns out that it is far better to use for this purpose not the formula defining generalized
forces, i.e. (4.110), but the principle of virtual work, (4.111), in which these forces
appear, and this will be demonstrated in section 4.3.1.

One final remark; since the principle of virtual work concerns the state of equilibrium,
the constraints applied are stationary. Then the virtual displacements are identical with
admissible displacements. That is why the principle is also known as the principle of
admissible displacements. Sometimes, especially in the theory of elasticity, the name of
Lagrangian principle is also used.

4.2.3.3 D'Alembert's principle
In his Traite de dynamique in 1743, Jean le Roland d'Alembert (1717-1783) proposed
a principle of which it is often said that it reduces a problem of dynamics to one of
statics, and, in a sense this statement is true. It is commonly held that the history of
analytical mechanics starts with this principle. D'Alembert's principle occupies as a
crucial position in dynamics as the Lagrangian principle in statics. Initially, studies were
connected with the work conducted by Jacob Bernoulli (1654—1705), who noticed that
the actual motion of a pendulum is composed of, in a sense, 'hidden' motions, one caused
by the force of gravity and the second by the reaction of the string. Lagrange saw in this
observation a seed of the future principle of d'Alembert.

Before we discuss d'Alembert's principle, we will formulate it, as usual, in the form of
a postulate. Thus, consider a system consisting of n particles, whose motion is subject to
a holonomic and b nonholonomic bilateral constraints. We shall further assume that these
constraints are ideal, and that they are given by the following equations:

/ a ( r i , r 2 , . . . , r n ) r )=0 , a = l a, (4.113)

<p / 3(r1 , . . . ,rn;r1 , . . . ,rn ,0=0, 0 = 1 b. (4.114)

The d'Alembert principle states that the motion of such a system takes place in such a
way that equation

-m v r v ) -&V=0 (4.115)
v=l

holds, in which <5rv are virtual displacements subject to the constraints (4.113) and
(4.114).

First we note that equation (4.115) can be obtained from equation (4.106) for p-0.
But this time something else is worth particular emphasis. We have already remarked that
the reduction of the problem of dynamics to the one of statics requires explanation. We
should explain, therefore, that in handbooks of mechanics the postulate of reaction for
dynamic systems, i.e. the formula

F v + R v + B v , = 0 (4.116)
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where

B v = - m v r v (4.117)

is sometimes called the principle of d'Alembert. The postulate mentioned should be
understood as follows: if the external forces F v acting upon the points of a constrained
system are complemented with forces of inertia, Bv> then these forces are equilibrated by
the reaction of constraints, Rv. As noted by Hamel (see Hamel (1949), p. 220), such a
view is an insult to d'Alembert, for it is an intolerable trivialization of the principle. A
nice illustration is provided here by Rosenberg (see Rosenberg (1977), p. 124), which, in
view of its value, we will quote in full. Thus, authors who do this proceed as follows:
they rewrite Newton's second law for a single particle

mr = F (4.118)

in the form

F - m r = 0, (4.119)

where F is the resultant of all forces acting on the particle, and they call (4.118) Newton's
principle, and (4.119) d'Alembert's principle. They argue that, if F in (4.119) is a force it
may be added to (—mr), and then it follows from homogeneity requirements that (-mr)
is also a force (usually called the reversed effective force, while mr is called the inertia
force). Thus, (4.119) states that the sum of two forces vanishes. This is the statement of a
static problem; hence, the dynamic problem (4.118) has been reduced to the static prob-
lem (4.119).

Now, it is evident that (4.118) and (4.119) are the same equations, their only differ-
ence being that in (4.119) all the nonzero terms have been transferred to the same side of
the equal sign. Certainly, (4.119) does not involve any new 'principle' not contained in
(4.118), and thus the sharp judgement of Hamel's, for the essence of the principle of
d'Alembert is equation (4.115), in which variations 5rv are interdependent due to
holonomic and nonholonomic constraints. It is therefore not permissible to conclude from
equation (4.115) that Fv = mtv =0 for v~ 1,,.., n, as suggested by formulation (4.119).

One further comment is worth making. It is usual that in place of kinematic constraints
(4.114), constraints which are applied to velocities are of the form

(
lf

)-vv + D^=0, P = l,.,.,b. (4.120)
v=l

This is quite understandable, for only with such constraints can one proceed. The ques-
tion is that of 'plucking out' the vectors of virtual displacements from the general form
(4.114), and this is not possible.

We shall give now the modified form of d'Alembert's principle, which will be used to
construct models of motion of holonomic and—above all—nonholonomic systems. The
modification was introduced by Lagrange already in 1780 and presently is known as the
fundamental equation.



166 Modelling using variational principles [Ch.4

4.2.3.4 The fundamental equation
Using the virtual work expression (4.111), d'Alembert's principle (4.115) takes the form

(4.121)
v=l o-=l

It now remains to convert the right-hand side to achieve the double objective of introduc-
ing generalized coordinates and replacing scalar for vectorial kinematical properties. To
do this, we make use of relation (4.60), and equation (4.121) can be then expressed in the
form

(J=l cr=lVv=l

Since

df . dr) . dr d ( dr
-I mr-— \ = mr-—- + mr— -r~

dq J dq dtyc

the right-hand side of equation (4.122) takes now the form

'T-I ^> d I . dr,

If relation drv/dqv = drv/dqv is used in the first term, (4.124) becomes

(4.122)

(4.123)

(4.124)

< T = 1

•V1 d
(4.125)

It can be shown, simply by performing the indicated operations, that

(4.126)
dt{dqa) dqa\dty

and employing this result in the second term of the above leads to the complete equation

— mvr,v'v
v=l

5<lo = (4.127)
C T = 1

Recalling the identities

mr.. dq dq^2

and introducing them into (4.127) leads to

. dr d
and mr = — (4.128)
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<£> d d

v=l a=\

However, the expressions inside the parentheses are merely the kinetic energies associ-
ated with the particles in the system; denoting the sum of these kinetic energies by T, the
final equation of motion, expressed in terms of scalar quantities, reads

dT dT

dqa dq Qc =0. (4.130)

This is the modified form of d'Alembert's principle in generalized coordinates—also
called the fundamental equation. This holds both for holonomic and nonholonomic
systems.

4.2.3.5 The modified fundamental equation
In order to obtain the form taking account of the commutability conditions, we develop
the equation (4.130) as follows:

(1) differentiate with respect to time the term (dT/dqa)8qa, obtaining

d( dT _ ^ df dT)x dT d

dt{dqa ) dt{dqa dt
(4.131)

(2) in the identity (4.131) add and subtract expression (dT/dqa)Sqa to create the term

d „

(3) reintroduce the definition (4.111) of virtual work, and hence equation (4.130) can
be presented in the form

5L
a=\

dT (d dT s. dT

(4.132)

Now integrating equation (4.132) over the values from initial position at time t^ to final
position at time t2 we obtain

(4.133)

Then applying zero variations at the ends of the integration interval gives

(4.134)
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This is the most general form of the d'Alembert principle for both holonomic and
nonholonomic systems, and is also called the modified fundamental equation.

The final form of the variational principle for nonholonomic systems depends upon
the definitions of operations dqa and 5qa that are finally selected. In fact, the value of the
commutator

in equation (4.133) depends on this definition.
At this point considerable progress has been made starting with d'Alembert's principle

and generalized coordinates. The form of (4.134) bears little or no resemblance to equa-
tion (4.115); if we now consider yet another step, namely to assume commutability of
operators (4.78), then we get

t = 0. (4.135)

4.2.3.6 Gauss' principle of least constraint
If it is true that the modified fundamental equation belongs to the most general principles
of mechanics—and at least that is what we believe—one could ask why we present yet
another differential principle? Doubts may be reinforced by the fact that in Rosenberg's
excellent book (Rosenberg (1977)), Gauss's principle is not discussed, although admis-
sible accelerations, i.e. those elements which can be used to construct it, are considered.
We decided, however, to present Gauss's principle because of its pervasive relevance to
the various branches of integrated mechanics, and its usefulness in the synthesis of
systems with program constraints, and therefore to modelling of systems with unilateral
constraints. Gauss's principle has been applied to the description of random systems, to
which other principles cannot be applied.

In general, Gauss's principle takes a special place among the differential principles of
mechanics. While these and other principles have evolved over long periods of time,
being the work of many people, Gauss's principle has not been the subject of much
development. Carl Friedrich Gauss (1777-1855) formulated it in 1829, and he himself
admitted it was a by-product of his studies concerning the method of least squares. The
principle is sometimes presented under the name of the principle of the least curvature of
Gauss and Hertz. Hertz was the best-known proponent of the work of Gauss..

Consider a system of n mass particles subject to the action of holonomic and
nonholonomic constraints, which, as in section 4.2.3.3, are given by equations (4.113)
and (4.114). The principle of Gauss says that in the actual motion of a system

-/7 i v r v ) -5r v ,=0 (4.136)
v=l

must be satisfied, in which <5rv are virtual accelerations that conform with all constraints.
It is assumed that accelerations are subject to variations only when position and velocity
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variations are zero. Such variations are sometimes called variations of Gauss, and we can
easily see that equation (4.136) is a special case of equation (4.106) forp = 2.

Gauss's principle is the only one of the differential variational principles which has a
lucid physical sense. In order to demonstrate this it is necessary to remember that the
active forces F v and masses mv are given and are not subject to variation. Then, virtual
acceleration can be expressed in the form of

l < 4 1 3 7 >
where wv is the acceleration of vth particle.

Having introduced (4.137) to (4.136) and put mv before the brackets we get

0 , (4.138)
) {nv )

which can be presented as

l (4.139)

The latter form is extremely interesting for two reasons. First, if we define the quantity
called constraint (in our notation we use letter Z, the first letter of the corresponding
German word 'der Zwang') to be

F ^
<4 1 4 0>

then equation (4.139), the transformed principle of Gauss, can be expressed by means of
the formula

<5Z = 0, (4.141)

which means that constraint attains its extremum in actual motion!
Secondly the 'contents' of all the parentheses under the sum in definition (4.140) can

be interpreted in the following manner: the quantity ¥v/mv = av represents the accelera-
tion that, under the action of an active force Fy, a free particle (i.e. not constrained one)
would attain. In reality, however, constraints exist and so the particle has acceleration wv,
and hence the difference (Fv/mv) - wv is the measure of the limitations imposed on the
freedom of motion by the constraints of the system or more briefly a measure of con-
straint set upon a particle by constraints.

It can be demonstrated that the extremum obtained by the constraint in actual motion
is a minimum. We will not prove this, as, in our opinion, it has no influence upon
modelling. We shall, however, return to this in considering integral principles (see sec-
tion 4.2.4.1). The fact that the extremum appearing in Gauss's principle is a minimum
justifies the complete name of this principle.
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4.2.4 Integral variational principles

4.2.4.1 Contemporary formulation of integral principles
Very probably, every reader who has looked for more information on the variational
principles used in mechanics has been surprised by the lack of generally accepted termi-
nology. There are various names given to one and the same principle, e.g. Hamilton's
principle is also called the principle of the least action, the conventional form of Hamil-
ton's principle, the modified form of Hamilton's principle, the elementary form of Hamil-
ton's principle.

We do not intend to concentrate on unifying various views or on establishing common
terminology, which could be of importance in the framework of a course in analytical
mechanics. We will rather focus on applying these principles to modelling. Thus, we
maintain that only the vanishing of the first variation of a functional is important, and
consequently the occurrence of the characteristic equation for the definite functional (for
example equation (4.103) for functional (4.79)). These equations are all that one needs
for modelling with the variational-integral method. This approach is characteristic of the
contemporary formulation of integral variational principles.

For someone who feels the above insufficient, the following information is provided:

(1) the necessary condition for the extremum of a functional, defined by the vanishing
of the first variation of (4.79), should be complemented by the condition on the
second variation of this functional, whence we can obtain

d2f
dy"

>0, (4.142)

known as the Legendre condition; we emphasize that this is only a necessary, and
not a sufficient, condition for the minimum of functional (4.79) (for details see
Gelfand and Fomin (1963);

(2) the definition of sufficient conditions is a complicated matter; this is because firstly,
the theorem of Hilbert should be applied, and secondly, the so-called Weierstrass
function should be introduced; one can then formulate the appropriate sufficient
conditions (usually only the so-called condition ofJacobi);

(3) the procedure for proving conditions sufficient for the existence of an extremum of
a functional is so complicated that it is best left to specialized mathematicians; in
this situation we propose not to analyse whether the real motion corresponds to a
maximum or a minimum of a functional; a model is any case subject to an even
more rigorous verification, namely an experiment.

4.2.4.2 The Hamilton-Ostrogradski principle
Consider a holonomic system with independent generalized coordinates qa(a = 1,,.,,;)
and the Lagrangian function L(t,qa,qa) = T-V. The integral

S=\'2Ldt (4.143)
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bears the name of action in the Hamiltonian sense over the time interval [ ^ , ^ ] . Note
that action is a functional depending upon the motion of a system, since in order to
calculate action one must have the function qa =qa{t) defined in the time interval. It
should be emphasized that in this version of the principle we establish the initial time
point 11 and the terminal time point r2.

Suppose that among the trajectories considered here there exists a natural Newtonian
trajectory, i.e. the one over which a system can move in a given force field. All the other
trajectories are called variational or comparative.

The Hamilton-Ostrogradski principle states that the motion of a system is given by
the stationary value of the scalar integral (4.143). The expression can be mathematically
formulated as the equation

«S = 0. (4.144)

The principle considered is contained in the works of William Rowan Hamilton
(1805-1865) published over the years 1834-1836. Hamilton assumed, in this context,
that the system is subject to scleronomic constraints. For a more general case—that is, for
rheonomic constraints—this principle was formulated and proved by Mikhail
Vasilievich Ostrogradski (1801-1861) in 1848. In connection with this and in order to
emphasize the mathematical character of the principle we refer to it as the Hamilton-
Ostrogradski principle, a title used as a rule by Russian authors. For brevity, we will refer
to it as the classical Hamilton principle or simply Hamilton's principle.

Physicists consider that Hamilton's principle plays a very prominent role in mechan-
ics, whereas engineers are somewhat less enthusiastic. The difference results from diver-
gent tasks and expectations. First, let us quote a statement by the famous physicist
Richard Feynman (1918-1988) who, in his special lecture on the principle of least
action, said (see Chapter 19, Vol. 2 of Feynman et al. (1965)):

I have been saying we get Newton's law. That is not quite true, because Newton's law
includes nonconservative forces like friction. Newton said that ma is equal to any F.
But the principle of least action only works for conservative systems—where all
forces can be gotten from a potential function. You know, however, that on the
microscopic level—on the deepest level of physics—there are no nonconservative
forces. Nonconservative forces, like friction, appear only because we neglect micro-
scopic complications—there are just too many particles to analyze. But the fundamen-
tal laws can be put in the form of a principle of least action.

This is undoubtedly very beautiful, but an engineer in mechanics is not as much
interested in fundamental laws of the micro-world as in the possibility of describing the
phenomena of the macro-world. For example, every day an aeronautical engineer deals
uniquely with nonconservative forces. What should be do in such a situation? In fact he
performs a generalization of Hamilton's principle for the case in which he is interested,
and this will be dealt in the next section.

4.2.4.3 The 'engineering' formulation of Hamilton's principle
For physical systems that contain nonconservative forces, we have postulated that, for the
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same assumptions as for the classical Hamilton's principle, the actual motion of the
system results in

\h Ldt+['2
'i J'i

(4.145)

in which SW represents the virtual work done on the system by the nonconservative
forces. For discrete systems, SW is given by the formula (4.111), and for a continuous
system we have

5W= f F S r d S + f R<SrdQ, (4.146)
Js JO

where the surface and body forces denoted by F and R are those forces in the system not
derivable from a potential function; they are known functions of the time t, and of the
position r.

Equation (4.145) is often called the extended Hamilton principle, especially by
aeronautical engineers. Students of theoretical mechanics may protest against such a title,
since between (4.143) and (4.145) there is an essential difference; in the classical form of
Hamilton's principle (4.143) the subject is the function S and the search is for the
necessary conditions of stationarity of this functional. The problem of mechanics thus
reduces to a question of variational calculus. In contrast, equation (4.145) is only a
statement that the quantity

SS = 5S+ f'2 SWdt = f'2 (SL+ SW) dt (4.147)
J'i J'i

vanishes. However, the functional does not exist, for there is no magnitude whose varia-
tion would be equal 5S\ This would mean, for instance, that the following statement
would not be admissible: 'out of all possible forms of motion the one that will be realized
will follow a trajectory such that the functional

S = j'2(L+W)dt (4.148)

attains its minimum, and this is expressed by the requirement that 55 = 0' . In reality,
however, expressions of this type are often encountered in modelling of complex continu-
ous systems with variational methods.

It appears that it is possible to establish a commonality between the two statements if
the deviation from orthodoxy is not too great, on one hand, and words are more carefully
chosen, on the other. In order to demonstrate this, let us refer to an example. A good one
is provided by the lateral oscillations of a beam loaded by aerodynamic forces; these
forces undoubtedly belong to the large category of nonconservative forces.

Let y = y(x, t) denote a small deflection of the neutral axis of the beam with respect to
the initial state. From elementary strength of materials, we know that strain energy, V, of
a beam is
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v = 4 (4.149)

where El is the flexural stiffness of the beam and / is its span.
The kinetic energy, T, of the beam, neglecting rotation of the elements of the beam

with respect to the axis perpendicular to the axis of the beam and the plane of vibrations,
has the form

(4.150)

where /J. denotes the mass per unit length of the beam.
Assuming that vibrations take place in one plane and that they are small, the virtual

work done by the nonconservative (aerodynamic) forces is

= j p(x,t)Sydx, (4.151)

where p denotes the aerodynamic force per unit length.
It can therefore be seen from all the forms of the principle that we will need the

variations 8T and 8V. On the basis of (4.149) and (4.150) we obtain

(4.152)

Using (4.152) and (4.151) in equation (4.147) results in

f
Jo

dx dt = 0. (4.153)

Now we must extract the variations Sy from expressions 8(dy/dx) and S(d y/dx ) .
This performed conventionally through integration by parts. In doing this we use the
property (4.78). Hence

dt

dt2
(4.154)
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because Sy vanishes at t = ti and t = t2 as the initial and terminal configurations are
specified (classical Hamilton's principle). Integration over the spatial variable in a similar
fashion yields

Note an important detail here, namely that the second term does not vanish this time,
unless we only consider specific boundary conditions, i.e. supports at both terminals of a
beam.

Using (4.154) and (4.155) in equation (4.153) results in

On the basis of an adequate lemma of variational calculus, analogous to the Du Bois-
Raymond lemma presented in section 4.2.2.5, we obtain the field equation

a * - * " l = ^ ° " (4'157)
We have thus obtained the correct equation and this is most important for a modeller.

From this point of view we may see that the controversies mentioned are not irreconcil-
able. First of all, it appears, according to the section 4.2.4.1, that the requirement of
minimality is not necessary at all; it is quite sufficient to have stationarity—that is
vanishing of 5S. This means, further, that it is not important whether equation (4.147)
constitutes the principle, and whether S is a functional.

4.2.4.4 Postulating versus derivation once more
Now let us divide the generalized forces appearing in formula (4.111) into two parts, i.e.
potential forces, Q^ , and nonconservative ones, Q™, and then represent them in the
following form:

Qa = C£° +Qa° (4.158)

and we make use of the definition of potential energy V= V(t,qG):

^pot dV

Qo =—j—I (4.159)

then

„ nni X""1 CIV _

(4.160)
a=\"'
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Equation (4.135) now becomes

j'25(T-V)dt + j'25Wncdt = 0 (4.161)

or, if use is made of the definition of the Lagrangian function L = T-V and of the
property (4.98),

5\'2 Ldt+\'2SWncdt = 0. (4.162)

Thus, it has the same form as the engineering form of Hamilton's principle (4.145), since
5W now denotes the virtual work of only the nonconservative forces. One could therefore
assign to (4.162) the label 'D', as it arises by derivation of the engineering form of
Hamilton's principle from d'Alembert's principle, and to (4.145) the label 'P*, indicating
that it is the result of postulation.

Hamilton's principle could be considered not as a consequence of Newton's second
law (although, of course, it is in agreement with the latter) but as an equivalent postulate
of mechanics. There is nothing new in the idea that it is very useful in cases in which
direct application of Newton's second law is cumbersome. We maintain, namely an
engineer may find himself in a practical situation in which application of the method of
Newton is not only cumbersome but impossible. This usually occurs when we are dealing
not with a purely mechanical system but with coupled systems. Recalling section 4.2.4.3,
and through the example, we would like to encourage beginners in modelling to be bold,
leave the footprints of the past and go where the familiar track—that is, the relation
between the Newton's second law and Hamilton's principle—is no longer visible. There,
only the 'compass of analogy' can be used if for some reasons the variational principle is
chosen. More simply, a well-founded tool in classical mechanics is a general instrument
for developing the equations in integrated mechanics.

4.3 MODELLING OF HOLONOMIC SYSTEMS

Quite numerous complex mechanical systems encountered in engineering practice may
be presented in the form of models with holonomic constraints. The equations of motion
of such systems can be obtained with the help of Lagrange's equations of the second
kind. These equations constitute the most important instrument for modelling complex
holonomic systems and that is why the present action begins with various methods of
derivation of Lagrange's equations. However, in some specific cases, it may be more
suitable or even necessary to use other types of equations. That is why the Boltzmann—
Hamel and Lagrange-Maxwell equations are presented in sections 4.3.2 and 4.3.3.

4.3.1 Lagrange equations of the second kind
We shall show two methods of derivation: one originating from d'Alembert's principle in
the Lagrange form, which is also called the fundamental equation, and the second from
Hamilton's principle in the standard form. The fundamental equation in generalized
coordinates (4.130) has been found to have the form


