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The problem now relies upon the expression of the spring extension in terms of general-
ized coordinates. The positions where the springs are attached depend on many coordi-
nates and it may require quite serious calculation to determine the current extension of a
spring. Additionally the spring attachment point can assume any arbitrary position in the
body. It means that the body may have an arbitrary number of terminals and only current
data concerning the position of vectors av (or bv) with respect to body B,- (or Bj), establish
an actual terminal position.

From what we have said above it follows that the mechanical elements appearing in a
kinematic chain of bodies don't fulfil the fundamental axiom of system theory, on which
the linear graph method hinges.

Additionally, three-dimensional rotation between two bodies cannot be represented
simply by three independent numbers; the numerical values depend also on the sequence
in which the three rotations occur.

Both features of multi-body systems described above affect the coupling of equations
of motions and their complexity. Moreover, since the models of separate mechanical
elements are useless when they are interconnected to form a system, the linear graph
method is not adequate in modelling problems involving many rigid bodies.

In the next section we will present a method which provides a useful aid for a model-
ling of certain classes of rigid-body systems.

5.4 MODELLING OF RIGID-BODY SYSTEMS

5.4.1 Introductory remarks^
The problem of multi-rigid body system modelling was investigated, among others, by J.
Wittenburg, and he solved it using the Newtonian approach combined with graph-
theoretical aids. Although we shall present another method, most of the introductory
definitions and comments made by J. Wittenburg in his excellent monograph (Wittenburg
(1977)) will be useful for us. We shall therefore follow his development and his defini-
tions in this section.

Mechanical systems investigated in most student textbooks consist of either a single
rigid body or several rigid bodies in some particularly simple geometric configuration.
The important role they play in classical mechanics is due to the fact that their equations
of motion can be integrated in closed form. However, the engineer in his everyday
practice is confronted with an endless variety of much more complex systems. To men-
tion only a few examples, one may think of linkages in machines, of steering mechanisms
in cars, of railway trains consisting of elastically connected cars, of walking machines
and manipulators, etc. The assumption that the individual bodies of such systems are
rigid is an idealization which may or may not be acceptable, depending largely on the
kind of problem under investigation. Thus, in a crank-and-slider mechanism, the seem-
ingly rigid connecting rod has to be treated, as an elastic member when its forced bending
vibrations are of concern. At the other extreme, the human body, which is composed of

t A substantial part of the reasoning in this section, and the introduction of the mathematical description of the
interconnection structure (section 5.4.4) is based on items from the book Dynamics of Systems of Rigid Bodies
by Jeans Wittenburg. The authors make grateful acknowledgment to Teubner Verlag for permission to quote
these items from the above-named book.
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obviously nonrigid members, may well be treated as a system of interconnected rigid
bodies when only its gross motion is of interest. In this section, all bodies will be
assumed rigid. In the joint connecting the bodies nonrigid members such as springs and
dampers will be allowed. The goal of this investigation is a formulation of a system of
exact nonlinear differential equations of motion. The mathematical formulae to be devel-
oped should satisfy two requirements which, in general, are not easily fulfilled simultane-
ously. First, they should be general enough to describe the dynamic behaviour of diverse
mechanical systems. Second, their application to any particular mechanical system should
be possible with only a minimum amount of preparatory work. The Lagrange equations
of the second kind, (4.174), for example, satisfy only the first requirement, since when
applying them to any particular mechanical system, a substantial amount of labour is
required to formulate the Lagrangian L and its derivatives. The equations of motion to be
developed in this chapter are considerably more explicit.

For the complete description of a multi-body system, a large number of parameters is
required. They must specify the geometry and mass distribution, as well as the nature of
forces acting from outside the system and internally in the joints between bodies. Those
describing geometry and mass distribution can be subdivided into the following groups:

(1) the number of bodies;
(2) parameters specifying the interconnection structure of the system;
(3) parameters specifying the constraints imposed on the system bodies;
(4) parameters specifying the location of joints on the bodies;
(5) masses and inertia components of the bodies.

Before going into any detail, some definitions and introductory comments are re-
quired. Figure 5.26 illustrates a four-body system. Between certain pairs of bodies there
is a direct interaction by internal forces. Thus, for example, between the bodies numbered
2 and 3 there exists direct force interaction caused by the constraints in the joint connect-
ing these two bodies. Between bodies 3 and 4 there is a direct interaction by magnetic
forces. Bodies 2 and 4, on the other hand, do not act directly upon each other. Their
interaction is only indirect via another body. Two bodies are said to be contiguous if and
only if they exert force on each other directly. The forces, by means of which two
contiguous bodies interact, may be categorized into two classes:

Fig. 5.26.
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(1) those resulting from the existence of geometrical constraints between two bodies,
and

(2) others, for instance exerted by springs or dampers, then gravitational forces, mag-
netic forces etc.

The geometrical constraints limiting the relative motion of two contiguous bodies will
be alternatively called a joint, and two bodies connected by a joint will be referred to as
adjacent bodies. A device or devices by means of which two contiguous bodies interact
mutually will be called a coupling. It means that the coupling has a wider sense than the
joint. A coupling may be a joint, a magnetic force, a spring, a damper etc. Various
devices exerting forces between two contiguous bodies will not be considered here, but
will be dealt with later when the potential energy of springs is considered.

In order to present the new method as simply as possible, we shall assume that the
constraints in the joints are scleronomic and holonomic. All constraints must be ideal. In
practice this means, among other things, that no dry friction is allowed in the joints. All
these assumptions could be omitted, but the derivation and use of the equations would be
more complicated.

Kinematic constraints are introduced not only by the individual joints but also through
the interconnection structure of the system. This is illustrated by the plane crank-and-
slider mechanism in Fig. 5.27 whose bodies are interconnected by three pin joints and
one sliding joint. The body labelled 'base' is assumed to be fixed in inertial space. The
total number of degrees of freedom is one. This remains unchanged if one pin joint is
replaced by a ball-and-socket joint. On the other hand, it becomes zero if the axes of the
three pin joints are not mounted parallel to each other. The crank-and-slider mechanism is
a simple example of a broad and important class of multi-body systems categorized as
systems with closed kinematic chains. In such systems the number of degrees of free-
dom depends on more than just the kinematic properties of the individual joints. In order
to define a closed kinematic chain it is necessary to introduce first the notion of path
between two bodies.

Consider any two bodies in a multi-body system, for instance bodies i and j (Fig.
5.28a). Proceed from body i to bodyy via sequence of bodies and joints in such a way that
no joint is passed more than once. The set of joints thus defined is called the path
between bodies i and / If for all pairs of bodies the path between them is uniquely

Base

Fig. 5.27.
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(a)

(b)
Fig. 5.28.

defined, as is the case for the system of Fig. 5.28a, then the system is said to have tree
structure. If, on the other hand, between two bodies two different paths exist, then these
two paths form a closed chain. The system of Fig. 5.28b contains two closed chains. The
first consists of the bodies i, k, I and the second consists of the bodies ;', j , tn, n, I. If, in
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particular, every coupling in a closed chain contains at least one constraint limiting the
relative motion of contiguous bodies, i.e. a joint, then the closed chain is called a closed
kinematic chain. Of the two closed chains in Fig. 5.28b only that consisting of the
bodies i, k, I is a closed kinematic chain. In the second closed chain, for one of its
couplings there are no constraints imposed on two contiguous bodies, therefore that chain
is not a closed kinematic chain.

Multi-body systems are found in practice under two basically different conditions of
operation. In most systems one or more bodies are connected by joints to an external
body whose position in inertial space is a prescribed function of time. Typical examples
are a double pendulum with a moving suspension point (Fig. 5.29a), the human body
with one or both feet resting on an escalator (Fig. 5.29b) and most linkages in machines
where the frame of the machine is the external body. It is obvious that the dimensions and
inertial properties of the external body are irrelevant since its motion is prescribed. For
this reason the external body system will not be counted as another body system, but will
be represented by a moving base rigidly attached to it. In Fig. 5.29a, b, this base is called
eg. The prescribed motion of the base as well as the properties of the joints between the
base and the system will enter equations of motion to be developed. Comparatively rare
is the mode of operation in which no body of a system is connected to an external body
whose motion is prescribed. Typical examples for such systems are a flying helicopter
(Fig. 5.30a) and the human body in a phase of motion without contact with the ground
(Fig. 5.30b). For the formulation of the scalar differential equations of motion for such
systems, some common frame of reference is needed in which vectors and tensors can be
decomposed. Depending on the particular problem under consideration, this frame will be

(a) (b)

Fig. 5.29.



256 Modelling by means of graphs [Ch. 5

Fig. 5.30.

moving relative to inertial space according to some appropriately chosen function of
time. In Fig. 5.30, the moving base is called e0. The position of a multi-body system in
inertial space is uniquely specified if the position of adjacent bodies relative to each other
is known for all joints and if, in addition, the position in e 0 is known for one arbitrarily
chosen body of the system. This suggests the introduction of a fictitious joint between
the moving base and the one arbitrarily chosen body (indicated by a dashed line in Fig.
5.30). With this joint, in which, of course, there are no internal constraint forces, and with
the moving base eo, the situation is now the same as for the systems in Fig. 5.29. The
mathematical description of the interconnection structure of a system will be the same for
both modes of operation.

Most multi-body systems found in engineering practice have an interconnected struc-
ture consisting of closed kinematic chains. Nevertheless, we shall investigate a system of
rigid bodies comprising open kinematic chains, i.e. having a tree structure. There are two
reasons for considering this class of systems; one is the greater simplicity of the math-
ematical description of the interconnection structure and of system kinematics, and the
other is that any system with closed chains can be transformed into a system with tree
structure by cutting suitably selected joints. Thus in order to obtain the equations of
motion for a system with closed chains, all that is necessary is to add internal forces and
geometric constraints for the cut joints to the equations of motion for a system with
structure. The procedure applied in these cases is described in Wittenburg (1977).

Together with a system of bodies we shall consider a graph of the system. Such a
graph comprises vertices, representing the bodies, and edges, representing the joints
between the bodies. Obviously, the graph of an open kinematic chain has a tree structure.

Between systems with open kinematic chains, there may exist systems in which two or
more parts are kinematically independent (i.e. are not kinematically interconnected) while
at the same time these parts interact by means of certain forces (magnetic, elastic, etc.).
An example of this kind of system is shown in Fig. 5.31a; the graph of this system is
disconnected (Fig. 5.31b). For simplicity, say, we have two parts of system which are
kinematically uncoupled. There are two ways of describing the motion of this system. In
the first, the motion of one body of each part is described in an inertial frame base, e0.
This is equivalent to the introduction of two fictitious joints, one for each part of a system



Sec. 5.4] Modelling of rigid-body systems 257

(b)

Fig. 5.31.

(Fig. 5.32a). In this case the kinematics of the two parts may be separated, and conse-
quently in the task of kinetic energy determination the two parts of the system may be
considered independent (Fig. 5.32a). In the second method, the description of the motion
of such a system is to relate one body of one part to the inertial frame base e0 which, in
the graph, produces an additional edge (% sj) representing the first fictitious joint. We
then choose one body, say they'th, in the second part whose motion is described in the
base of one, say the rth, body of the first part of a system. This is equivalent to the
introduction of a second fictitious joint, and an additional edge (s,-, Sj) has to be added to
the graph. In the example of Fig. 5.32b, the motion of a body 3 is described in base ej;
therefore, an additional edge (jj, 53) appears in the graph. Of importance is the fact that,
in both cases, the topological tree structure remains, and with the vertex SQ representing
the reference body, only one edge is incident.
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(a)

Fig. 5.32.

5.4.2 The key idea
For an introductory explanation of the key idea, let us consider first the simplest vibratory
system shown in Fig. 5.33.

m

O O
Fig. 5.33.

The equation of free motion of that system is

mx + kx = 0. (5.23)

The Lagrangian of this system,

L = \(mx2-kx2\ (5.24)

is a function of variables x, x and two parameters m, k, so we can write

L — T fr r m Ir\ — 11 Y P\ CS O^\
— Lj\A, A) III, K) — L*yA.) i Jt yD.J~J)

where X is a set of variables consisting of x and x, and P is a set of parameters consisting
of m, and k.
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Both parameters m, and k are information carriers about inertia and stiffness of two
system elements, namely of a rigid body and of a linear spring, respectively. Obviously,
the same equations (5.25) may be used for many different systems possessing the same
topological structure. It is enough to insert the current numerical values of mass and
stiffness into the equation (5.25), to obtain the equation valid for a particular data set.

Now we ask whether a similar procedure for a more complicated system is possible.
To answer this question let us consider two mechanical systems shown in Fig. 5.34. Both
systems have three translational degrees of freedom and consist of the same elements, i.e.
three bodies and three springs. In both systems the same coordinates x\, x2, x^ have been
introduced. It is the system structure also called a system topology which differs them.
The system topology influences the form of the Lagrangian and we have for the system in
Fig. 5.34a

L{ = { ( + m2x\

-±[kl(x1-ll)
2+k2(x2-xl-l2)

2+k3(x3-x2-l3)
2]

and for the system in Fig. 5.34(b)
(5.26)

/KAAAH KAAHon cr n

Fig. 5.34.
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+ m2x\

where m\, m2, m3 are masses of the bodies, fcj, k2, k$ are stiffnesses and ly, l2, /3 are the
natural lengths of the corresponding springs.

Suppose now that we can express the Lagrangian L as an explicit function of not only
the sets X and P but also of a certain carrier of the structure information S, i.e.

L=L(X,P,S). (5.28)

The carrier of structure information may, for instance, be an incidence matrix, path
matrix or certain new characteristics. Differentiating (5.28) according to Lagrange's
method we can obtain the equations of motion, in which in an evident form appear not
only the variables and parameters but also a structure information carrier. Thus we get
equations that are valid for the whole class of systems, rather than for only one particular
system as in the case of the standard application of Lagrange's method. Having generated
the equations of motion once, we can use them many times without the need for kinetic
and potential energy calculation, and also without performing all the differentiations as in
the classical approach. This is the key idea of the proposed method.

5.4.3 Basic notation conventions
Very many of the mathematical symbols which will be used in this section require certain
ordering conventions. In further operations we shall deal with scalars, vectors, scalar
matrices, and matrices whose elements are vectors of, more briefly, vector matrices. To
distinguish all these quantities let us adopt the following convention:

Convention 5.1
Scalars will be denoted by roman italic letters, e.g. a, b or A, B;
vectors will be denoted by roman bold letters, e.g. a, b or A, B;
scalar matrices will be denoted by univers letters, e.g. a, b or A, B; and
vector matrices will be denoted by univers bold letters, e.g. a, b and A, B.

We shall need very often to express vector quantities as a scalar product of a unit
vector and a length of a vector. Therefore let us introduce a second convention:

Convention 5.2. For an arbitrary vector a we shall denote a unit vector corresponding to
the vector a by the symbol a and we shall denote by a a projection of the vector a on the
direction of the unit vector a. Thus we may write a = aa. We shall apply an analogous
convention for diagonal vector matrices, i.e. if

a = diaga, then a = aa, where a = diaga,-, a = diaga,-.

We shall illustrate the usefulness of both conventions introduced above by considering
different forms of vector expressions. An arbitrary vector a can be represented as a linear
combination of three mutually orthogonal unit vectors ej, e2, e3, i.e.

(5.29)
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The unit vectors are base vectors of a vector basis (also called reference basis or simply
basis). The scalar quantities ah a1 and a3 in (5.29) are the coordinates of a in the basis
e"i, e2 , e3 or, more briefly, the coordinates of a in e, where e is a column matrix
consisting of unit vectors, i.e. e = [ei,e2,e3]T. The right-hand side of the equation (5.29)
can be given the form of a matrix product. For this purpose the column matrix
a = [flj, a2,a3 ] of the coordinates of a in the base e is introduced (a shorter name for a
is coordinate matrix of a in e). With these matrices the equation (5.29) takes the form

a = e T a = a T e . (5.30)

Also a form of a vector representation given in Convention 5.2, i.e.

a = aa (5.31)

will be often used.
Note that we distinguish between a vector a as a certain physical quantity, a column

matrix a which consists of the coordinate triple at (i = 1, 2, 3) and another column matrix
a = [aj, a2, a3]T, which in turn consists of three vectorial components aj, a2, a3 of a
given vector a.

Another representation of a vector a we may obtain introducing an (n x 1) column
matrix \n comprising n unit entries, i.e. ln = [1, 1,..., 1)T. Thus we have

a = aT13=iJa. (5.32)

By means of the column matrix 1n, each diagonal matrix may be rearranged in the
associated column matrix. For this purpose we shall adopt a subsequent convention:

Convention 5.3. If a = diag a;, i= l,...,n, then a denotes the (nx l ) column matrix
determined by the following relation:

a = a V (5.33)

In numerous expressions we shall use row and column matrices. Some of them being a
priori defined as the row or column matrices, the other being distinguished as rows or
columns. To differentiate both kinds of row and column matrices we adopt the following:

Convention 5.4. The matrices defined a priori as either row or column matrices will be
denoted simply by usual symbols as it was established by Convention 5.1, e.g. a, b or A,
B. Sometimes, for better clarity, the column matrices appearing in formulae are denoted
by the symbol { }, i.e. {a}, means the column matrix a= [alt a2 an] . For a notation
of the row or column matrix being the ith row or ;'th column of a given matrix A, we use
two methods. In the first, often used in the finite element method, the symbols [_Aj. and
{A},- denote the ith row and ith column of a given matrix A, respectively, and in the
second, the ith row and the ith column of a given (n x n) matrix A are the results of
multiplications. Namely |_Aj(. =EJA and {A}, = Ae;, where £,-= [0....0, l,0,...,0]Tis an
in X 1) column matrix consisting of zero entries except for one unit entry in the ith row
(e, is also called the isolating vector).
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In mathematical formulae, we will use a new type of matrix product, namely a scalar
product of two matrices whose elements are vectors. In order to perform this kind of
operation let us adopt a following convention:

Convention 5.5. Let a be an (mxr) matrix with vectors By (/= l,...,m,;'= 1 r) as
elements and b be an (r x n) matrix with vectors b,y (i = 1,..., r,j = l,...,n) as elements.
Then, the scalar product ab is a scalar (m X n) matrix with elements

<*• b 0 ' i = \,..,m, j = l,...,n. (5.34)
k=\

5.4.4 The mathematical description of the interconnection structure
One step in the process is the establishment of the Lagragian, L = T- V, as a function of
generalized coordinates <?CTand generalized velocities qa(0 = l,...,K',K is a number of
degrees of freedom), either through Lagrange's equations of the second kind or from
Hamilton's principle. In the case of rigid-body systems, the requirement for the determi-
nation of kinetic and potential energies as a function of q^, qa means that the positions
and velocities of each body have to be determined by means of the same variables i.e. qa

and qa. The actual expression for the position and velocity of any particular rigid body
point depends on both the actual body state and generalized coordinates introduced.

Thus let us consider briefly what influences a given choice of coordinates. As we
already know, systems of rigid bodies may be categorized into two fundamentally differ-
ent classes. In the first class, one body of the system is connected to an external body
performing prescribed motion, and in the second class none of the bodies in the system is
connected to the external body. Thus in the first there is a real joint between a body of the
system and the external body and in the second such a joint does not exist. However, for
unification of the mathematical description of the joint structure of a system, a fictitious
joint between the movable or immovable base QQ and one arbitrarily chosen body is
introduced. Therefore, there always exists one distinguished body whose position can be
fully described with the help of information about the location of base e0 and values of
generalized coordinates associated with this body. Such a body will be called the main
carrier. It is defined explicitly in the case when the system of bodies is joined with the
external body, but otherwise its definition is arbitrary.

We usually begin the introduction of generalized coordinates for a system of bodies at
the main carrier. Then the other generalized coordinates are successively introduced in
accordance with constraints appearing between the bodies.

The body fl, is a carrier of the body Bj if a change in time of any one generalized
coordinate associated with the body fi, causes a motion of the body B: when all other
generalized coordinates are frozen. In other words we may say that each body Bt which
kinematically influences Bj is a carrier of the body By The direct carrier of the body Bj
is the carrier incident with Bj.

The interconnection structure of a system is conveniently displayed by a graph. Let the
graph G related to the system bodies comprise n + 1 vertices representing the bodies
(including the external body), and n edges representing the joints (including the fictitious
joint). Bodies and joints are labelled separately. The order in which the numbers are
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assigned is arbitrary, but a substantial clarification of notions as well as algorithms may
be achieved if we introduce so-called regular labelling in the manner presented below.

Due to the isomorphism between the real system and its graph, the notions carrier,
main carrier and direct carrier concerned with the bodies have their equivalents in the set
of graph vertices. Thus among the vertices of the graph G, we will identify a vertex
representing the external reference body Bo, and this vertex is called s0. Since the vertex
SQ belongs to a tree structure graph, it is also referred to as a root. Then the vertex
incident with SQ is labelled S\, It represents the main carrier. The edge connecting SQ and
s\ is labelled 1. For a given graph with vertex SQ, a regular labelling can be achieved as
follows. The graph contains at least one peripheral vertex. Peripheral vertices are all
vertices except s0, in which only one edge is incident. To these peripheral vertices, the
highest numbers n, n-l, n-2 etc. are assigned. We give the same number to the
corresponding edges incident to labelled vertices. Then all the vertices and edges already
labelled (except s0) are cut off from the graph. This results in a smaller graph with new
peripheral vertices to which, in turn, the highest numbers still available are assigned. This
recursive procedure is continued until all vertices and edges have been labelled. Proceed-
ing in this manner, the only vertex which is incident to sQ

 and the edge connecting these
two vertices are labelled sy and 1, respectively as before. In Fig. 5.35 two directed graphs
are shown. The graph in Fig. 5.35a is arbitrarily labelled, while a graph in Fig. 5.35b is
regular labelled.

An arbitrary orientation of the edges may be assigned to any graph, turning them into
arcs. If, in the regularly labelled graph G, the edge orientation has been introduced so that
each arrow is directed to the vertex with the larger (or alternatively, smaller) number,
then the obtained graph will be called a regularly directed graph with ascending (or
descending) orientation.

(a)
(b)

Fig. 5.35.
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The regular labelled and regular directed graph will be called here a regular graph
(this latter notion has a quite different meaning in graph theory).

In a graph with tree structure, a path between s,- and sj is uniquely defined for each
combination of i and/ In Fig. 5.35a, for instance, the path between s6 and s3 is the set of
arcs 4, 3, 2, 7, 1. A vertex sk is said to be on the path between st and sj if at least one arc
belonging to this path is incident with fy. According to this definition, the vertices st and
S: themselves are on the path between J,- and Sj.

With the help of these ideas the following weak ordering relationship for vertices is
defined. The symbol ,?,• < sj means that Sj is on the path between SQ and sj. The relationship
Sj < Sj means that s; is on the path between SQ and sj but that it is not identical with Sj.
Finally, st £ Sj is the negation of Sj < Sj. Note that for two vertices s; and Sj both relation-
ships, Sj ^ Sj and Sj "$• Sj, can be satisfied simultaneously. Consider, for instance, s$ and S4
or S(, and $7 in Fig. 5.35b.

As we already know, the interconnection structure of the directed graph is uniquely
represented by the incidence matrix S. In a specific case of a tree structure graph with
n +1 vertices, the matrix S has n + 1 rows and n columns which correspond to the
vertices and arcs, respectively. In further calculations we shall also use certain
submatrices of S. The matrix S can be partitioned into two submatrices So and S, where
SQ is the row matrix

and S is the square matrix

n ... Sln

8 -
Snl ... Sn

(5.35)

(5.36)

The matrices S and S may be also expressed as the following differences:

= o+—O_, o-o+—£>_, (5.37)

where the matrices S+ , S + are obtained from S and S respectively by preserving in them
only positive, i.e. 1 entries, the matrices S_, S_ are obtained from S and S respectively
by replacing the 1 entries by zeros and by changing the sign of all the -1 entries. For a
directed graph of Fig. 5.35b the four matrices defined above are

S 0 = [ - l 0 0 0 0 0 0], (5.38)

S =

1
0

0

0

0

0

0

-1
1

0

0

0

0

0

-1
0

1

0

0

0

0

0
-1

0

1

0

0

0

0
0

-1

0

1

0

0

0
-1

0

0

0

1

0

0
0

0

-1

0

0

1

(5.39)
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S+ =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

(5.40)

s_ =

0 1 1 0 0 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(5.41)

Although the matrix S provides complete information about the interconnection struc-
ture of a graph, in the case of tree structure regular graphs there exists a much more
convenient, i.e. compact, form of algebraic graph representation. To present it, let us
introduce the two integer functions i+ and i~, which establish relationships between arc
indices and vertex indices. For arc indices i = l,...,n, i*(i) is the index of the vertex
away from which the ith arc is pointing, and i~(l) is the index of the vertex toward which
the <th arc is pointing.

For the graph of Fig. 5.35a the two functions read as follows:

i 1

i+ 3

r 4

2

7

2

3

5

7

4

6

5

5

1

7

6

2

0

7

4

2

For a regular graph with ascending orientation, i+(i) = i, and with descending orienta-
tion, i ~(i) = i. From this, it follows that the interconnection structure of a regular graph
may be uniquely defined by means of only one function, i.e. either i~ in the case of
ascending or / + in the case of descending graph orientation. For example, for the graph in
Fig. 5.35b we have
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i 1

i+ 1

i~ 0

2

2

1

3

3

1

4

4

2

5

5

3

6

6

2

7

7

4

Note that the symbols <'+, ; have to be considered in close conjunction with a given
graph. So for instance, for the graph in Fig. 5.35a we have 4+ = 6, 4~ = 5, and for the
graph in Fig. 5.35b we have 4+ = 4 and 4~ = 2.

In the cases of both functions / + and / ~, their arguments are from the set of arc indices
and the values are from the set of vertex indices. Let us now define one more integer
function i ~. For vertex indices i =],..., n, i~ is the index of its direct carrier. This means
that the arguments of the function i ~ take values from the set of all vertex indices
excluding the index 0, i.e. except for the root index. It is convenient to write down the
functions i+, I ~ / ~ by means of column matrices i+, l~, i~. For instance, for the graph in
Fig. 5.35a we have

i+=[3,7,5,6,l ,214]T
> r = [ 4 , 2 , 7 , 5 , 7 , 0 , 2 ] T , i~ =[7,0 ,4 ,2 ,7 ,5 ,2] T ,

and for the regular graph in Fig. 5.35b we have

i+=[l,2,3,4,5,6,7]T, P = [0,1,1,2,3,2,4]T, I" =[0,1,1,2,3,2,4]T.

Note that for a regular graph with descending (or ascending) orientation the matrices i~
and i" (or i+ and i") are equal.

In our further considerations, we shall employ the path matrix P = [/»«], i,j= 1,..., n
of the tree structure graph, where

1 if arc i belongs to the path between Sj and SQ and is directed
toward SQ,

- 1 if arc i belongs to the path between Sj and SQ and is directed
away from s0

0 otherwise.

For the graph of Fig. 5.35b, the path matrix has the form

1 1 1 1 1 1 T
0 10 1 0 11
0 0 1 0 1 0 0

= 0 0 0 1 0 0 1
0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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Because of regular labelling, P is upper triangular and because of the fact that the
graph is regular directed, all nonzero entries of P have the same sign, in this case
positive.

5.4.5 The kinetic energy
The kinetic energy for a point mass is defined as T-jm\2, where v is the absolute
velocity of m, i.e. its velocity relative to an inertial reference base. For a rigid body, as for
any deformable body, the kinetic energy is the integral

v2d/n, (5.43)

where now v is the absolute velocity of mass particle dm of a body.
Let us now consider a rigid body in arbitrary motion (Fig. 5.36). The absolute velocity

v of a mass particle Am is

\ = \P+ilxr, (5.44)

where \P is the absolute velocity of the reference point P,

d is the absolute angular velocity of the body, and

r is the radius vector from P to the mass particle.

eo.

Fig. 5.36.

—>
The radius vector c = PC in Fig. 5.36 indicates the body mass centre C. Evaluation of the
integral (5.43) yields

±2 +±GTJPn, (5.45)


