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2.3 SELECTED NOTIONS OF INTEGRATED MECHANICS

2.3.1 A physical system
Because an engineer in mechanics often encounters expressions such as laws of mechan-
ics, thermodynamics, and fluid mechanics, there is a suggestion that one is dealing with
various inviolable rules. In reality these are the same laws of nature, applied only to
various systems. Thus, physical system shall be taken in this book to mean a mechanical
system (see section 2.2.1), in which, besides the purely mechanical processes there take
place also other processes, such as thermal, flow, electromagnetic, chemical, and so on.
The notion of physical system is close to that of dynamical system, the latter also
appearing due to generalizations of various problems of theoretical mechanics. We shall
not, however, be referring to this notion since in mathematical literature it is treated as an
abstract object. One should perhaps only note that the beginnings of various theories
generalizing the notion of system were made in 1912 by George D. Birkhoff (1884
1944), who defined a dynamical system as a single-parametric group of transformations
of a closed region of n-dimensional space into itself. This definition is closely related to
the system of n ordinary differential equations, Control theory introduced the notion of
control function into this system of equations. The notion of dynamical system is here
based upon the notion of input signal, state and output signal. The formal definition of a
dynamical system as used in control theory (used, in any case, only for deterministic
systems) was proposed in 1969 by Rudolf E. Kalman and is very complicated, stretch-
ing over several pages. Besides this, the definition mentioned is completely useless for
our purposes. We also want to achieve uniformity of representation of various phenom-
ena—not uniquely through formalization, though, but by indicating common roots of
various branches of mechanics, as well as common elements in system modelling, for
systems which traditionally belong to various branches of mechanics.

2.3.2 Generalized constraints

The concept of constraints as introduced in section 2.2.2 has for a long time been suffi-
cient for constructing the models of phenomena and is still the subject of teaching in
many courses. On the other hand this concept is presently not capable of meeting the
requirements of contemporary technology. There are three cases which need generaliza-
tions in application of the methods of classical mechanics. First, we may encounter
problems which generate constraints with much more complex analytical representation
than (2.6) or (2.8). Such a situation arises, for instance, in an electrical motor, in which
the commutator gives rise to complicated constraints, usually nonholonomic. But even
when we remain within the domain of purely mechanical systems we encounter situations
where obtaining constraints of the form (2.24) requires first an in-depth study of the
phenomenon itself—for example, we must consider the influence of the deformation of
tyres on the process of rolling of a pneumatic wheel. Such detailed knowledge is also
needed to model the phenomenon of electric current flow in an electric generator at the
point of contact of the rotor and commutator, This is confirmed by the difficulties en-
countered in the efforts to explain motion of the so-called Barlow wheel, undertaken at
the end of the nineteenth century. In these situations constraint equations are not
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formulated as easily as in the classical scheme of a rigid body rolling without slipping.
That is why such constraints will be referred to as non-classical.

In Volume 2, models of real bodies in the mechanics of continuous media will be
shown to be very complicated and not to constitute a realistic basis for numerical analysis
of a structure. Here, certain simplifying assumptions are introduced (at the stage of
physical modelling), concerning stresses or deformations. Thus, for instance, in the el-
ementary theory of beams there exists a routinely applied simplifying assumption, that is,
the postulate of plane sections, which has been in use for a long time. Kirchhoff's
hypothesis of indeformability of material fibres at the middle surface of the plate is
considered one of the most significant discoveries in the theory of plates. Hypotheses of
this kind can also be referred to as constraints. Since adoption of a hypothesis leads to a
certain mathematical model, we shall call this type of constraint a model constraint.
Because of the breadth and difficulty of this notion we shall not be considering problems
involving it, although they are interesting and important. Notice only that the prototype of
such constraints is constituted by the internal constraints of classical mechanics, which
produce the model of a rigid body (see section 2.2.2).

Finally, many problems of contemporary technology are formulated as problems not
of analysis but of synthesis. From this point of view we first determine what kind of
constraints are imposed on the system, and only then do we consider the methods leading
to satisfaction of these constraints. A strong motivation for such a generalization of the
notion of constraints arose in problems of control of mechanical systems. The forerunners
of such an approach were Ivan V. Mieshtsherski in Russia, at the end of nineteenth
century, and Henri Beghin, in France, who introduced in 1922, the notion of
servoconstraints. These constraints are not realized through direct contact, as occurs in
classical mechanics, but through additional energy sources (of e.g. hydraulic or electro-
magnetic energy), which are controlled in such a way as to satisfy the constraints re-
quired. Action of this kind can be compared to the behaviour of a living organism, which
functions so as to satisfy its wishes (constraints), such as the itinerary or programme of a
tourist on an excursion. It is by analogy with the latter term that we introduce the notion
of programme constraints, meaning here any analytical relation used to give the motion
certain desired properties.

When speaking of control of mechanical systems it is worth noting that the motion
equations in the form of (1.47) are, in modern control theory, also called constraints
(nonholonomic constraints, for that matter).

2.3.3 Physical variables

The term ‘physical variable” denotes the magnitudes used to describe the configuration of
the physical system. Thus, they are in fact generalizations of generalized coordinates (see
section 2.2.3). One should emphasize at once that generalized coordinates do not appear
only in classical mechanics. Thus, for instance, electric charge is a typical generalized
coordinate in electrodynamics (one could even suggest this is the prime example of a
generalized coordinate). Why, therefore, do we introduce a new concept? We are doing it
because in the ‘mathematization’ of a physical model the key question is not the nature of
the physical system, but its transformation into a discrete or continuous model (see
section 1.5). Thus, for a discrete model of any physical system we can effectively apply
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generalized coordinates, while for the continuous model such a notion is not applied even
for mechanical systems! This statement will become more understandable after consid-
eration of the issue of the number of describing functions—the counterpart of the number
of degrees freedom in classical mechanics (see section 2.2.4).

We have to devote at least as much attention to physical variables as we did for
generalized coordinates, since it is with the help of physical variables that we shall be
studying the behaviour of physical systems. Because of a wide variety of kinds of system
we do encounter varying definitions of variables. It should therefore be emphasized that
in general we shall simply understand by physical variables those physical magnitudes
which we are able to measure (directly or indirectly). Thus, some instances could be
velocity, pressure, temperature, flow intensity, current intensity, electromagnetic field
intensity, chemical potential or surface tension.

Depending upon the method of mathematical modelling physical variables are classi-
fied into certain groups. The most typical ones are listed below.

1. Through variables and across variables

Through variables are measures of something which flows through an element, e.g. a
liquid through a tube or an electric current through a conductor. Across variables, on the
other hand, are measures of the difference of states between two terminals of an element,
e.g. the pressure fall between the ends of a tube or the difference in potential between the
ends of a resistor.

2. Extensive variables and intensive variables

Extensive variables are quantities whose values depend upon the mass of the system in
question, such as energy, entropy, electric charge. When values of the quantity do not
depend upon the mass of the system, then it is an intensive variable, such as pressure,
temperature or chemical potential. An important feature of extensive variables is their
additive property, which intensive variables do not have.

3. Input, state and output variables

Input variables (excitations) represent the stimuli generated outside the system under
consideration and influencing the behaviour of this system. Output variables (responses)
describe the effects of functioning of the system, which are of interest for an observer or
which can be measured. State variables (intermediate variables) describe dynamic be-
haviour of the system studied. If the system is represented by a black box with a certain
number of terminals then the input and output terminals represent the set of input and
output variables, respectively, while the state variables are ‘contained’ inside the box and
are not accessible for observation or measurement.

Variables of this type are also called signals—especially in control theory. Thus input
signals are those which can be changed in a predefined manner, as well as those which
change randomly, irrespective of our will. Signals of the first type are called control
variables (or for short, controls); those of the second are called disturbances.

State variables, because of frequent use of the notion of state in physics and technol-
ogy (it appears in expressions like physical states of matter, states of nucleus, states of
stress in a deformable body etc.), require a special treatment. Their concept, originating
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from control theory, was given above. One should remember, though, that they appeared
much earlier in classical mechanics in order to denote generalized coordinates and
momenta, as well as time (see section 2.2.5). State variables have a similarly long tradi-
tion in thermodynamics. Most probably every student of a secondary school has encoun-
tered the term equations of state. We would like now to take up just this question.

In classical thermodynamics, state variables encompass pressure, P, temperature, 9,
and volume, Q. The state equation there is the relation

f(P,0,Q)=0, (2.67)

with the Clapeyron equation (1.11) as a special case.

Such an equation does not appear at all in contemporary thermodynamics. How can
this be explained? The state equation defines the specifics of a given medium, The
particular medium described by equation (1.11) is the perfect gas. When considering
processes taking place in, say, composite materials or non-Newtonian fluids, it is not
sufficient to use the variables appearing in equation (2.67) to describe them; thus, the
state variables of a given medium cannot be identified with the variables bearing the
same name as used in thermostatics.

We thus see that state variables form a subset of physical variables, and that the
character and cardinality of this set depends upon the phenomenon studied and the pur-
pose of modelling.

2.3.4 The number of describing functions

Two types of mathematical models were presented in section 1.5, classified according to
the manner in which physical properties of a system were described: lumped and distrib-
uted models. Typical technical examples of such model types were also presented there.
One can find in the literature the terms system with one degree of freedom to designate
the model of Fig. 1.12 and the system with infinite numbers of degrees of freedom to
designate the model of Fig. 1.14. We consider that this latter notion is incorrect and may
be misleading. The reasons for such a view are as follows: position is described in
discrete models by means of generalized coordinates, whose number corresponds to the
number of degrees of freedom (see section 2.2.4). It is therefore reasonable that the
model of Fig. 1.12 has one degree of freedom and that its mathematical model comprises
one differential equation (1.25). Hence, it is natural to expect a model with an infinite
number of degrees of freedom to be described by just such a number of differential
equations. In reality, however, for the example considered the mathematical description
consists of just one equation. What is the explanation of this contradiction?

To explain this let us think of what in fact has happened. Thus, to describe the position
of a beam, we have to determine in some space (here one-dimensional space) the location
of every element of this beam. The simplest way to do this is to choose as coordinates the
translations of the beam elements. When, however, one is assuming the continuum hy-
pothesis (and this is usually the case when modelling macroscopic phenomena), then
material elements are not lumped, but distributed, in the sense that they have continuous
distribution over space. That is why it is not possible to determine their position with a
finite number of quantities, as is done for discrete models. This is why we think that
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instead of using the term the ‘number of degrees of freedom’ we should rather refer to the
notion of the number of describing functions, which is more useful in modelling.

Let us now determine how this applies to the considered example of the longitudinal
vibrations of a beam. In this case every element of the beam is alternately subject to
tension and compression. Because the beam is, by assumption, thin, the location of each
of its points in the equilibrium position may be described by just one coordinate, x. Now
denote by u the deflection of a material element with respect to the equilibrium position,
Fig. 1.14. This deflection depends upon the elements position and time, i.e.

u=u(x, 1. (2.68)

The function (2.68) is treated as a coordinate of the model, while the variable x was
used to determine the location of a material element. Thus, this variable plays the same
role as in classical mechanics for free particles. Now it can clearly be seen that because
there are also infinitely many functions (2.68), the model could be considered as having
infinitely many degrees of freedom. In the practice of modelling, though, only one func-
tion (2.68) is used to describe the motion of a beam, and that is why the notion of the
degrees of freedom is not very useful at this stage of modelling.

The question of correspondence of the infinite number of degrees of freedom and the
continuous model appears again at the stage of model analysis. If we want, for instance,
to determine dynamic deformations of the beam, we first describe them with the function

u(x,0)=Y 9;(x)q;(0), (2.69)
Jj=I

where the Q;(x} are natural mode shapes and qj(r) are functions of time, called generalized
coordinates. In such a case equations of motion of the construction represent an infinite
system if ordinary differential equations in the form

miGi+@imiq; =Fi(t),  j=12,..., (2.70)

where F}{r)=j@(x)f(x, 1) dx is the generalized force corresponding to the generalized
coordinate g;.

It is possible to achieve sufficient accuracy for practical purposes if a finite number of
equations is accounted for (this number depending upon the accuracy required). This
corresponds to replacement of a continuous model with a discrete one having a finite
number of degrees of freedom.

As in section 2.2.4, it is also worth while here to mention abnormal situations. As in
the ordinary case such situations emerge when we perform a far-reaching idealization,
requiring, for instance, the motion of a supporting beam to be described as a system with
one degree of freedom. In order to do this, we should assume that the beam is massless,
although elastic, and that it is reduced to the mass concentrated at the beam end (see Fig.
2.11).

It can be demonstrated that the simplified model is described by the equation

j+wdy=0, @2.71)
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where @ =(1.42UI)2 *J'(Eh'/m). Although this result is of practical value (for compari-
son—the exact value is @y = (1.875/!)2 \"(EH/m)), the model itself is of little use, be-
cause its form precludes a wider perspective, since only one natural frequency can be
deduced from it.

Finally, it should be emphasized that the foregoing considerations concern not only
elastic bodies, but also all continuous media, such as the model of a plasma as a liquid.

2.3.5 Eulerian and Lagrangian description of the continuum motion

The present discussion is meant to provide only the introductory information necessary
for a uniform formulation of the considerations of Chapter 3. Thus, the present discussion
should not be understood as an introduction to the mechanics of continuous media, to be
given in Volume 2,

Imagine, then, a continuous medium in motion. To concentrate attention let this be a
fluid such as a cloud or water in a river, although it could also be a solid medium such as
a deformable spacecraft or a hot-rolled steel band. This time, however, we shall assume
that the medium considered, under the influence of forces acting upon it, may undergo
deformations—that is, changes of locations of some parts of it relative to the other parts,
these changes depending not only upon properties of these bodies, but also upon external
factors (e.g. duration of the action of external forces, temperature, etc.). The examples of
bodies quoted here cannot be described within the framework of the model of a rigid
body. On the other hand, we would like to describe the motion of these bodies. How can
we do this? Recall that in the mechanics of discrete systems it was sufficient for descrip-
tion to have certain magnitudes depending uniquely upon time—these could be, for
instance, the Cartesian coordinates x, y, z of a mass particle (e.g. the centre of mass of a
rigid body). In the mechanics of continuous systems the question is greatly compli-
cated—besides the time coordinate one should introduce yet another magnitude, designed
to reflect what occurs to individual particles of a body. Depending upon how this is done
the motion of a continuum medium can be studied from two essentially different points of
view. Thus, two methods of studying the motion are distinguished, both conceived by
Leonhard Euler (1707-1783), but known under the names of the Euler method and the
Lagrange method. The former consists in studying the velocity of an element in a
predefined point of space, while the latter is based upon the study of motion of a selected
element. Since distinction and application of these methods encounters certain difficul-
ties, we shall use certain geometric illustrations to aid understanding.

Consider first the Lagrangian method, which, being more natural, results from the
direct transformation of a description originating in classical mechanics. Suppose we are
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to determine the flow in a tube, and that we are interested in changes of velocity along the
tube’s axis. Assume further that at the initial instant £y the element considered occupies
position (xg, ¥o) and had velocity vy. After some time the element has moved and at time
1, takes position (xy, y;) (compare Figs. 2.12a and b). If the motion is not steady, then the
velocity will also change and become v;. The latter value depends both on the time which
has already elapsed and on the new location of the element. These two depend upon the
earlier state of the element, and thus regressing we shall return to the initial instant and
initial position (xg, yo). One can therefore say that the present state depends upon the
history of the motion. That is why this method is sometimes called historical. It seems,
however, that it is better to call the Lagrangian description the wandering description.
The most popular name, however, is the material description.
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By application of the Lagrangian description method we obtain a description of the
motion of the medium in the form of a function:

H=H(a,b,c,t) (2.72)

where H is any (i.e. scalar, vector, or tensor) property of the medium (velocity in the
example considered), while variables a, b, ¢ and ¢ are Lagrangian variables or coordi-
nates. Letter  denotes time, and the triplet a, b, ¢ denotes variables which pinpoint the
element considered, similarly as xp, yp in the planar case. They do not depend upon
changes in the position of the element, nor upon time elapsing.

The method of Euler, on the other hand, is only indirectly applied in the study of
element motion. It tells us only how the velocity v in a particular point (x, y) changes over
time. Obviously, in various instances various elements are present at this point, but this
method does not just take care of an element (as was the case with the Lagrangian
description), it observes a point in space. If we could, in the example considered, take a
photograph of particles passing through the point (xy, yg) at time f;, and then at time #,
(see Fig. 2.13a, b), we would obtain velocities vy and v, at the point considered.
Knowing the exposure time, and observing the lengths of streaks on the film, being the
images of the particle moving at time t; and t,, one could calculate corresponding
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velocities. It should be noted that this type of photographing technique is used in experi-
mental mechanics of liquids. That is why the method of Euler is often referred to as the
photographic method. Other names, however are also in use, such as local description
(in view of the choice of a given point and) spatial description.

Resulting from application of Euler’'s method the motion description takes the form of
a function

H=H(x,y,2,1), (2.73)

where H, as before, is any property of the medium motion, and variables x, y, z, t are
called Euler variables or coordinates. Letter f denotes time, and the triplet x, y, z denotes
the variables indicating a particular point of geometric space.

Transition from the system of Lagrangian variables to the system of Eulerian vari-
ables, and vice versa, is always possible provided that the correspondence between these
two systems is mutually unique. Detailed information will be given in Volume 2. It is
worth while to note yet that there is a popular view that Eulerian variables are applicable
to problems of fluid mechanics, and Lagrangian variables to problems of solid mechan-
ics. Such a view, though, is a simplified one.

To help memorize the differences between these descriptions let us compare them via
another pair of illustrations (see Figs. 2.14 and 2.15). In the method of Lagrange we are
tracking the motion of a definite particle M of a body, this particle passing through
various points Py, Py, P3,... of space; time ¢ is here an independent variable. We are
interested in the changes of physical magnitudes for a given particle M of a body.

In the method of Euler we are tracking the motion of various particles M\, M,, Ms,...,
of a body, passing through a definite point P of space; independent variables are here the
coordinates x, y, z of the point P, as well as time £. We are interested in the changes of
physical magnitudes in a given point P of space.

From the mathematical standpoint the method of Lagrange differs from the method of
Euler only by the fact that in the former case the independent variables are the parameters
a, b, c identifying a particle of a continuum medium, and time ¢, while in the latter case
the independent variables are the coordinates of a point in space, x, y, z, and time 1. That
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is why it is possible that the best way of referring to these coordinates are the expres-
sions, respectively, of particle and field formulation.

In fluid mechanics and thermodynamics we often have to consider changes taking
place in a certain volume of fluid. For purposes of description of such changes the
notions of fluid surface and of control surface will be needed. These two notions can be
easily introduced with the help of the notions of Eulerian and Lagrangian variables.

The fluid surface consists of any open or closed surface in the fluid velocity field,
characterized by the fact that its location with respect to the Lagrangian coordinate
system a, b, ¢ does not change over time. This, therefore, means that the surface is
constantly formed by the same elements of the fluid. According to such a definition the
equation of the fluid surface has in Lagrangian coordinates the form of
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Fy(a,b,c)=0. (2.74)

The region bounded by the closed fluid surface is called the fluid region. An example of
such a region is provided by the space within a cylinder of a combustion engine during
gas expansion (after the outlet valve has been opened).

By a control surface we mean any open or closed surface, as above, whose location
does not undergo changes with respect to the Eulerian spatial coordinate system x, y, z.
This definition leads to the following equation of the control surface (using Eulerian
variables)

F (x,y,2)=0. (2.75)

The spatial region bounded by a closed control surface is called the control region. It
is characteristic of such a region that it can contain, over time, various portions of matter.
Consequently, in conditions of transient flow, the amount of matter in the region may
change. An example of a control region is the space of a reservoir with inflow and
outflow of gas.

2.3.6 The state space

The term of state, as a fundamental one for the description of a system, was introduced by
Alan. M. Turing in 1936, and then applied by Claude. E. Shannon in his classical work
on information theory. This notion is commonly used at present in system theory. Its use
has come from a tendency to represent any physical system by a number of first-order
differential (or difference) equations that interrelate an equal number of variables.

In section 2.2.5 we put forward the view that the science of dynamics is the science of
motion. In classical mechanics the notion of motion is used in a narrow sense—to desig-
nate the change of object location over time. However, in integrated mechanics the
concept of motion is ascribed a much wider meaning, since it refers to any change in the
object state over time (see section 2.3.3). It is therefore, in fact, a traditional point of view
of dialectics, and the well-known statement of such a general concept of motion is
characteristic for cybernetics as well. Thus, motion will be understood by us to encom-
pass such cases as change of temperature of a body, change of electric charge on the
plates of a condenser, change of the gas pressure in a reservoir, etc. Even such a process
as dissolution of a gas in a metal can be treated as a form of motion.

In this situation it becomes understandable that the notions of space, commented upon
in section 2.2.5, are insufficient for the description of a dynamic system. The states of
such a system can be described with complete accuracy by specifying values taken by the
physical variables, characterizing the system’s behaviour (see section 2.3.3).

Because of the importance of the notion of state space it would be best to give the
definition of the state. The state, however, is treated in the theory of dynamic systems as
a fundamental notion and that is why it cannot be defined in a more complete manner
than the notion of ‘set’ in mathematics. The only thing one could do in the introductory
chapter is to try to give the notion a more precise sense than the one commonly used,
referring, however, to intuition, and amplifying by reference to the specific context.

Let us begin with etymology. The word state comes from the Latin sratus, meaning
posture, location, relations. First, we will link the notion of state with that of motion, the
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Jatter being a more intuitive idea. The notion of ‘system’s motion’ will mean here any
change in the state of a system.

Then, the notion of state will be linked with the state variables, of which every one can
be measured at any instant and expressed with a number. Note, by the way, that the
quantities describing a system may be mutually interconnected through deterministic or
stochastic dependences (see section 1.6).

It is perhaps best to illustrate the notion of state by means of a simple example, and
not a purely mathematical one. Assume, then that we are dealing with a real reservoir
having an inflow and an outflow of a liquid and that we are interested only in the current
volume of the liquid contained in the reservoir. We can then say that this volume tells us
everything of the state of the reservoir. We can say this because when we know how
much liquid is there at a given instant in the reservoir we do not have to remember how
and when this liquid got into the container and how much liquid has flowed out of the
container. The knowledge of the current state is necessary if we are interested in the
contents of the reservoir, i.e. if we want, for instance, to determine time, after which the
reservoir will become empty in conditions of free outflow of the liquid.

This example makes evident a number of significant issues. The most important one is
the statement that the choice of a state variable is in fact arbitrary. The contents of the
reservoir (volume of liquid) specifies everything about the state, if we are interested only
in the contents of the reservoir, and not, for example, in the process of mixing (when
there are inflowing liquids of various concentrations or temperatures). The second impor-
tant observation is that the container may get empty or there may be an overflow,
implying that the state is subject to certain physical limitations. Third we would know
even more about the system if we had the relations of the state variable with the other
important variables. It can therefore be supposed that the key role in the description of the
system will be played by the relation governing the behaviour of the state variable.

Let us emphasize yet that analogous reasoning can be performed, e.g. for the con-
denser charged with electric current, or for a radiator with the inflow and outflow of heat.
Thus, the common feature of a physical system is the fact of storing (preservation,
remembering) of a certain physical quantity, like mass, charge, heat, etc.

There are various ways of describing the state of a system. However, for purposes of
modelling it is more convenient to represent the state of a system using the notion of state
space, but doing so in a more complete way than in classical mechanics by accounting for
a variety of physical variables, as presented above. Thus, while preserving the essence of
motion of space from section 2.2.5, we shall say that the state space is a space in which
each of the system can be represented by a point. If the system moves, the values of its
variables change over time. The state point therefore moves in the state space, following
a certain trajectory. The number of dimensions of the state space is equal the number of
physical variables, defining the system’s state. It is only within this context that one can
speak of the degrees of freedom of a continuous system.

In order to get better acquainted with this important notion of integrated mechanics, let
us consider two examples.

First we shall take a simple system such as a harmonic oscillator (see section 1.7)
assuming only the case of F(f) =0
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G+2hq+0fq =0, (2.76)

where 2h = b/m, and mg =k/m,
Introduce the notation

x| =q and Xy =4q. 2.77)
Then

oo UG dr; .

q ar ar X9, (2.78)

so that equation (2.76) can be represented in the form
%, = -0fx - 2hx,. (2.79)

Having defined the variables

=l el D, 2.80
x| -0} -2n) 0

we can transform equation (2.76) into
X = AX. (2.81)

This is a typical description of a system constructed with the help of the state variables,
where X is the state vector and A is the state matrix,

Most probably examples in which state variables are identical with the coordinate and
velocity have led to misunderstandings of the notions of phase and state variables, and
even of generalized coordinates and velocities themselves. In order to demonstrate that
the identity is true only in very particular cases, consider a system described by a single
nth-order differential equation

¥y = £, y=2) Ly, y,0) (2.82)

where fis some function, and ).(i) = dfy/dri.
It is easy to show that this system could also be described by a set of n first-order
differential equations. Define a set of variables {x(n},i=1, 2,..., n, so that

xi(0) =y (2.83)
Then we have
X1 (1) = x5 (1),

Xy (1) = x3(0),
: (2.84)

‘%u—l(t) = xn('r):
in(f) = f(xn'xn-—l"--v xl'I)-

This is just a specific case of the general system of first-order differential equations
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i'](f) = fl(xl’x?.l"-'xuvf)v
Xp(1) = fo(x1, X9, 20 0), 055

‘i:ﬂ (l) = .ﬁ]{x[»xz,-.q X],I),

which can be written more compactly as
x(1) =f(x(n),1), (2.86)

where X is an n-dimensional ‘state-vector’ and f is an n-dimensional vector-valued func-

tion. This is the state-variable form for an nth order continuous-time system with no

outside inputs. Note that if, at time ty, values of the state variables x|(fp), x2(),..., X,(t)

are known, then the values of x(f), x3(1),..., X,(f) at any other time r can be determined.
We can easily generalize (2.86) to take the form

(1) = f(x(0),u(r), 1), (2.87)

where U is a control vector (or input vector—see section 1.7). A typical example of
equation (2.87) is provided by the aircraft landing (see Merriam (1964))
4 3 2

d"h d’h o, d%h

—— 4290y —5 + Of —5- = K6y (1) 2.88

ot T3 T2 & (-58)
where h is the flight altitude, yis the damping coefficient, ayy is the natural frequency, K
is a coefficient depending on the flight velocity and amplification in control system, and
&y 1s the angle of rotation of the elevator.

Let us introduce the notation
dh . _d%h . _d®h

x; =h, X2=5f|=;’ By A =) I4:x3=?. u==08y. (2.89)

Then, equation (2.86) takes the form

X = Ax +bu, (2.90)
where
X] 0 1 0 0 0
X 00 1 0 0
X= f A= =
X3 00 o 1 5 b 0 (2.91)
Xy 00 —mg =2y K

In this case the state variables do not correspond to any specific type of variables known
from classical mechanics.



