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i-% (2.37,

with e being an electric charge. To avoid confusion we do not use the popular notation q,
because q is traditionally used for the mechanical generalized coordinate.

If a source of electromotive force E(t) is yet introduced into the circuit considered
then, on the basis of the second Kirchhoff law we obtain

\idt E(t), (2.38)
CJ

from which, taking into account (2.37), we get

Le + Re +—e = E(t). (2.39)

Let us refer not to equation (1.25) of damped oscillator with excitation, i.e.

mx + bk + kx = F{t). (2.40)

We now see the correspondence of parameters, and more importantly that the electric
charge e corresponds to coordinate x, which, in this case, is a generalized coordinate. This
means that an electric charge can also be treated analogously as a generalized coordinate.

2.2.4 The number of degrees of freedom
According to the traditional definition (see, e.g. Thompson (1961)) the number of degrees
of freedom of a body corresponds to the minimum number of independent coordinates
required to define its position. Resulting from this definition, the number of degrees of
freedom is given by the formula (2.20). Some comments on nonholonomic systems will
now follow. Considerations on continuous system will be contained in section 2.3.4.

The notion of the number of degrees of freedom was introduced on the basis of
independent generalized coordinates, which are determined with the holonomic constraint
equations, assuming there are no nonholonomic constraints. When there are
nonholonomic constraints present along with the holonomic ones, the number of degrees
of freedom, /, of a system, is defined as the difference between the minimum number of
independent coordinates, s (i.e. the number of degrees of freedom of the holonomic
system), and the number b of equations of nonholonomic constraints, that is

l = s-b. (2.41)

Thus, the nonholonomic system of Fig. 2.2 has 5 - 2 = 3 degrees of freedom, and not 5,
as would be suggested by the standard definition, quoted before. This has serious conse-
quences for modelling, since a proper model is obtained when the number of equations of
motion is equal to the number of degrees of freedom. It is worth mentioning at this point
that the various texts on analytical mechanics often contain the definition of the number
of degrees of freedom for nonholonomic systems, which involves the notion of virtual
displacement, namely the number of degrees of freedom of a mechanical system is the
number of virtual displacements of this system (see, e.g. Neimark & Fufaev (1972)). This
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will be discussed in further detail in section 4.2.2.1, after the notion of virtual displace-
ment is commented upon in more detail.

The view of equivalence of the number of degrees of freedom has yet one more quite
interesting aspect. Thus, if we accept the definition of Arnold (see Arnold (1978), chapter
2, §4), saying that the system with one degree of freedom is the system described by one
differential equation

* = /(*). (2-42)

then we have, consequently, to accept the notion of the semi-degree of freedom related to
the system described by the equation

x = q>(x). (2.43)

This situation can be encountered when we are performing a simplification of a model
already obtained. Let us consider the motion of a thin plate of mass m, immersed in a
liquid and attached to the end of a helical spring with a stiffness k. Assume that the plate
was allowed to oscillate vertically in the fluid. Referring to Fig. 2.7, and applying
Newton's second law of motion, we get

mx = mg - bx - k(d + x), (2.44)

where b denotes viscous damping coefficient, d is the static extension of the spring. Since
mg = kd, we obtain

nix + bx + kx = 0,

which corresponds to equation (2.42).

(2.45)
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Fig. 2.7.

If we assume then that the mass of the plate can be neglected, the inertial component
disappears from the model:



Sec. 2.2] The fundamental notions of classical mechanics 67

bi + kx = 0, (2.46)

which, in turn, corresponds to equation (2.43). Thus, in such a natural way, the math-
ematical model with half a degree of freedom has been obtained.

Such a situation occurs where one performs far more substantial idealization, consist-
ing in this case in neglecting the mass of an element. Thus, for instance, the system
composed of an elastic but massless rod, with certain mass concentrated at the end of the
rod, and with an attached plate placed in a liquid (see Fig. 2.8), will have one and a half
degree of freedom.
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Fig. 2.8.

Studies of models with non-integer numbers of degrees of freedom started somewhat
intuitively in the monograph (Andronov et al. (1966)) and have since resulted in unex-
pected developments within the framework of optimal control theory. One should per-
haps mention that control theory refers also to the notion of the number of degrees of
freedom, which is taken to mean the number of magnitudes which can be used to control
a system.

2.2.5 Representations of the motion in space
On the basis of abundant literature one can say that the science of dynamics is the science
of motion. Motion can be represented in different ways, depending upon the nature of the
problem. In particular, the aim of proceeding may consist in obtaining a simple form of
equations of motion of a mechanical system, or in 'seeing' their solutions. Various
descriptions may be put together on the basis of variously defined spaces, being generali-
zations of the usual physical space. The purpose of generalization always remains, how-
ever, the same, namely: transformation of the motion from the usual space in which the
motion is representable by a point, or by a curve (called a trajectory) traced by a point.

In classical mechanics one usually refers to four kinds of spaces: the configuration
space, the space of events, the phase space, and the state space (compare Synge (I960)).
For the convenience of the reader we shall give here Table 2.1 in which the representative
spaces are listed in order of increasing dimensionality.

Of all the representation spaces, Q is the simplest. If the system consists of a single
particle moving in ordinary space, then Q is ordinary space; and if the particle is con-
strained to move on a curve or surface (e.g. described by equation (2.7)), then Q is that
curve or surface. However, the picture of the totality of trajectories is somewhat compli-
cated since a trajectory is not determined by a point in Q and a direction in Q. It is easier
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to visualize the totality of trajectories in QT, in which a trajectory is determined by a
point and a direction.

Table 2.1.

Name

Configuration space

Space of events

Phase space

State space

Symbol

Q

QT

QP
QPT

Coordinates

la

q<x,t

<io>Po

qo'Po't

Dimensionality

s + l

2s

2s+1

To illustrate these considerations let us find the configuration space for a double
pendulum (Fig. 2.9a). We choose angles <j> and y of rotation of both pendula about their
suspension axes as the generalized coordinates. Thus, any position of such a system is
determined by two angles <j>, I/A(0 < <j>, \j/< 2n). Therefore, the position of the system can
be represented by a point of a square with sides equal to 2n on the plane (0, \\f). Then,
however, the correspondence between the positions of the double pendulum and points of
the square will not be continuous, although it will be unique. In order to make it continu-
ous we first roll the square to form a cylinder, by joining appropriate sides, and then we
join the bases of the cylinder to form a torus, see Fig. 2.9b. Thus, the configuration space
for the double pendulum is a torus.

The two spaces Q and QT are sufficient for analysing phenomena using the methods
of Lagrangian mechanics. In Hamiltonian mechanics, however, we choose to replace all

(b)

Fig. 1.9.
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the generalized velocities qa by independent coordinates pa, called the generalized
momenta, being defined as

Pas-^-< (2.47)

where

L = T-V 2.48)

is the Lagrangian of a system, where T is the kinetic energy and V the potential energy
of the system.

The space QP is, thanks largely to the work of Josiah W. Gibbs (1839-1903) on
statistical mechanics, probably the best known of spaces listed above. If the system is
conservative, then the totality of trajectories appears as a congruence of curves in QP,
one curve passing through each point. This is a satisfying simple picture, but it is compli-
cated in the non-conservative case, for then there is a single infinity of trajectories
passing through each point.

In the space QPTthe time is treated on a part with the coordinates qa and the momenta
p^ The picture of the trajectories is simpler than in QP for a non-conservative system, for
now we have a congruence of curves, one through each point. QPT differs from QP in
having an odd dimensionality—an important difference from the mathematical stand-
point.

The simple pendulum will serve to illustrate the concept of phase space. We may
write, for small angular deflections,

^ - = ml2i>- (2.49)
o<9

Hence 0 = p^jml2, and the mechanical energy of the pendulum,

2

2m/2 2

is constant, since the system is conservative. Here p^ and tp are the coordinates in phase
space. Figure 2.10 illustrates the simple two-dimensional space in this instance. For a
given E, fixed by the initial circumstances of the motion, the representative point P is
restricted to move on an ellipse (0 /A ) + (p,j)/B ) = 1, A = V(2£/mgZ), and
B = V(2£m/2), as is shown in the figure.

If the phase space is multidimensional it is convenient to use partial phase space
diagrams, which assist in visualizing the behaviour of a complex system. In many appli-
cations when the mass remains constant, the phase space (or phase plane in two dimen-
sions) is adequately described by the coordinates q (displacement) and q (velocity).
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Fig. 2.10.

2.2.6 Quasi-coordinates
As demonstrated in section 2.2.3, due to introduction of generalized coordinates the
equations of holonomic constraints were trivially satisfied, which is quite an important
advantage. Still, there are yet the equations of nonholonomic constraints, which were
represented in the form (2.24). The question therefore arises as to whether there is a way
of doing away also with these constraint equations. Luckily, the answer is positive: the
method sought is based upon the introduction of so-called quasi-coordinates (sometimes
also called pseudo-coordinates). The notion of quasi-coordinates was considered by Vito
Volterra (1860-1940) in 1898.

Notice first that the above equations, whose number is b, may be used to determine b
generalized velocities, e.g. <7/+i > • • • > "7s > through other velocities 4i>-••>?/, (where
/ = 5 - b is the number of degrees of freedom of the nonholonomic system, see formula
(2.41)). Velocities <ĵ  (A = 1,...,/) can be given any values, thereby determining the
values of other velocities. We shall, however, take another more general way, in the sense
that we shall not adopt / generalized velocities as independent magnitudes, but rather /
independent linear combinations of these velocities:

(2.51)
(7=1

Note that the notation -&x was used in expression (2.51) to emphasize the fact that
notation T5^ may not make sense at all, since the right-hand side of (2.51) may not
necessarily represent a total derivative. Were it so, variables •d^ would represent the
usual generalized coordinates, although differing from the original ones, i.e. q^. It ought
also to be stressed that linear forms (2.51) should be subject to just one condition, namely
that these / linear expressions form together with b linear expressions
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0, pml.,.,b, (2.52)
tr=l

a complete system of s = l + b linearly independent forms, that is, the determinant formed
0

out of the coefficients of these 5 expressions does not vanish. Then, ^ (A = 1,...,/) may
assume any values, and consequently it is possible to compute corresponding
qa (<r = l,..., s) after the system of linear equations (2.51), (2.52) has been solved.
This leads to

io = Y,hoX'&*- + ho' ff-1,...,*. (2.53)
X=\

where / i^and /iCTare functions off andgj,..., qs.

Magnitudes iH , given by (2.51), being linear combinations of generalized velocities,
o

are called quasi-velocities, and -&x quasi-coordinates (A=l,...,/)• In particular, §x
may be identical with some generalized velocities. In the general case, however, s +1

0

magnitudes qa and #A are interrelated via (2.51) and (2.53).
It should be noted that the notion of quasi-coordinates may alternatively be introduced

in a somewhat different manner, namely through the assumption that the number of
equations relating generalized velocities qa is s, and not I. Equation (2.51) then leads to
another equation

P p-l,...,s. (2.54)
(7=1

It seems to us that the latter method corresponds better to the purpose of elimination of
nonholonomic constraints, to be shown later on. Furthermore, this method also encom-
passes the so-called kinematic characteristics or parameters (see section 4.4.3), which is
introduced for nonholonomic systems because of its greater generality.

A popular example of quasi-coordinates in the sense of (2.54) is provided by projec-
tions of the angular velocity vector of a rigid body on the main axes of inertia of this
body (<*, TJ, 0 (Chorlton (1983)):

O; = p = (sin 8 sin <p) \j/ + (cos <j>)0,

COJJ = q = (sin#cos0)y/-(sin0)0, (2.55)

co* = r = <j) + (cos6)y/.

Magnitudes p, q and r differ from the generalized velocities 0, r/, \jf by the fact that they
are not the total derivatives with regard to time of any of the generalized coordinates.
This is an important difference! In order to better illustrate this fact let us represent
relations (2.54) in the form
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s
d d P = X a P * d<7<7' P = l,-,s, (2.56)

which, by the way, sometimes constitutes the initial form for the introduction of quasi-
coordinates, and now let us return, in a more formalized manner, to the question of the

o

symbolic meaning of the magnitude $X, already considered before. Thus, there is a
condition, known from mathematical literature, for every differential form (2.56) to be
integrable; this condition has the form of

danfT danT
- ^ - — ^ = 0, p,<T,T»l,...,J. (2.57)
dqT dqa

If condition (2.57) is satisfied, then variables #CT simply represent the usual generalized
coordinates. When, however, this condition is not satisfied (i.e. at least some differential
forms (2.56) are not total differentials), then "&a cannot be the usual generalized coordi-
nates. The consequence of the notion of generalized coordinates is that there are such
magnitudes which uniquely determine the position of the mechanical system (see section
2.2.3). Simultaneously, it can be demonstrated, for instance, that the counterpart of a
closed loop in the space of generalized coordinates qa is not a closed loop in the space of
quasi-coordinates $a. It is just this gap in the correspondence between the position of a
mechanical system and the values of quasi-coordinates that constitute this important
feature which differentiates the latter from the usual generalized coordinates. In such a
situation a question arises as to whether such magnitudes can be at all useful in model-
ling? It turns out that they can, since in spite of the fact that quasi-coordinates are not
uniquely related to position of the system, the motion along a curve in the space of quasi-
coordinates uniquely represents, due to (2.55), the motion of the mechanical system.

In order to illustrate these considerations with a concrete example let us look at the
motion called regular precession:

(2.58)

where a, b, <J>Q, I//Q, and 6̂  are given constants. In the Euler angle space (<f>, y, d) this
motion is represented by a straight line in the plane parallel (0 = 60) to the plane (0, i//).
On the other hand in the space of quasi-coordinates, denoted (P, Q, R), this motion is
represented by a spiral line lying on the surface of a circular cylinder; parametric equa-
tions of this line have the form:

f b
P = p dt = — sin 0o[cos <pQ - cos(at + <j>0)],

(i b
Q=\ qdt- — sin0o[-sin0o+sin(af+ 0o)], (2.59)

rt
R=\ rdt= {a+ bcos00)t.

Now calculate the velocity of translation of a point along this curve:

\-b2), (2.60)
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It is then an angular velocity of rotation of a rigid body with a fixed point. If, therefore,
we are interested first of all in changes over time of the angular velocity vector, then
representation of the body's motion in the space of quasi-coordinates turns out even more
convenient!

In a way, however, this is just a by-product of the properties of quasi-coordinates,
useful in analysis. The notion of quasi-coordinates becomes especially useful in model-
ling, when a mechanical system is subject to nonholonomic constraints besides the
holonomic ones. We are able then, notwithstanding the nonintegrable nature of
nonholonomic constraints, to define a set of quasi-coordinates in such a way as to make
them satisfy these very equations as identities. In other words, if nonholonomic con-
straints take the analytic form (2.24), then the introduction of these linear combinations
as quasi-velocities results, on the basis of (2.51), in

o *

a=\

Finally, we should emphasize that the value and significance of quasi-coordinates
consists not only in the capacity of 'neutralizing' nonholonomic constraints. They can be
very useful also when only holonomic constraints appear, as we shall see in derivation of
the Boltzmann-Hamel equations in section 4.3.3. In order to have ready the formulae
there, we shall introduce quasi-velocities according to the definition (2.54) or (2.56).
Besides these we shall need a reverse relation between the generalized velocities qa,
(a=l,...,s) and quasi-velocities $p (p=l,...,s). For this purpose let us write down
equation (2.54) in the matrix form

fl = Aq, (2.62)

where

q = [qlt...,qs]
T,

and A = [apa], p , <7= 1 s. Assuming that det A ^ 0, equation (2.54) may be solved for
qa (a = l,...,s), and we get

q = Bfl, (2.63)

where

B = [*op], (2.64)

and

B = A~1. (2.65)

Now, equation (2.63) in its 'working' shape is as follows:

(7=1


