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Like several other aspects of graph theory, the study of planarity originated from
puzzles. One such puzzle is the following problem. Let us suppose that the capital cities
of five neighbouring regions are to be joined by roads in such a way that no bridges or
crossroads are necessary. The five cities and ten roads may be regarded as the vertices
and edges of the complete graph K5, and the problem requires us to draw this graph in the
plane without crossings. A few experiments with pencils and paper will convince the
reader that the problem is insoluble, and K5 is consequently not planar.

Another puzzle involving planarity is the so-called utilities problem. There are three
houses A, B, C, each to be connected to each of three utilities—electricity (E), gas (G),
and water (W)—by means of conduits. Is it possible to make such connections without
any crossovers of the conduits? As we already know, the answer to the problem is 'no'.

Since the 1950s a rough development of the engineering applications of graphs has
been observed. A milestone in graph-theoretic analysis of electrical networks was
achieved by W. S. Percival, when in 1953-55 he extended the Kirchhoff impedance and
Maxwell admittance methods to networks with active elements. About the same time S.
J. Mason developed the concept of signal flow graphs, which was originally worked out
by C. E. Shannon in a classified report dealing with analogue computers. A few years
later, in 1961, H. Paynter originated a new modelling technique called the bond graph
method (Paynter (1961)). In the last three decades, the methods originally elaborated for
relatively narrow classes of systems were substantially extended and adapted to the
modelling and analysis of many different kinds of physical system.

The rapid development of graph theory and its applications as well as the substantial
increase of interest is proved by the following fact. In the year 1936, the first comprehen-
sive treatise on graph theory appeared, (Konig (1936)). The book summarized two centu-
ries of development in the subject. Since then in just four languages—if English, French,
German and Russian—nearly 200 different books concerning graph theory and its appli-
cations have been published.

5.3 THE LINEAR GRAPH MODELLING METHOD

5.3.1 System, components and terminals
A system as defined in the context of this books is a collection of interacting components,
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which in the most general case can be represented schematically as shown in Fig. 5.16.
The closed regions represent components, and the points of contact A, B,..., F between
the regions represent interfaces. Each component is said to have a terminal correspond-
ing to each of its interfaces with other components.

Fig. 5.16.

The modelling as well as analysis of physical systems requires;

(1) a mathematical description of each component;
(2) a mathematical description of how the components are combined to form the sys-

tem.

The aggregate of these component models is called the system model or alternatively
the system equations. The aggregation procedure however relies upon a fundamental
assumption, which is not necessarily always fulfilled. This assumption is known as the
fundamental axiom of system theory: a mathematical model of a component character-
izes the behaviour of that component of a system as an entity and independently of how
the component is interconnected with other components to form a system. This implies
that the various components can be 'removed' either literally or conceptually from the
remaining components and studied in 'isolation' to establish their models.

The theory of graphs is valuable as a means of achieving a simple systematic proce-
dure for formulating the system equations. The mathematical representation of the com-
ponent is required independently of the particular graph-theoretical method applied to
modelling of a given system. The question now is: What constitutes a mathematical
model of each identified component? The operational answer to this question forms
different graph-theoretical methods, all of them, however, having one thing in common—
they use a graph for the representation of the system topology.
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5.3.2 Terminal representation
The motions of various elements in a mechanical system are nearly always associated
with coexisting forces. In many instances we prefer to think of motion as resulting from
the application of a force, whereas in other cases we may prefer to think of a certain force
as resulting from a given motion. In either case, interactions involving work, energy, and
power occur between mechanical elements and their surroundings.

Let us recall relationships describing the behaviour of simplest mechanical elements,
i.e. linear spring, viscous damper, and mass particle. We shall assume that the motion of
each element is restrained to translation along the x-axis (see Fig. 5.17).

Let us designate a fixed reference point by the letter g (the ground), the reference
positions of the points 1 and 2 by symbols xrl, xr2, and let the displacements of points 1
and 2 be denoted by x\ and x2, respectively. Thus we have:

— for the linear spring

Fg=fc(*2-*i) , (5.1)

— for the viscous damper

Fd=b(v2-vl), (5.2)

and for the mass particle

Fm=ma2. (5.3)

Introducing the notion of relative displacement

X2\=X2~X\ (5-4)

the relations (5.1)—(5.3) may be expressed as follows:

(5.5)

Fd=bv2l (5.6)

^ (5.7)

where v2^ =v2-v\, a2\ — a2- a\ = a-i (sincea\ = 0).
All three mechanical elements considered as having two terminals. In the case of a

spring and a damper it is obvious where both terminals are. It is not so evident in the case
of a mass. To explain the problem, let us look at Fig. 5.17c; the mass may be considered
to have two terminals which describe its motion; the first is v2 which describes the
velocity of the mass itself, and the other is v\, which describes the velocity of the non-
accelerating reference frame. Usually, we shall use a reference velocity v\ which is equal
to zero.

The relations describing the motion of three basic mechanical elements have been
expressed in terms of two kinds of physical variables, a through-variable, which has the
same value at the two terminals or ends of the element, and an across-variable, which is
specified in terms of a relative value or difference between the terminals.
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Insight into the criteria for defining through- and across-variables can be gained by a
consideration of the method by which a particular variable would be measured in the
actual physical system. In fact, it is from this consideration that the names 'through' and
'across' arise. Forces and torques can be measured by means of a calibrated spring scale.
To measure the force or torque at a point, we must sever the system at that point and
insert the spring scale between the two resultant sections. Therefore, force and torque are
thought of as being applied, 'through' the measuring device and hence can be described
by the common name, through variables. Velocity meters (translational or angular) could
be envisioned as devices which determine the rate of separation of two points within it,
each of which is rigidly connected to the two points. With any of these velocity meters
the measurement can be made by simply appropriately attaching the measuring device to
the system; it is not necessary to break into the system. Thus velocity and angular
velocity are thought of as existing across two points and can be described by the common
name of across-variables. We shall use the general symbols / and v to stand for any
through- and across-variables, respectively. The variables/and v associated with a pair of
terminals will be called complementary variables.

A convenient symbol for a two-terminal element, as discussed above and depicted in
Fig. 5.18a, is the linear graph shown in Fig. 5.18b. Two vertices of this graph indicate the
two terminals of the element, and the labels associated with the vertices indicate the
names of across-variables associated with both terminals. The term 'linear' in 'linear
graph' means that the graph is defined by a line segment and should not be confused with
'linear' as used in the mathematical context.

Element

Terminals

Fig. 5.18.

In many applications, it is necessary to associate with each edge of a graph an orienta-
tion or direction. In some situations, the orientation of the edges is a 'true' orientation in
the sense that the system represented by the graph exhibits some unilateral property. For
example, the directions of the one-way streets of a city and the orientations representing
the unilateral property of a communication network are true orientations of the physical
system. In other situations, the orientation used in a 'pseudo-orientation' is used in lieu of
an elaborate reference system. It is this situation in which bilateral mechanical elements
appear. The sign convention selected for the across-variable difference and for the
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through-variable can be shown by a single arrow-head drawn on the graphs in Fig. 5.18b.
The graph is then said to be oriented or directed. The arrow pointing from 2 to 1 means
that w2 is algebraically larger than v\ when w2l

 ls positive. It also means that / i s positive
when it flows from 2 to 1, i.e. when it tends to produce a positive v2i in the element.
These two conventions require that power flow into the element when VJI and/are both
positive.

The complementary variables v, f may be expressed as the time derivatives of the
integrated through-variable h and integrated across-variable x, respectively, i.e.

J At
dx

Atv — -

(5.8)

(5.9)

Table 5.1 lists the complementary variables/and v and their respective integrals h and
X for the four physical processes

Table 5.1. Through- and across-variables for physical systems.

System

Mechanical-
translalional

Mechanical-
rotational

Electrical

Fluid

Through-variable

/

Force

Torque

Current

Fluid flow

Integrated
through-variable

h

Translational-
momentum

Angular
momentum

Charge

Volume

Across-variable
V

Velocity
difference

Angular
velocity
difference

Voltage
difference

Pressure
difference

Integrated
across-variable

X

Displacement
difference

Angular
displacement
difference

Flux linkage

Pressure-
momentum

Thus it may be concluded that relationships such as (5.5)-(5.7), together with one
edge linear graph, form a mathematical model of the two-terminal elements of a physical
system.

Many physical systems contain components having more than two terminals. These
are, for instance, triodes, transistors, transformers, gearboxes and levers. All components
which serve as links between electrical and mechanical systems, called electromechanical
transducer, by necessity contain at least one pair of electrical terminals and one pair of
mechanical terminals. A similar statement applies to other types of transducers—
electrothermal, electrohydraulic, etc. Consequently, any mathematical description of sys-
tems containing these multi-terminal components must be based on an appropriate and
complete mathematical description of the terminal characteristics of the nonreducible
multi-terminal components. By nonreducible components we mean that the component
cannot be resolved into components of fewer terminals without destroying its properties.
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A second type of multi-terminal component is encountered in the area of large, com-
plex systems where, as a matter of expediency, if not by necessity, large subassemblies
such as electrical or mechanical amplifiers, compensating networks, filters, and rotating
machines are considered as a 'packaged unit' with two or more terminals. If each such
packaged unit were to be represented by a complex collection of two-terminal (or other
multi-terminal) components and a derivation of the system characteristics attempted on
the basis of this vast amount of detail, the number of equations resulting would be
prohibitive for even the most simple control systems. The only practical procedure is first
to derive a set of terminal characteristics for each packaged unit or subassembly, retain-
ing only those terminals which are used to unite it with the remaining subassemblies of
the system.

Having defined the broad objectives, one should next proceed with the details. The
first question that must be answered is what constitutes a mathematical model of multi-
terminal components. To answer this question, consider the four-terminal component
shown in Fig. 5.19a. Let a pair of complementary variables Vj and/)- be identified with
each pair of component terminals.

D

(a) (b)

Fig. 5.19.

Generally, if a component has n terminals, then it is possible to identify a pair of
complementary variables Wj(f) and/j(0 with each possible pair of terminals on the compo-
nent by a mapping that includes exactly one vertex for each component terminal and one
edge for each pair of terminals. The edges of the mapping illustrated in Fig. 5.19b for a
four-terminal component identify a pair of oriented complementary variables with every
possible pair of terminals on the component.

However, not all these variables are required to model the characteristics of the com-
ponent. They can be modelled by the complementary variables identified by a tree
spanned on the n vertices. If the n vertices correspond to the terminals of an n-terminal
component, then the spanning tree is called a terminal graph of the component.
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Several terminal graphs for a four-terminal component are shown in Fig. 5.20.

a b a b

Fig. 5.20.

The terminal characteristics of an n-terminal component are completely specified by a
set of n - 1 equations in n - 1 pairs of oriented complementary variables v,{.i) and fj(t)
identified by an arbitrarily chosen terminal graph. Such a set of equations called terminal
equations, together with the terminal graph of the component, forms the terminal repre-
sentation of the component.

The terminal equations are also known as constitutive relationships and the terminal
representation is also called a component model.

The description of the component is not complete without both the terminal equation
and the terminal graph.

Beyond selecting a terminal graph on the n terminals of a component to identify the
2(/z- 1) complementary terminal variables for the model, there remains the task of actu-
ally establishing the model. In general, one is required to select one set S[ of (n- 1)-
terminal variables as independent variable functions of time and the remaining set S% of
(n - l)-terminal variables as dependent variable functions of time. The only requirement
on the sets S\ and S2 is that each contains (n - l)-terminal variables. The model consists
of a set of n — 1 relations or, more generally, a mapping showing the variable functions of
time in Sj a s a function of time in set S\. These relations can be given in the form of
tables, curves, or mathematical functions; the latter form is, generally speaking, most
suitable in all system studies.

Since we shall not apply multi-terminal components in our further considerations,
their terminal representations will not be quoted here. The interested reader may find
them in excellent monographs such as Shearer et al. (1967), Wellstead (1979).

5.3.3 A system graph
As long as the rc-terminal component remains isolated from a system, exactly n-\
complementary terminal variables are taken as independent variables. When components
are interconnected to form a system, these variables are no longer independent—they are
constrained by the interconnections. The equation characterizing these constraints is de-
rived from what is called the system graph. In the following we shall present a simple
operational procedure for generating the system graph.

Consider the arbitrary system of interconnected components represented schematically
in Fig. 5.21a. Let the terminal graph of each component be identified as indicated in Fig.
5.21b. The system graph is defined operationally as the collection of edges and vertices
obtained by coalescing the vertices of the component terminal graphs in one-to-one
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correspondence with the way in which the terminals of the corresponding components are
united to form the system. The resulting graph appears as shown in Fig. 5.21c; the graph
can be characterized as having one vertex for each interface and an edge corresponding to
each edge in the terminal graphs of the components. Unlike the component terminal
graphs, the edges in the system graph may form closed paths, called circuits. These
circuits, as we shall see, form the basis of one set of equations which 'bind' the compo-
nent models together to form a model of the system.

It should be clear that the system graph is unique for any given set of component
models and any given interconnection pattern. However, since any one of several termi-
nal graphs can be used as a basis for modelling the characteristics of multi-terminal
components, the system graph is not unique until at least the terminal graph in each
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component model has been specified, i.e. the system graph depends upon the terminal
graphs used in the component models.

5.3.4 Formulating techniques
Suppose now that both terminal equations of components and system graph are given. It
remains to form the equations of the entire system i.e. a system model.

A physical base for through- and across-variable constraint equations provide condi-
tions which must be satisfied when the elements are combined or connected together.
These two conditions will be called compatibility and continuity. The compatibility
requirement is established by the manner in which the elements are connected, and it
results in a relation among the various across-variables. For example, when two elements
are connected in parallel, compatibility requires equal voltages of velocities at the points
where the elements are connected. In a mechanical system, the concept of compatibility
means that the geometric constraints imposed on the motion of the elements are ex-
pressed. In an electrical circuit, the compatibility requirement is called Kirchhojfs volt-
age law.

Continuity implies that charge is conserved in an electrical circuit or that momentum
is conserved in a mechanical system.

As we already know a real physical system consisting of multi-terminal components
may be represented by a system graph. Suppose that the system graph consists of n
vertices and e edges. In such a graph there are m = e - n + 1 fundamental circuits and
n - 1 fundamental cut-sets.

Both compatibility and continuity requirements give rise to formulation of two follow-
ing postulates:

Postulate 1 For any circuit row matrix [B]; and any arbitrary column matrix V of
across-variables identified by the e edges of a system graph

[B],V = 0, i = l,,,,,b, (5.10)

Equation (5.10) is called a circuit equation of the system graph.

Postulate 2 For any cut-set row matrix [Q]; and any arbitrary column matrix f of
through-variables identified by the e edges of a system graph

[Q],f = O, i = l,...,q. (5.11)

Equation (5.11) is called a cut-set equation of the system graph.

Among b equations (5.10) only m are linearly independent, and among q equations
(5.11) only n-\ are linearly independent. These systems of linearly independent equa-
tions will be called B-space base and Q-space base, respectively. The B-space base form
the equations corresponding to fundamental circuits, while the Q-space base form the
equations, which correspond to fundamental cut-sets. Thus we can write

Bv = 0 (5.12)

Qf = 0 (5.13)
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The equations (5.12) and (5.13), combined with the component terminal equations, are
basic to any form of formulation techniques. Our objective here is to eliminate variables
among these systems of equations in such a way that a system model, which involves
solving simultaneously the smallest possible number of equations, can be obtained. We
have three possible courses of action. The first, known as the branch formulation,
involves substituting successively the terminal equations and, if necessary, fundamental
circuit equations into the cut-set equations. The second method, which is a technique dual
to the branch formulation, is the substitution of the terminal equations and, if necessary,
the cut-set equations into the fundamental circuit equations, and is called the chord
formulation. Lastly, the branch-chord formulation requires the substitution of both the
cut-set and circuit equations into the terminal equations. In general, the branch-chord
method is more difficult than either the branch or chord techniques, and is to be avoided
if possible.

For details of the formulation techniques the interested reader is referred to excellent
books on the subject such as Koenig and Blackwell (1961), Wellstead (1979) and Roe
(1967). We shall simply present one of the techniques by an example.

Example. Let a mechanical system consisting of four bodies with masses m2, ms, mg,
mio, five springs with stiffness fcj, fc3, k4, k6, k9, and one damper with viscous damping
coefficient b-j be connected as in Fig. 5.22a. Suppose that the system is driven by a force
/ l j , and the system model is to be determined.

We shall begin the solution of a problem with the introduction of the terminal vari-
ables x^, XQ, XQ, xp, which mean displacements of bodies m^ m^, Mg, m^ from their
initial positions.

The system graph is drawn by inspection from Fig. 5.22a. The graph is shown in Fig.
5.22b and its edges are oriented arbitrarily (the edge 11 representing/] ] source being only
non-arbitrary orientation). Let us denote the across- and through-variables of the respec-
tive elements by x\, jc2,...,;tio and/],/2 , . . . , /]]. In accordance with the definition of the
terminal across-variable and the notation introduced in Fig. 5.22a, we have

*1 - XA ~ XG ~ XA' X2 ~ XA ~ XG ~ XA <

X3=XB~XG~XB> X4 ~XA~XB<

xs=xB-xG=xB, x6 =xB-xD, (5.14)
xl = XB ~*C> *8 =XC~XG~XC<

X9 ~XC ~XD' x\0 =XD ~XG ~XD-

The terminal equations of the elements are

f\ = k\xA' h f k

= k4(xA - XB)< fs = m5xB> k = k6(xB - * D ) .
= b1{xA-xc), fs = msxc, f9 = k9(xc-xD),

(5-15)
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Fig. 5.22.

In the next stage we shall use a cut-set matrix. Suppose that as a formulating tree,
Gt = {2,5, 8,10) has been chosen. It is the so-called Lagrange tree, since all its branches
have one common vertex. In Fig. 5.23 the fundamental cut-set and their positive
orientations are shown. The cut-set matrix for these cut-sets is

Q =

1

1

0

0

0

2

1

0

0

0

3

0

1

0

0

4

1

-1

0

0

5

0

1

0

0

6

0

1

0

-1

7

0

1

-1

0

8

0

0

1

0

9

0

0

1

-1

10

0

0

0

1

11

0

0

0
_ j

(i)

(")
(iii)

(iv)

(5.16)
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6

- I V

11

Fig. 5.23.

Performing a multiplication of the matrix Q and the column matrix/= \f\,f2,--->f\\V
gives

(i)

(5.17)

-/6-/9+/lO-/ll = 0.

Substituting the terminal equations (5.15) into (5.17) gives

m2xA + kxxA + k^ (xA -xB)= 0,

m5icB+fo7(i/1 -xc) + k3xB-k4(xA - xB) + k6(xB -xD) = 0,

mgxc - b7 (xA - xc) + k9 (xc - xD) = 0,

mm'xD-k6{xB-xD)-k9(xc-xD)-fn = 0.

The system of equations (5.18) may be rewritten in the form

(5.18)

+ k\ + £4

0

0

0

-k

0

-h
-kg

mws2+k6 + k9

'*A

XB

XC

XD

(5.19)

where s = d/dt and J 2 = d2/d/2.
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Consider now the same example, but choosing another formulating tree, say the tree
{1,4, 7, 9}. In Fig. 5.24 the four fundamental cut-sets associated with this tree and their
positive orientations are shown. The cut-set matrix for these cut-sets is as follows:

(5.20)

1

1

0

0

0

2

1

0

0

0

3

1

-1

0

0

4

0

1

0

0

5

1

- 1

0

0

6

0

0

1

1

7

0

6
1

0

8

1

- 1

-1

0

9

0

0

0

1

10

1

-1

-1

-1

11

-1"
1

1

1

(v)

(vi)

(vii)

(viii)

VIII

Performing a multiplication of the matrix Q (5.20) and the column matrix
f = \fiJ2 / n ] T according to equation (5.13) gives

/1+/2+/3+/5+/8+/10-/H = 0 (v)

(Vi)
(5.21)

/6+/9-/10+/11 = 0.

Comparing equations (5.17) with (5.21) we can observe that each equation from a system
(5.21) is a linear combination of equations (5.17). Indeed we have
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Thus, we may conclude that the equations obtained after substituting the terminal equa-
tions (5.15) into (5.21) and reordering them in a matrix form, i.e.

kA

0

0

m5s

s
b7s + k6

ml0s

-ml0s
2

••js ml0s
2 - k6

-k9 -mlos
2-k6-k9

\XA

XB

xc
1XD.

" 0 "

0

0

./ll.

(5.22)

form a system model equivalent to the model (5.19).
We have presented one formulation technique using a relatively simple example—a

system with four masses. This particular example, though, is probably too small to
demonstrate the advantages of the linear graph modelling method. Still, even in this
example we have obtained two models in a relatively simple, systematic manner. It
should therefore be emphasized that the more complex a system is the greater are the
advantages from application of the method. Besides this, when we need to model a
system composed of subsystems of varied physical nature, such as mechanical and elec-
trical, it is very convenient to use a unified method, common to both subsystems. The
techniques involving linear graphs provide the appropriate tool for modelling such sys-
tems. For a deeper study the interested reader is referred to such books as those men-
tioned in section 5.3.2.

5.3.5 The limits of a method
We have presented one from three relatively popular graph-theoretical modelling
methods. Although the foundations as well as the operational procedures of two other
methods, i.e. signal flow graph method and bond graph method, are quite different, all of
them require the terminal equations and terminal representations of system components.
There is no problem in forming the terminal equations of relatively simple mechanical
elements such as a rigid body with simple types of motion: translational movement along
a fixed direction and rotational movement about a fixed axis, with two-terminal mechani-
cal elements such as a linear spring and a damper if their terminals move along a fixed
direction. Unfortunately mechanical elements appear in much more complicated situa-
tions and they cause various difficulties. To understand what causes the difficulties let us
consider a certain fragment of a kinematic chain of rigid bodies as in Fig. 5.25.

Suppose the bodes Z?,-, Bj and their direct carriers, i.e. the bodies Z?,_ and Bj_, can
move in a rotational sense with angular coordinates <JP,-, (pj, ip,_ and <pj., respectively. (We
have here used a superscript'- ' to denote the direct carrier. A detailed explanation of the
meaning of this notation will be given in section 5.4.4.) Suppose some bodies of a system
may additionally move in a translational sense relative to each other, and let £,-_ and Bj
be two such bodies. Let this component of motion of interest be a simple linear transla-
tion and let the coordinates describing this degree of freedom be *,•_, Xj, respectively (see
Fig. 5.25). Let there be a linear spring with the stiffness kv between the bodies B,- and Bj.

The common problem when multi-body systems are considered is to generate the
equations of motion in terms of the generalized coordinates and generalized velocities,
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Fig. 5.25.

i.e. in terms of angular and linear displacements and velocities. This quite common
requirement causes difficulties which make the application of the linear graph method
useless. To see why, let us remember that within this method the mathematical model of
each body is required, and that this model has to be independent of the manner in which
the component is interconnected with other components to form the system. In the exam-
ple considered, where we have a system of many rigid bodies, the motion of a body
depends directly on the motion of its carriers, i.e. those bodies whose motions deter-
mine, via constraints, that of the given body. For example the total displacement as well
as the absolute acceleration of the body Bt depends on the motion of the body B,_ and in
turn upon its carriers. This means that since the acceleration of the mass centre Q
depends, among other things, on the coordinates % <p,_, *,_, the inertia characteristics of
a body B, will appear in many equations of motion; specifically not only in the equation
associated with the <p,- coordinate, but also in the equations associated with coordinate (jo,_,
*,_ and those which represent the motion of all carriers of the body Bt. Conversely, in the
equation associated with coordinate <p;, terms will appear depending on the coordinates
associated with the carriers of the body Bt as well as those carried by the body Bt. Similar
difficulties appear when we try to include elastic forces in the equations of motion. As is
well known, the force in a linear spring with a stiffness kv is proportional to its extension.
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The problem now relies upon the expression of the spring extension in terms of general-
ized coordinates. The positions where the springs are attached depend on many coordi-
nates and it may require quite serious calculation to determine the current extension of a
spring. Additionally the spring attachment point can assume any arbitrary position in the
body. It means that the body may have an arbitrary number of terminals and only current
data concerning the position of vectors av (or bv) with respect to body B,- (or Bj), establish
an actual terminal position.

From what we have said above it follows that the mechanical elements appearing in a
kinematic chain of bodies don't fulfil the fundamental axiom of system theory, on which
the linear graph method hinges.

Additionally, three-dimensional rotation between two bodies cannot be represented
simply by three independent numbers; the numerical values depend also on the sequence
in which the three rotations occur.

Both features of multi-body systems described above affect the coupling of equations
of motions and their complexity. Moreover, since the models of separate mechanical
elements are useless when they are interconnected to form a system, the linear graph
method is not adequate in modelling problems involving many rigid bodies.

In the next section we will present a method which provides a useful aid for a model-
ling of certain classes of rigid-body systems.

5.4 MODELLING OF RIGID-BODY SYSTEMS

5.4.1 Introductory remarks^
The problem of multi-rigid body system modelling was investigated, among others, by J.
Wittenburg, and he solved it using the Newtonian approach combined with graph-
theoretical aids. Although we shall present another method, most of the introductory
definitions and comments made by J. Wittenburg in his excellent monograph (Wittenburg
(1977)) will be useful for us. We shall therefore follow his development and his defini-
tions in this section.

Mechanical systems investigated in most student textbooks consist of either a single
rigid body or several rigid bodies in some particularly simple geometric configuration.
The important role they play in classical mechanics is due to the fact that their equations
of motion can be integrated in closed form. However, the engineer in his everyday
practice is confronted with an endless variety of much more complex systems. To men-
tion only a few examples, one may think of linkages in machines, of steering mechanisms
in cars, of railway trains consisting of elastically connected cars, of walking machines
and manipulators, etc. The assumption that the individual bodies of such systems are
rigid is an idealization which may or may not be acceptable, depending largely on the
kind of problem under investigation. Thus, in a crank-and-slider mechanism, the seem-
ingly rigid connecting rod has to be treated, as an elastic member when its forced bending
vibrations are of concern. At the other extreme, the human body, which is composed of

t A substantial part of the reasoning in this section, and the introduction of the mathematical description of the
interconnection structure (section 5.4.4) is based on items from the book Dynamics of Systems of Rigid Bodies
by Jeans Wittenburg. The authors make grateful acknowledgment to Teubner Verlag for permission to quote
these items from the above-named book.


