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object considered, that is liquid density p and the pipe cross-section surface A, as well as
quantities characterizing flow of the liquid, i.e. volume efflux Q.

Are these perceivable similarities of models incidental, or are they, perhaps, a rule?
We shall try to answer this question in the subsequent section.

3.3 METHODOLOGY OF MODELLING BY MEANS OF BALANCE LAWS

3.3.1 The tetrahedron—a mnemonic aid in the modelling process

To every body the natural world seems immense and complex, the stage for a startling
diversity of events and phenomena, These impressions are supported by estimates of the
general order of magnitude of the values of some fundamental quantities such as the
characteristic length of the universe, 10%m, at one extreme, and of a nucleus, lO‘lsm, at
the other. These impressions are also supported by a great number of both animate and
inanimate matter forms. More than 10° species have been described and named on our
planet. About 100 different chemical elements form perhaps 10° or more identified and
differentiated chemical compounds, and to this number may be added a vast number of
liquid and solid solutions and alloys of various compositions having distinctive physical
properties. Adding to these number innumerable phenomena which involve all man-made
machines, mechanisms and tools take part, the impression of the complexity of the real
world is fully justified.

However, thanks to a development of science and technology we have gained a re-
markable understanding of some central and important aspects of the world. Three pow-
erful theories may surely be mentioned here: classical and quantum mechanics, and
classical electrodynamics. The theories just named, together with the theory of relativity
and statistical mechanics, are perhaps the greatest intellectual achievements of mankind.
It is remarkable that all the great theories mentioned above hinge on only a few funda-
mental laws. It is permanently the aim of a scientist to explain as much as possible with
the simplest tools possible, particularly using the minimum set of physical laws and
assumptions. Similarly we shall look for such a categorization of the great number of
laws, relations and notions used in mechanics, which will lead to the formation of a
suitable tool to aid in the modelling process.

The tetrahedron from Fig. 3.4 is a symbolic representation of a division of problems of
mechanics into five groups of elements. These groups of elements are: BLM—basic laws
of mechanics, B—body, F—forces, M—motion, and SLM—specific laws of mechanics.
When modelling a complex thermodynamical phenomenon we have to draw from each
group distinguished in Fig. 3.4, and the model itself has to contain elements from all five
groups.

Before we pass over to more precise presentation of meaning of the breakdown
introduced and the contents of the particular groups it is necessary to indicate that the
names of groups are certain abbreviations (codewords) which should, as a rule, be under-
stood more broadly. Thus, for instance, the codeword force should be understood as
representing the description of mechanical interactions, that is—forces and torques and
interrelations between these interactions—when we restrict ourselves to modelling of just
purely mechanical phenomena. Then, if the scope of modelling is broadened, e.g. to
include thermomechanical questions, this group would contain also thermal actions. We
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Fig. 3.4. Representation of a division of problems of mechanics.

shall therefore present particular groups in a broader manner, by giving examples of laws,
formulae or problems belonging to these groups. Similarly the group denoted by the
codeword body should be understood as representing problems concerning descriptions
of body and system attributes as well as relations between them.

3.3.2 Basic laws of mechanics
Knowledge of fundamental laws of classical mechanics has essential significance in the
establishment of causal models. In particular branches of classical mechanics these classi-
cal laws often appear in various forms, adapted to the object considered and accounting
both for the specificity of notation and for the applied description of motion.

It is commonly recognized that Newton's three laws of motion create a basis for
classical mechanics. For convenience, let us recall them in the traditional style.

First law. If the resultant force acting on particle is zero, the particle will remain at rest
(if originally at rest) or will move with constant speed in a straight line (if originally in
motion).
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Second law. If the resultant force acting on particle is not zero, the particle will have an
acceleration proportional to the magnitude of the resultant and in the direction of this
resultant force, i.e.

ma=F (3.21)
where m, a and F represent, respectively, the mass of the particle, the acceleration of the
particle, and the resultant force acting on the particle.

Third law. The forces of action and reaction between interacting bodies are equal in
magnitude, opposite in direction and collinear.

Looking at the above through the eyes of a modeller we can highlight their various
aspects. Thus, whereas the first law may be considered only as an assumption of exist-
ence of the inertial frame, the third law gives rise to the formulation of algebraic relations
between some forces appearing within a system under consideration; the second law may
be reformulated as a differential equation relating the current position of the particle to a
force acting on the particle.

For the purposes of modelling of dynamical processes, a vital role is played by these
laws which, after mathematical processing, result in differential equations. The balance
laws are those which can produce differential equations, and they will be called generat-
ing laws. As has already been stated (see section 3.1), equations resulting from balance
laws appear in many different forms depending on which kind of objects is the subject of
the modelling, which kind of motion description is used, etc. Because this text is con-
cerned with discrete models, the basic laws of mechanics will be presented here mainly in
forms suitable for the purposes of discrete model creation.

BLM-1. The mass balance law appears in the form of a mass conservation law.
Considering systems of particles or of rigid bodies, whose masses remain constant, we
may write an equivalence

m = const, (3.22)

where m is the total mass of the system under consideration.

Consider now a fluid flowing through a pipe. Assuming that the flow is continuous,
with no in- and out-flows in the range considered, the mass of the medium flowing
through two arbitrary cross-sections in a certain time interval, f, is the same, i.e.

P1Qit = P20yt (3.23)

where py, py, Q;, O, are the density and the volume efflux at sections 1 and 2, respec-
tively.

If the fluid is assumed to be incompressible, then p; = py = p = constant and (3.23)
implies the equation

AIU] = Azt‘z. (324)

where A}, A, are areas of pipe cross-sections 1 and 2, while vy, v, denote the speeds
associated with the stream velocities vy, v, at sections 1 and 2, respectively.

In many practical applications, especially in establishment of discrete models of
hydromechanical systems, the mass balance equation (3.8), from which the continuity
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equation is derived, is of little use, for it is too general, and equation (3.24) is too
simplified, for it does not account for compressibility. In such a situation the law (3.8)
should be given a working form.

To account for compressibility we may assume that mass is not produced within the
region considered, i.e. P(m)=0, and that pressure within this region may be assumed
constant, Consider now the notion of mass rate of flow Q,, [kg/s). Denoting the mass of
liquid contained in the region by m, and density by p, we can represent equation (3.8) as

dm .
=00 -0, (3.25)

where upper indices (i) and (o) respectively denote the input and output quantities.
Since m = p<QQ, where  is a volume of the mass considered, equation (3.25) can be
given the form of

Pq,,90 Qm 0©, (3.26)
dr &

which represents the most general equation for mass rates of flow. Note, though, that
when the compressibility of a medium has to be taken into account, we often refer to
volumetric flow rate, Qg [m3 /s] in place of the mass rate of flow. The relation between
these two rates is

O =pQ0q. 3:27)

Using the volumetric flow rate from (3.27), equation (3.26) can be written in the form

dQ  Qdp _ 6) _ )
ol Ao -0 3.28
dt  p dr =Ca ~00 S
which can be expressed in words as: flow caused by change of volume and flow caused by
compressibility is equal to the difference between inflow and outflow volumetric rates.
BLM-2. The linear momentum balance law appears in either differential or integral
form. The differential form

W _p

ar (3.29)

can be stated as follows: the rate of change of momentum p measured in an inertial space
is proportional to the applied force and takes place in the direction of action of the force.

The integral form of the linear momentum balance law is often called the principle of
linear impulse and momentum and takes the form

P pz—j Fdt (3.30)

where the time integral of force F is known as the impulse. Thus (3.30) can be stated as
follows: the change in the linear momentum of a system during a given interval of time is
equal to the total impulse of the external forces acting on the system.
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The alternative form of the linear momentum balance law is commonly used in the
field of fluid mechanics; under certain circumstances some problems in fluid mechanics
are adequately solved by an approximation in which viscous forces are neglected. With
the assumption of an inviscid barotropic fluid, the linear momentum balance takes the
form of the so-called Euler equation of motion (see Hunter (1983))

— grad P+ph=p[%+(‘*-grﬂd)"‘]. (3.31)

where P, p are scalar functions of pressure and density, respectively, and b, v are vectors
of body forces and velocity, respectively. Note that the Euler equation is a field equation,
i.e. a partial differential equation.

BLM-3. The angular momentum balance law also appears in two forms. The differ-
ential form can be formulated as follows: if the chosen reference point O is either (i)
fixed in inertial space of (ii) at the centre of mass of the system, then the time rate of
change of the angular momentum, H, of a system about the given reference point is equal
to the moment, M, about that point of the external forces acting on the system, i.e.

dH
e V' :
Z (3.32)

Integration of this equation with respect to time over the interval £} to f, results in the
principle of angular impulse and momentum

LF]
H,-H, = LI M dr, (3.33)

where H;, H, are angular momentum vectors of a system about the given reference
point O at time f; and fp, respectively, while the time integral is known as the total
angular impulse acting on the system due to external forces.

BLM-4, There are several forms in which the balance of energy is applied for model-
ling purposes. Probably the most commonly used form of the balance of energy is that
known as the principle of work and kinetic energy: the change in the kinetic energy of a
system in going from one position A to another position B is equal to the work done by
external forces and internal forces acting on the system as it moves over the given
interval, i.e.

Tg =Ty =Wissp (3.34)

For the case where the internal as well as the external forces are conservative, that is,
their work W4_, 5 equals the difference in the positions A and B, i.e.

Was5=VYa-Vp, (3.35)
the principle of kinetic energy and work (3.34) takes the form
TA + Vﬂ. = TB +- VB‘ (3.36)

The sum of the potential and kinetic energies is known as the total mechanical energy E,
and from (3.36) we find that for a conservative system
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E=T+V =const. (3.37)
Equation (3.37) is a mathematical statement of the principle of conservation of mechani-
cal energy.

Another form of the energy balance law is commonly applied in hydrodynamics
problems. The Euler equation (3.32) admits a number of scalar integrals known collec-
tively as the Bernoulli equations. The Bernoulli integrals takes various closely related
forms which depend in detail on the specific assumptions employed, i.e. incompressible
and/or irrotational and/or steady flow. For an incompressible, steady irrotational flow the
energy balance per unit mass takes a form

Livalat=y, (3.38)

4]

where fis a constant independent of time, P is the pressure, V is the potential energy of
body forces b, i.e. b=—grad V.

The above forms of energy balance (3.34)—(3.38) are not adequate when the environ-
ment surrounding the system is not solely mechanical, e.g. if thermal effects (heat
streams) are involved as well as forces. In this case the general form of energy balance
takes the form

dE

—=N+® 339
dt 0 (3.39)

where E is the total energy stored within the system, N is the power of the mechanical
interactions, i.e. forces, and @ is the heat stream delivered to or produced within the
system per time unit.

3.3.3 Body

For the modelling of dynamic phenomena, a certain set of information is necessary on
properties of the bodies subject to modelling. Information of this kind encompasses not
only such general statements as deformability of the body or thermal conductivity, but
also the numerical values characterizing these properties, e.g. Young's modulus and ther-
mal conductivity coefficient. In the process of modelling we sometimes make use of
relations between various coefficients characterizing the properties of a given body.
Such information, used in the modelling process, will be formally referred to as body.
Because of the fact that properties of a body should be given or established during the
introductory phase of modelling it is essential to be aware what is a physical property of a
body. It is not easy, though, to define this notion. One cannot rely upon enumeration of
all the properties of bodies, not only because there are too many, but first of all because
of the relative nature of the notion of physical property itself. In order to confirm this
statement let us consider a simple example of a uniform steel rod. Can the length L of this
rod be considered a property? If this rod is hanging at one of its ends and thus plays the
role of a physical pendulum moving in the surrounding in which temperature remains
constant, then its length can be considered a geometrical property of this object. But
when the same rod is subject to extension with a variable force P(f) or is heated, then its
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length undergoes changes. It would not be justified when to accept length as physical
property. Conclusions from the example is as follows: a physical property of a body is a
relative notion and depends upon the adopted physical model of the body. The physical
model, in turn depends on the phenomenon considered and on the purpose of modelling.

In spite of the difficulties in defining the notion of property of a body, mentioned
before, we define the following statement: the physical properties of a body are those
physical quantities characterizing this body which do not depend upon its state (e.g. upon
position, velocity, temperature, deformation, etc.).

Thus within the framework of a rigid body model the following quantities can be
regarded as physical properties: mass m, density p, volume €, while within the frame-
work of a deformable body some examples are mass m, Young's modulus E, Poisson’s
ratio v.

Similarly such characteristics as momentum or kinetic energy of a body, or volume of
a compressible fluid cannot be regarded as physical properties since they depend upon
the current state of the body.

Thus, the group known as body contains notions, definitions, relations and theorems
concerning physical properties of the objects considered.

A good example for the elements of the group body is provided by considerations
concerning inertia of a rigid body in general motion.

B-1. Notion of the moment of inertia. 'When considering the dynamics of particles or
translational motion of bodies the only and sufficient measure of the inertia property of
these objects is the mass. This quantity, though, is not sufficient for describing the inertia
property in the case when we are dealing with rotational motion of a body.

Consider a small mass Am mounted on a rod of negligible mass which may rotate
freely about an axis / fixed in space (Fig. 3.5). If a constant couple is applied to the
system, the rod and mass, assumed initially at rest, will start rotating about /. The time
required for the system to reach a given speed of rotation is proportional to the mass Am
and to the square of the distance r. The product r*Am provides a measure of the inertia of

Am

Fig. 3.5.
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the system, i.e. of the resistance the system offers to motion. For this reason, the product
PAm is called the moment of inertia of the mass Am with respect to the axis /.

B-2. Moments of inertia of a rigid body and relevant relations. Consider now a body
of mass m which is to be rotated about an axis / (Fig. 3.6). Dividing the body into
elements of mass Am;, Am,, etc., we find that the resistance offered by the body is
measured by the sum rleml +r22am2+... . This sum defines, therefore, the moment of
inertia of the body with respect to the axis /. Increasing the number of elements, we find
that the moment of inertia is equal, at the limit, to the integral

[ am, (3.40)

where r denotes the perpendicular distance from the element of mass dm to the axis /.

Fig. 3.6.

The radius of gyration k of the body with respect to the axis / is defined by the relation
I=k®>m or k=’~f(!/'m). (3.41)

The radius of gyration k therefore represents the distance at which the entire mass of the
body should be concentrated if its moment of inertia with respect to [ is to remain
unchanged (Fig. 3.7).

The moments of inertia of a body with respect to the coordinate axes may easily be
expressed in terms of the coordinates x,y, z of an element of mass dm. Noting, for
example that the square of the distance r from the element dm to the x-axis is y* + 2, we
express the moment of inertia of the body with respect to the x-axis as

Ie=[r*dm=[(?+2%) dm. (3.42a)

Similar expressions may be obtained for the moments of inertia with respect to the y- and
z-axes. We write
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Fig.3.7.
Iy = [(* +2%) dm, (3.42b)
I = [(*+y%) dm. (3.42c)

The moment of inertia of a body with respect to the origin of the coordinate system may
also be expressed in terms of the coordinates x, y, z. Since the square of the distance r of
the element of mass dm from the origin 0 is 2+ y2 + 22, we have

I =J'r2 dm =_[(x2 +y? +22) dm. (3.43)

Comparing (3.42a-c) and (3.43) we easily find that
2y =1, +1,+1,. (3.44)

B-3. Mass products of inertia. In many instances not only moments of inertia but
also other inertia characteristics are required, To introduce some of them, let us calculate
the moment of inertia of a body with respect to an arbitrary axis / through the origin 0
(Fig. 3.8), in terms of the moment of inertia with respect to the three coordinate axes, as
well as certain other quantities to be defined below.

The moment of inertia of the body with respect to [ is represented by the integral
I =] p2 dm, where p denotes the perpendicular distance from the element of mass dm to
the axis /. But, denoting by A the unit vector along [ and by r the position vector of the
element dm, we observe that the perpendicular distance p is equal to the magnitude
r sin 0 of the vector product A x r. We therefore write

I =[p* dm=[@Axr)? dm (3.45)

Expressing the square of the vector product in terms of its rectangular components, we
have

I = j [(Axy=Ay0)? + (A, 2= A9)* +(Ax—A,2)° ] dm, (3.46)
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Fig. 3.8.

where the components A,,4,,4, of the unit vector X represent the direction cosines of
the axis /, and the components x, y, z of r represent the coordinates of the element of the
mass dm. Expanding the squares in the expression obtained and rearranging the terms, we
write

I = lij(yz +2:2)chrn+/1§,‘r|[z2 +x2) dm+ﬂ.§j(x2 +y?) dm
=244, [y dm =244, [yzdm 22,4, [ 2x dm. (3.47)

Referring to (3.42), we note that the first three integrals in (3.47) represent, respectively,
the moments of inertia Iy, 1, I, of the body with respect to the coordinate axes. The last
three integrals in (3.47), which involve products of coordinates, are called the products of
inertia of the body with respect to the x- and y-axes, the y- and z-axes, and the z- and x-
axes, respectively. We write then

Ly =[xydm, I, =[yzdm, 1, =[exdm. (3.48)

Substituting for the various integrals from (3.42) and (3.48) into (3.47), we have
Iy= 1A% + 122 4 A2 =21 A A, =20 ,A A, ~21,4,A,. (3.49)

B-4. Inertia tensor. For a rigid body which is free to move in three dimensions there
are an infinite number of possible rotation axes. In the case of rotation about an arbitrary
axis we need a complete way of characterizing the mass distribution of a rigid body. Here
we introduce the inertia tensor, which for our purpose can be thought of as a generaliza-
tion of the scalar moment of inertia of a body. The inertia tensor relative to a given
coordinate system Oxyz is expressed in the matrix form as the 3 X 3 matrix
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(3.50)
e =1 I
where the scalar elements are given by (3.42) and (3.48).

Note that since the matrix (3.50) is symmetrical, only six out of nine elements of
matrix | are independent. This set of six independent quantities will, for a given body,
depend on the position and orientation of the frame in which they are defined. If we are
free to choose the orientation of the reference time, it is possible to cause the products of
inertia to be zero. The axes of the reference frame when so aligned are called the
principal axes and the corresponding mass moment, are the principal moments of inertia.
In this case the inertia tensor assumes the simple form of a diagonal matrix

I, 0 0
I=f0 1, 0] (3.51)
0 0 1

B-5. Parallel-axes theorem. Finally let us take an example of a theorem belonging to
the set body. To do this consider a body of mass m. Let two parallel axes be given: an
arbitrary axis n and a parallel centroidal axis / (Fig. 3.9). Denoting by d the distance
between axes, by I the moment of inertia of the body with respect to n and by T its
moment of inertia with respect to /, we have

I=T1+md?. (3.52)

This general relation is known as the parallel-axes theorem.

Fig. 3.9.



