
5
Modelling by means of graphs

The dynamical behaviour of any physical system is a function of three factors: (1) the
external excitation, (2) the characteristics of each of the system elements, and (3) how
they are connected together, that is, their topology. It is the latter factor that brings graph
theory into the picture.

5.1 BASIC NOTIONS AND CONCEPTS OF GRAPH THEORY

5.1.1 What is a graph?
A linear graph (or simply a graph) G = (V, E) consists of a set of objects V= {si, s2,.--}
called vertices, and another set E= {e\,e2,...}, whose elements are called edges, such
that each edge e^ is identified with an unordered pair ($,-, sj) of vertices of e^. The vertices
Sj, si associated with edge e^ are called the endpoints of e^. The most common represen-
tation of a graph is by means of a diagram, in which the vertices are represented as points
and each edge a line segment joining its end vertices. This diagram itself is referred to as
the graph. The object shown in Fig. 5.1, for instance, is a graph.

Fig. 5.1.
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Observe that this definition permits an edge to be associated with a vertex pair (SJ, SJ).
An edge having the same vertex as both its endpoints is called a self-loop. Edge e3 in Fig.
5.1 is a self-loop. Also note that the definition allows more than one edge associated with
a given pair of vertices, for example, edges e7 and eg in Fig. 5.1. Such edges are referred
to as parallel edges.

When a vertex st is an end vertex of some edge ej, Sj and ej are said to be incident
with (on or to) each other. In Fig. 5.1, for example, edges eh e2, e4 and e5 are incident
with vertex s2. Two or more nonparallel edges are said to be adjacent if they are incident
on a common vertex. For example, e\ and e2 in Fig. 5.1 are adjacent.

A graph that has neither self-loops nor parallel edges is called a simple graph. In
some graph-theory literature a graph is defined to be only a simple graph, but in most
engineering applications it is necessary that parallel edges and self-loops be allowed; this
is why our definition includes graph with self-loops and/or parallel edges.

It should be noted that, in drawing a graph, it is immaterial whether the lines are
drawn straight or curved, long or short; what is important is the incidence between the
edges and vertices. For example, the two graphs drawn in Fig. 5.2 are the same, except
for their labelling because incidence between edges and vertices is the same in both
cases. It is enough to note the vertex correspondence 1 <-» a, 2 <-> b, 3 <-> c, 4 <-> d. Such
graphs are also called isomorphic; a more precise definition of isomorphic graphs is
given in section 5.1.2.

Pig. 5.2.

In the diagram of a graph, two edges may seem to intersect at a point that does not
represent a vertex, for example, edges e and/in Fig. 5.3. Such edges should be thought of
as being in different planes and thus having no common point.

5.1.2 Different types of graph
Two graphs are equivalent and said to be isomorphic if they have identical behaviour in
terms of graph-theoretic properties. More precisely: two graphs G and G' are said to be
isomorphic (to each other) if there is a one-to-one correspondence between their vertices
and between their edges such that the incidence relationship is preserved. In other words,
suppose that edge e is incident on vertices sx and s2 in G; then the corresponding edge e'
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Fig. 5.3.

in G' must be incident on the vertices s\ and s'2 that correspond to s^ and s2, respectively.
An example is shown in Fig. 5.2, where the vertex correspondence 1 <-> a, 2 <-* b, 3 <-» e,
4 <-> d, and the edge correspondence a e A ^ B B , 7 <-> C, 8 «-» D, e <r> E, establish
that two graphs are isomorphic.

Except for the labels (i.e. names) of their vertices and edges, isomorphic graphs are the
same graph, although they may be drawn differently.

A graph GS(VS, Es) is said to be a subgraph of a graph G(V, E) if all the vertices and
all the edges of Gs are in G, and each edge of Gs has the same end vertices in Gs and in
G.

If Vs = V, the subgraph is referred to as a spanning subgraph of G. (Note that Es may
differ from E.)

Figure 5.4 presents different subgraphs of the graph shown in Fig. 5.1.
The number of edges incident to/with a vertex st, with self-loops counted twice, is

called the degree, d(Sj), of a vertex st. In Fig. 5.1, for example, d(s\) = 1,

A vertex having no incident edge is called an isolated vertex. In other words, isolated
vertices are vertices with zero degree. A vertex of degree one is called a pendant vertex
or an end vertex.

We say that two subgraphs are edge-disjoint if they have no edges in common, and
vertex-disjoint if they have no vertices in common.

A walk is defined as a finite alternating sequence of vertices and edges, beginning and
ending with vertices, such that each edge is incident with the vertices preceding and
following it.

No edge appears more than once in a walk. A vertex, however, may appear more than
once. In Fig. 5.1, for instance s\e^le^s^e^^e^s^ejSi is a walk. A walk which begins and
ends at the same vertex is called a closed walk. A walk that is not closed is called an
open walk.

An open walk in which no vertex appears more than once is called a path. In Fig. 5.1
s\e\s2e5s5elsA ' s a Patn- The number of edges in a path is called the length of a path.

A closed walk in which no vertex (except the initial and the final vertex) appears more
than once is called a circuit. That is, a circuit is a closed, nonintersecting walk. In Fig.
5.1 S2e4S4e-;s5e5S2 is, for example, a circuit.
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(b)

(c)

Fig. 5.4.

Intuitively, the concept of connectedness is obvious. A graph is connected if we can
reach any vertex from any other vertex by travelling along the edges. More formally:

A graph G is said to be connected if there is at least one path between every pair of
vertices in G. Otherwise, G is disconnected. For instance the graph in Fig. 5.4a is
disconnected. A disconnected graph consists of two or more connected graphs. Each of
these connected subgraphs is called a component. The graph in Fig. 5.4a consists of two
components. A graph G is said to be planar if its geometric diagram can be drawn on a
plane such that no two edges have an intersection that is not a vertex.

The concept of a tree is probably the most important in graph theory, especially for
those interested in applications of graphs. Therefore apart from the definition of a tree,
some of its properties will be listed. A tree is a connected graph without any circuits. The
graphs in Figs. 5.4b, c, for instance, are trees. A tree with n vertices has n - 1 edges.
There is exactly one path between every pair of vertices in a tree.
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A tree in which one vertex (called the root) is distinguished from all the others is
called a rooted tree.

The tree and its properties may be discussed when it occurs as a graph by itself. The
tree may be also studied as a subgraph of another graph. A given graph has numerous
subgraphs—from e edges, 2e distinct combinations are possible. Obviously, some of
these subgraphs will be trees. Out of these trees we are particularly interested in certain
types of trees, called spanning trees, which are defined next.

A tree Gt is said to be a spanning tree of a connected graph G if Gt is a subgraph of G
and Gt contains all vertices of G. For instance, the subgraph in Fig. 5.4c is a spanning tree
of a graph shown in Fig. 5.1.

An edge in a spanning tree Gt is called a branch of Gt. An edge of G that is not in a
given spanning tree Gt is called a chord. For instance, edges e]( ej, e^, e7 are branches of
a spanning tree shown in Fig. 5.4c, while edges e3, e5, eg, eg are chords of a graph shown
in Fig. 5.1 with respect to the spanning tree shown in Fig. 5.4c. It must be kept in mind
that branches and chords are defined only with respect to a given spanning tree. The
collection of chords is called a cotree.

It is to be noted that a spanning tree is defined only for a connected graph, because a
tree is always connected, and in a disconnected graph of n vertices we cannot find a
connected subgraph with n vertices. Each component (which by definition is connected)
of a disconnected graph, however, does have a spanning tree. Thus a disconnected graph
with k components has a spanning forest consisting of k spanning tress. A collection of
trees is called a forest.

Let us now consider a spanning tree Gt in a connected graph G. Adding any one chord
to Gt will create exactly one circuit. Such a circuit, formed by adding a chord to a
spanning tree, is called a fundamental circuit.

How many fundamental circuits does a connected graph have? Exactly as many as the
number of chords, i.e. m = e — n + 1.

Rank and nullity: When we specify a graph G, the first thing we are most likely to
mention is n, the number of vertices in G. Immediately follows the number of edges e and
then the number of components k. If k= 1, G is connected. These three numbers of a
graph are related as follows: since every component of a graph must have at least one
vertex, n > k. Moreover, the number of edges in a component cannot be less than the
number of vertices in that component minus the number of components k, i.e. e>n-k.
Apart from the constraints n-k>0 and e>n-k, these three numbers n, e, and k are
independent, and they are the fundamental numbers in graphs. (Needless to mention,
these numbers alone are not enough to specify a graph, except for trivial cases.)

From these three numbers are derived two other important numbers called rank and
nullity, defined as

rank r = n-k,
nullity m = e — n + k.

The rank of a connected graph is n - 1, and the nullity, e - n + 1. It may be observed that:

(1) rank ofG = number of branches in any spanning tree (or forest) ofG;
(2) nullity ofG = number of chords in G; and
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(3) rank + nullity = number of edges in G. The nullity of a graph is also referred to as
its cyclomatic number, or first Betti number.

In a connected graph G, a cut-set is a set of edges whose removal from G leaves G
disconnected, provided removal of no proper subset of these edges disconnects G. For
instance, in Fig. 5.5a the two sets of edges [a, b, c], [a, d,f, h} form two distinct cut-sets.
Edge {g} alone is also a cut-set. The set of edges [a, d,f, i), on the other hand, is not a
cut-set, because one of its proper subsets {a, d, i) is a cut-set.

A cut-set always 'cuts' a graph into two. Therefore, a cut-set can also be defined as a
minimal set of edges in a connected graph whose removal reduces the rank of the graph

II

(a)

(b) (c)

Fig. 5.5.
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by one. The ranks of the graphs in Figs. 5.5b, c, for example are four, one less than that
of the graph in Fig. 5.5a. Another way of looking at a cut-set is this: if we partition all the
vertices of a connected graph G into two mutually exclusive subsets, a cut-set is a
minimal number of edges whose removal from G destroys all paths between these two
sets of vertices. For instance, in Fig. 5.5(a) cut-set [a, d,f, h) connects vertex set
{si,s2, s5] with {̂ 3, J4 , s6).

Since removal of any edge from a tree breaks the tree into two parts, every edge of a
tree is a cut-set.

Cut-sets are of great importance in studying properties of communication and trans-
portation networks. Suppose, for example, that the six vertices in Fig. 5.5a represent six
cities connected by telephone lines (edges). We wish to find out if there are any weak
spots in the network that need strengthening by means of additional telephone lines. We
look at all cut-sets of the graph, and the one with the smallest number of edges is the
most vulnerable. In Fig. 5.5a, the city represented by vertex s6 can be severed from the
rest of the network by the destruction of just one edge.

Just as a spanning tree is essential for defining a set of fundamental circuits, so is a
spanning tree essential for a set of fundamental cut-sets. Consider a spanning tree Gt of
the connected graph G shown in Fig. 5.6. Take any branch h in Gt. Since {b} is a cut-set
in Gt, {£>} partitions all vertices of Gl into two disjoint sets—one at each end of b.
Consider the same partition of vertices in G, and the cut-set C in G that corresponds to
this partition. Cut-set C will contain only one branch b of Gt, and the rest (if any) of
edges in C are chords with respect to G,. Such a cut-set C containing exactly one branch
of a spanning tree Gt is called a fundamental cut-set with respect to Gt.

In Fig. 5.6, a spanning tree Gt (in heavy lines) and all five of the fundamental cut-sets
with respect to Gt are shown (broken lines 'cutting' through each cut-set).

Just as every chord of a spanning tree defines a unique fundamental circuit, every
branch of a spanning tree defines a unique fundamental cut-set. It must also be kept in
mind that the term fundamental cut-set has meaning only with respect to a given spanning
tree.
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Many physical situations require directed topological representations. The one-way
streets in the map of a city, flow networks with valves in the pipes, and electrical
networks are examples of a system having some unilateral property. A unilateral property
of a system element can be represented by a directed graph as follows:

A directed graph (or simply digraph) G consists of a set of vertices V = {sh s2,...}, a
set of edges E= {e\, e2,...}, and a mapping *F that maps every edge onto some ordered
pair of vertices (sh sp. As in the case of unordered graphs, a vertex is represented by a
point and an edge by a line segment between .?,• and sj with an arrow directed from st to Sj.
For example, Fig. 5.7 shows a digraph with five vertices and nine edges. A digraph is
also referred to as an oriented graph. The oriented edges are also called arcs.

Fig. 5.7.

5.1.3 Matrix representation of a directed graph
Although a pictorial representation of a graph is very convenient for visual study, other
representations are better for computational purposes. A matrix is a convenient and useful
way of represented a graph on a computer. In this section we shall consider three most
frequently used matrix representations of a graph.

Thus let us suppose that a graph G has n vertices and e arcs, and no self-loops.
Incidence matrix. The incidence matrix of a digraph G is an n X n matrix S = [SH],

whose rows correspond to vertices and columns correspond to edges, such that:

( 1 if arc j is pointing away from vertex s,-,

- 1 if arc j is point toward vertex Sj,

0 otherwise.

Circuit matrix. Let G be a digraph with e arcs and b circuits. An arbitrary orientation
(clockwise or counterclockwise) is assigned to each of b circuits. Then a circuit matrix
B = [By] of G is a b x e matrix defined as
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1 if the ith circuit includes thejth arc, and the orientations of the arc
and circuit coincide,

-1 if the ith circuit includes thejth arc, but the orientations of the arc
and circuit are opposite,

0 if the ith circuit does not include they'th arc.

To define a cut-set matrix, a cut orientation has to be defined first.
Cut orientation. For a directed graph G, let V\ and V2 be sets of vertices partitioned

by a cut C of G. The cut C is said to be oriented if the sets V-[ and V2
 a r e ordered either as

(yh V2) or as (V2, Vi).
In most cases, the orientation of a cut may be represented by an arrow. For example,

we can place an arrow near the broken line defining the cut. In Fig. 5.8 the orientation of
the cut of G is as indicated. However, the cut-set consisting of the arcs e\, «2> e3> e4
cannot be represented in this way unless we redraw G such as by interchanging the
positions of the vertices s3 and s4. Let a cut C of G be ordered as (Vj, V2). We shall say
that the orientations of the edge (SJ, sj) and the cut C coincide if st is in Vj and sj in V2-
Otherwise, they are opposite. For example in Fig. 5.8 the orientations of the edge
e2 = (sl> S2 a n d the cut-set 1 are opposite.

Cut-set matrix. Let G be a digraph with e arcs and q nonempty cut-sets. An arbitrary
orientation is assigned to each of q cut-sets. Then a cut-set matrix Q = [Qij] of G is a
q x e matrix defined as

1 if theyth arc is in the ith cut-set and the orientations of the arc
and cut-set coincide,

—1 if theyth arc is in the ith cut-set and the orientations of the arc
and cut-set are opposite,

0 if thejth arc is not in the ith cut-set.

In the matrices S, B, and Q there are redundant (or linearly dependent) rows. This
means that the rank of each matrix S, B, and Q is less than the number of rows appear-
ing in them. Thus, for a connected graph G with n vertices and e edges, the rank of the
incidence matrix S is n - 1, the rank of the circuit matrix B \sm = e -n+ 1, and the rank
of the cut-set matrix Q is n - 1. Thus not the matrices S, B, and Q, but their submatrices
with the ranks n — 1, m, and n - 1 respectively, ought to be used, since such submatrices
will be sufficient in any calculations.

If we remove any one row from the incidence matrix, S, the remaining ( n - 1) X e
submatrix is of rank n—\. In other words, the remaining n — 1 row vectors are linearly
independent. Such an (n — 1) x e submatrix S of S is called a reduced incidence ma-
trix. The vertex corresponding to the deleted row in S is called the reference vertex.
Clearly, any vertex of a connected graph can be made the reference vertex.

A submatrix of a circuit matrix in which all rows correspond to a set of fundamental
circuits is called a fundamental circuit matrix B. It is an m X e matrix, whose rank is m.
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Fig. 5.8.

As in the case of a circuit matrix, the cut-set matrix generally has many redundant
rows. Therefore, it is convenient to define a fundamental cut-set matrix, Q, as an
(n - 1) x e submatrix of Q such that the rows correspond to the set of fundamental cut-
sets with respect to some spanning tree.

In our further considerations only the matrices S, B, and Q will be used. Therefore to
save space we shall refer them to as incidence, circuit and cut-set matrix, respectively.

5.2 A BRIEF HISTORY OF GRAPH THEORY

The origins of graph theory are humble, even frivolous. Whereas many branches of
mathematics were motivated by fundamental problems of calculation, measurement, sci-
ence and technology, the problems which led to the development of graph theory were
often little more than puzzles. But despite the apparent triviality of such puzzles, they
captured the interest of mathematicians, with the result that graph theory has become a
subject rich in theoretical results of a surprising variety and depth.

Euler became the father graph theory as well as topology when in 1736 he settled a
famous unsolved problem of his day called the Konigsberg Bridge Problem (Euler
(1736)). There were two islands linked to each other and to the banks of the Pregel River
by seven bridges as shown in Fig. 5.9. The problem was to begin at any of the four land
areas, walk across each bridge exactly once and return to the starting point.

Euler modelled this situation by means of graph, as shown in Fig. 5.10. The vertices
represent the land areas and the edges represent the bridges. Showing that the problem is
unsolvable is equivalent to showing that the graph of Fig. 5.10 cannot be traversed in a
certain way.
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Fig. 5.10.

Rather than treating this specific situation, Euler generalized the problem and devel-
oped a criterion for a given graph to be so traversable; namely, that it is connected and
every vertex is incident with an even number of edges.

For the next 100 years nothing more was done in the field.
In 1847, Gustav R. Kirchhoff (1824-87) developed the theory of trees for their

applications in electrical networks (Kirchhoff (1847)). He abstracted an electrical net-
work with its resistances, conductances, inductances, etc., and replaced it by its corre-
sponding combinatorial structure consisting of vertices and edges without any indication
of the type of electrical element represented by individual edges. Thus in effect, Kirchhoff
replaced each electrical network by its underlying graph and showed that it is not neces-
sary to consider every circuit in the graph of an electric network separately in order to
solve the system of equations. Instead, he pointed out by a simple but powerful construc-
tion, which has since become standard procedure, that the independent circuits of a graph
determined by any of its spanning trees will suffice. A contrived electrical network N, its
underlying graph G, and a spanning tree Gi are shown in Fig. 5.11.

In 1857, Arthur Cayley (1821-95) rediscovered trees while he was trying to count
the number of structural isomers of the saturated hydrocarbons (or paraffin series)
CkH2ic+2 (Cayley (1857)). He used a connected graph to represent the Cjji^^ molecule.
Corresponding to their chemical valences, a carbon atom was modelled by a vertex of
degree four and a hydrogen atom by a vertex of degree one (pendant vertices). The total
number of vertices in such a graph is n = 3k + 2, and the total number of edges is
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N:

G:

Fig. 5.11.

e = -j (sum of degrees) = -j

Since the graph is connected and the number of edges is one less than the number of
vertices, it is a tree. Thus the problem of counting structural isomers of a given hydrocar-
bon becomes the problem of counting trees (with certain qualifying properties).

The first question Cayley asked was: what is the number of different trees that one can
construct with n distinct (or labelled) vertices? If n = 4, for instance, we have 16 trees, as
shown in Fig. 5.12. The reader can satisfy himself that there are no more trees of four
vertices. (Of course, some of these trees are isomorphic.)

A graph in which each vertex is assigned a unique name or label (i.e. no two vertices
have the same label), as in Fig. 5.12, is called a labelled graph. The distinction between
a labelled and an unlabelled graph is very important when we are counting the number of
different graphs. For instance, the four graphs in the first row in Fig. 5.12 are counted as
four different trees (even though they are isomorphic) only because the vertices are
labelled. If there were no distinction made between A, B, C or D, these four trees would
be counted as one. A careful inspection of the graphs in Fig. 5.12 reveals that the number
of unlabelled trees with four vertices (no distinction made between A, B, C and D) is only
two.

The following well-known theorem for counting trees was first stated by Cayley, and
is therefore called Cayley's theorem:

The number of labelled trees with n vertices (n > 2) is nn~2.
In the actual counting of isomers Q#2£+2> Cayley's theorem is not enough. In addi-

tion to the constraints on the degree of the vertices, two observations should be made:

(1) Since the vertices representing hydrogen are pendant, they are connected to carbon
atoms in only one way, and hence make no contribution to isomerism. Therefore,
we need not show any hydrogen vertices.
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Fig. 5.12.

(2) Thus the tree representing Cj% + 2 reduces to one with k vertices, each represent-
ing a carbon atom. In this tree no distinction can be made between vertices, and
therefore it is unlabelled.

By means of these two observations Cayley enumerated the number N of theoretically
possible isomers of hydrocarbons with k carbon atoms. The result was as follows:

k=\
N=l

2
1

3
1

4
2

5
3

6
5

7
9

8
18

9
35

10
75

11
159

12
355

13
802

Thus, for example, for hydrocarbon C^H\Q, there are only two distinct trees, as shown
in Fig. 5.13 by heavy lines. As every organic chemist knows, there are indeed exactly two
different types of hydrocarbon C^H\Q. butane and isobutane.

About the time of Kirchhoff and Cayley, two other milestones in graph theory were
laid. One was the four-colour conjecture, which states that four colours are sufficient
for colouring any atlas (a map on a plane) such that the countries with common bounda-
ries have different colours. The four-colour problem, which remained unsolved for more
than a hundred years, has played a role of the utmost importance in the development of
graph theory as we know it today. It is believed that A. F. Mobius (1790-1868) first
presented the four-colour conjecture in one of his lectures in 1840. The first written
reference to the four-colour problem occurs in a letter dated 23 October, 1852, sent to Sir
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Fig. 5.13.

W. R. Hamilton (1805-65) by A. De Morgan (1806-71). The problem became well
known after Cayley published it in 1879 (Cayley (1879)). Numerous attempts to solve the
problem during more than 100 years contributed to obtaining many important results in
several branches of mathematics. The discovery of K. Appel and W. Haken in 1976
finally established the truth of the four-colour conjecture (Appel and Haken (1976)).

The other milestone is due to Sir W. R. Hamilton. In the year 1859 he invented a
puzzle and sold it for 25 guineas to a game manufacturer in Dublin. The puzzle consisted
of a wooden, regular dodecahedron (a polyhedron with 12 faces and 20 corners, each face
being a regular pentagon and three edges meeting at each corner; see Fig. 5.14a). The
corners were marked with the names of 20 important cities. The object of the puzzle was
to find a route along the edges of the dodecahedron, passing through each of the 20 cities
exactly one.

(a) (b)

Fig. 5.14.

Although the solution of this specific problem is easy to obtain (as we see in Fig.
5.14b), to date no one has found a necessary and sufficient condition for the existence of
such a route (called a Hamiltonian circuit) in an arbitrary graph.

This fertile period was followed by half a century of relative inactivity. Then a resur-
gence of interest in graphs started during the 1920.

In 1930 the Polish mathematician K. Kuratowski (1896-1980) published a remark-
able theorem (Kuratowski (1930)). He proved that if a graph is nonplanar, then it
contains either K5 or AT3 3 (both graphs are shown in Fig. 5.15); in other words, these two
graphs are essentially the only obstacles to planarity.
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Fig. 5.15.

Like several other aspects of graph theory, the study of planarity originated from
puzzles. One such puzzle is the following problem. Let us suppose that the capital cities
of five neighbouring regions are to be joined by roads in such a way that no bridges or
crossroads are necessary. The five cities and ten roads may be regarded as the vertices
and edges of the complete graph K5, and the problem requires us to draw this graph in the
plane without crossings. A few experiments with pencils and paper will convince the
reader that the problem is insoluble, and K5 is consequently not planar.

Another puzzle involving planarity is the so-called utilities problem. There are three
houses A, B, C, each to be connected to each of three utilities—electricity (E), gas (G),
and water (W)—by means of conduits. Is it possible to make such connections without
any crossovers of the conduits? As we already know, the answer to the problem is 'no'.

Since the 1950s a rough development of the engineering applications of graphs has
been observed. A milestone in graph-theoretic analysis of electrical networks was
achieved by W. S. Percival, when in 1953-55 he extended the Kirchhoff impedance and
Maxwell admittance methods to networks with active elements. About the same time S.
J. Mason developed the concept of signal flow graphs, which was originally worked out
by C. E. Shannon in a classified report dealing with analogue computers. A few years
later, in 1961, H. Paynter originated a new modelling technique called the bond graph
method (Paynter (1961)). In the last three decades, the methods originally elaborated for
relatively narrow classes of systems were substantially extended and adapted to the
modelling and analysis of many different kinds of physical system.

The rapid development of graph theory and its applications as well as the substantial
increase of interest is proved by the following fact. In the year 1936, the first comprehen-
sive treatise on graph theory appeared, (Konig (1936)). The book summarized two centu-
ries of development in the subject. Since then in just four languages—if English, French,
German and Russian—nearly 200 different books concerning graph theory and its appli-
cations have been published.

5.3 THE LINEAR GRAPH MODELLING METHOD

5.3.1 System, components and terminals
A system as defined in the context of this books is a collection of interacting components,


