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Because of regular labelling, P is upper triangular and because of the fact that the
graph is regular directed, all nonzero entries of P have the same sign, in this case
positive.

5.4.5 The kinetic energy
The kinetic energy for a point mass is defined as T-jm\2, where v is the absolute
velocity of m, i.e. its velocity relative to an inertial reference base. For a rigid body, as for
any deformable body, the kinetic energy is the integral

v2d/n, (5.43)

where now v is the absolute velocity of mass particle dm of a body.
Let us now consider a rigid body in arbitrary motion (Fig. 5.36). The absolute velocity

v of a mass particle Am is

\ = \P+ilxr, (5.44)

where \P is the absolute velocity of the reference point P,

d is the absolute angular velocity of the body, and

r is the radius vector from P to the mass particle.

eo.

Fig. 5.36.

—>
The radius vector c = PC in Fig. 5.36 indicates the body mass centre C. Evaluation of the
integral (5.43) yields

±2 +±GTJPn, (5.45)
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where Q is the column matrix representing components of an absolute

angular velocity vector ft of the body in the base e0;

u - fl x c is the relative velocity of the body mass centre, C, in the rotation
motion with respect to P;

m is the mass of the body, and

Jp is the inertia tensor of the body with respect to P.

The expression (5.45) becomes particularly simple if either the body-fixed point P is also
fixed in inertial space or the mass centre C is used as reference point P. In the former
case vP = 0 so that the first two terms equal zero. In the latter case u = 0, so that the
central term vanishes and the expression (5.45) takes the well-known form

T = \my2
c +±QTJCQ = rtrans + 7rot, (5.46)

where v^ is the absolute velocity of the mass centre C, and J is the inertia tensor of the
body with respect to the mass centre C. However, for a reason which will be clear later,
we shall use, in what follows, the formula (5.45) only.

For an arbitrary system of n rigid bodies, the kinetic energy is

T = Yji =l'Lmy2Pi +£mv/}U/+l]£fl,Tj'><rt/ (5.47)

1=1 i=i i=l i=l

In order to simplify the notation, we shall adopt the following convention

V | - v ^ , J , = ^ , 7]V=im,.v?, 7f=-/n,v,.u,-, T j ^ i ^ J A

Thus
= 7V +T*+T°, (5.48)

where

n n n
TV=^Ty, T* = £ T*, 7]° = £7]°. (5.49)

1=1 1=1 1=1

It is obvious that the kinetic energy of an arbitrary system of rigid bodies depends on
the number of bodies, their inertial characteristics mit J,- and a group of velocities v,-, Uj,
and 11,.

Consider now a system of interconnected rigid bodies forming an open kinematic
chain, such as in Fig. 5.37, and let />,- be chosen as the joint on the /th body. Suppose that
the bodies of a system may move in both the translational and rotational senses. For
simplicity, we shall assume that: (1) each rotational body motion can be expressed in
terms of angular coordinates measured from the same line in the same direction, and (2)
the external base is immovable. Now the vectors v,-, u,-, fi, depend, in general, on the
motion of the direct carrier. In order to establish relationships between the velocity v,- and
the characteristics of the motion of a direct carrier, let us consider Fig. 5.38.
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Fig. 5.37.

This figure shows two adjacent bodies Bj and Bj. The body Bj slides along curved
slide-way with a relative velocity pj. The problem is to determine the absolute velocity
V: of the point Pj using the velocity characteristics of a direct carrier. We have

(5.50)

Since the body 5, is a direct carrier of the body Bj the index i=j~. Introducing the
notation

a^il.xr, b,=ft,_xp,, (5-51)
J J J J J J •

w , = a ; + b , . + p < (5.52)

the relation (5.50) may be expressed in the form

(5.53)
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Fig. 5.38.

There is a simple physical interpretation of the velocity Wy. It is the velocity of the joint
point Pj with respect to the base constrained with P(.

Since relation (5.53) holds for any arbitrary j , we have

X
v=l

(5.54)

where index V change its value according to the labels of the arcs in the path between
vertices sj and SQ. This can be expressed as

v ; = L p T J ; w (5-55)
where | P I is theyth row of PT and w= [wj, w2,..., w,,]T. Thus the column matrix

r . •' i T i iV = [V], v2,..., v j can be expressed as

V = PTw. (5.56)

Two components of (5.48), namely T v and T *, can be calculated by use of (5.56). We
have

(5.57)
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where m = diag (m^ m2,..-, mn). Hence

r v = l w
T P m P T W , (5.58)

or, more briefly,

v ± T (5.59)

where M = PmPT is an n x n constant matrix. There is a simple physical interpretation of
the elements M^ of the matrix M. To present it briefly (for details see Arczewski (1987a)),
let us introduce the following designation: M,- = mt + mass of those bodies whose carrier
is the ith body. The masses M,-, i = 1,..., n, can be regarded as the elements of a diagonal
matrix

M = diag(M1,...,Mn). (5.60)

In the matrix M the diagonal elements Mit = A/,-, and the off-diagonal elements are

0, if in the graph G there is not a path directed to the vertex SQ,
and consisting simultaneously of both vertices Sj and Sj,

Mt, where / = max (/,/"), if in the graph G there is a path directed
to the vertex SQ and consisting simultaneously of both
vertices Sj and Sj.

Now we proceed to the determination of the second component of the sum (5.48), i.e.
n

T* = ]£ m,v,u,- = vTmu, (5.61)

where

u = [u ) ,u 2 , . . . ,u , I ]
T , and U;=ft,xc,-. (5.62)

Substituting (5.56) into (5.61) we obtain

T* = wTPmu, (5.63)

According to the assumption about the manner in which the body rotational motion is
measured, the angular velocities ft, do not depend on each other. Therefore the third
component of the kinetic energy (5.48) is the simplest one, i.e.

n

T° =^\QJJJQJ =J£2TJQ, (5.64)
i - l

where Q is a column matrix 3n x 1 formed from column matrices 12,- representing angular
velocities vectors fl,-, and J is a block diagonal matrix with dimension In by 3n com-
posed from matrices J,-.

Finally, the kinetic energy T can be expressed as
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T = -i- wTMw + wTPmu + T JO. (5.65)

This expression (5.65) provides only a general frame for the determination of the kinetic
energy of a particular class of systems in terms of generalized coordinates and general-
ized velocities. In order to use this, we should further specify a system, i.e. we should
introduce generalized coordinates that take into account all constraints, then specify the
location of joints, mass centres and all inertia characteristics. However, since our main
objective is not to determine the kinetic energy by means of formula (5.65) but to use it
as a starting point for the mathematical model determination, we shall not present any
example of kinetic energy determination, and the interested reader is referred to
Arczewski (1987a).

5.4.6 The potential energy of gravity forces
Consider a system of n rigid bodies situated in gravity field (Fig. 5.39). The potential
energy of gravity forces of the system with respect to a certain level e.g. that of PQ may
be expressed as

v G = - (5.66)
1=1

where m is the mass of the body, g is the vector gravitational acceleration, rc. is the
position vector of the mass centre of the ith body.

The potential energy (5.66) may be written as

V G =-gm T r c (5.67)

Fig. 5.39.
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where

m = mln=[m1.m2,...1mn]T
> rc =[rCi,rC2,...,rcJ . (5.68)

For a system of interconnected rigid bodies, the position vector rc. depends on the
configurations of all those bodies which are carriers of the /th body, so we have

i

...+r1+p;+c / = ]£(iv+pv,) + C;) (5.69)
v=l

where

r — p p® « _ p O n _ pr>

and the current summation index V assumes values from 1 to i, but only from the set of
labels of carriers of the (th body. The relation (5.69) is easily expressible in terms of the
path matrix, P, as follows:

rc. = £TPT(r + p) + c,-, (5.70)

where e,- is an isolating (n x 1) matrix, so £TP is the ith row of PT, and
F = [r2,r2 rn] , p =[pj ,p2 , . . . ,pn] . Consequently, the column matrix rc can be
expressed as

rc=PT(F + p) + c, (5.71)
„ rip

where C = [CjC 2 , . . . , c n ] .
Introducing (5.71) into (5.67), we have

yG=-gmTPT(r + p)-gmTc. (5.72)

Comparing (5.72) with (5.67), we note that the initial form, i.e. (5.67), is simpler than
the final form (5.72). However, the latter form (5.72) has an advantage, which will
become very clear when it is applied to an interconnected system of bodies: namely, each
component of the column matrices r, p, and C is relatively easily expressed in terms of
the generalized coordinates usually introduced to describe the configuration of the bodies.
At the same time, the components of the column matrix Xc are complex functions of these
coordinates. Therefore a differentiation of the expression (5.72) with respect to general-
ized coordinates is many times easier than differentiation of (5.67). The particular expres-
sions for vectors r,-, p,-, C; or rc depend, of course, on the particular choice of coordinate
system. Now we will not specify any particular system of coordinates, but we shall
assume two features which the system, when considered further, needs to possess. It is
well known that the position of a rigid body is completely described when the position of
any one reference point and its angular orientation with respect to a non-rotating frame
are known. In connection with this, we shall assume that a system of coordinates describ-
ing the motion of the /th body consists of (1) relative linear translations of the reference
point Pj referred to a frame affixed to a direct carrier of the (th body, i.e. to the i ~th body;
(2), rotational (angular) displacements referred to a basis whose axis remains parallel
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to the external basis, e0. In a system of coordinates possessing both of the above features,
the vector c,- depends only on the angular coordinate of the /th body, while the vectors r,-,
pi depend on the translational coordinates of the /th body and the angular coordinates of
its direct carrier, i.e. the i ~th body.

For purposes of economy, we will not deal with the determination of the potential
energy of springs. This problem, however, has been solved and details of the solution can
be found in Arczewski (1987b).

5.4.7 The equations of motion
The main task of this section is the determination of equations of motion for open
kinematic rigid-body chains. However, solving a quite general problem, even within the
considered class of systems, would be too difficult, since three-dimensional rotations of a
body involve complex mathematics. An important group of mechanisms are those whose
motion is constrained to a plane. Therefore our further considerations will be limited to
that subclass of systems. Thus we shall assume that:

(1) all bodes can move in a rotational sense, with angular coordinates (p\,(p2,..., <pn,
all measured in the same sense (compare Fig. 5.37);

(2) some or all bodies may additionally move in a translational sense relative to each
other. Let this second component of motion be a simple linear translational and let
the coordinates describing these degrees of freedom be x\, x2,..., xn.

For a better comprehension of the following we now explain the main steps leading
from the expressions for the kinetic and potential energies given by formulae (5.65) and
(5.72) to the final mathematical model of a considered system of rigid bodies.

Bearing in mind the application of Lagrange's equations of the second kind, the
expressions (5.65) and (5.72) ought to be brought to a form convenient for further differ-
entiation with respect to the generalized coordinates q^ the generalized velocities qa,
and then with respect to time /. In the first step, the general formulae (5.65) and (5.72)
have to be adapted to that of a special case of planar motion. In particular, the vectors
appearing in all the formulae should be decomposed as far as possible and then expressed
in such a manner as to disclose their dependence on the generalized coordinates qa and
the generalized velocities qa.

In the second step, the kinetic and potential energies must be expressed as a product of
certain matrices, i.e. in a form enabling subsequent, relatively easy, differentiations,
Finally, the third step, the required differentiations of the expressions for kinetic and
potential energies, are performed and the expressions reduced if possible.

Let us now consider two adjacent bodies of a certain kinematic chain (Fig. 5.40). Let
the body B(_ be a direct carrier of the body Bit let />,„, P,-, C,-_, C, be reference points and
mass centres of these bodies as shown in Fig. 5.40, and let us denote the absolute angular
velocities of the bodies by ft,_, ii ; , the velocity of />,- with respect to the base constrained
with P,-_ by w;, and the relative velocity of the /'th body mass centre C, in the rotational
motion with respect to Z3,- by u,. For the considered case of planar motion, we have

(5.73)
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Fig. 5.40.

where

a,- = I V x r; = /;<p,_a,-, b,- = il,_ x x, = Xjf^bi, x- = x,x;. (5.74)

The system of unit vectors within rigid bodies as well as vectors c,-, r,-, x,- are shown in
Fig. 5.40 and the angular positions of the unit vectors are shown in Fig. 5.41.

In order to develop and then to prove the equations of motion, let us introduce:

— the diagonal matrices of unit vectors:

a = diag a,-, b=diagb; , c=d iagc ; ,

f = diag ?,•, U = diag u,, X = diag x,-;
(5.75)
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Fig. 5.41.

- the diagonal matrices related to different velocities and position vectors

a=diaga / ( b=diagb,-, c=diagc,-,

r=diagr,-, u=diagu(-, x=diagx ; ,

x=diagx ; , (p = diag (ph i = l,...,n;

•the column matrices associated with diagonal matrices (5.76):

a={a} = [a ] , . . . ,a n ]T , b = {b} = [bi , . . . ,bn]T ,

(5.76)

(5.77)

* = [x} = [x},...,xnf, <p= {q>} = [q>u...,q>n]
T;

— and finally the column matrix of the reference point relative velocity vectors

(5.78)

The notation of column matrices introduced above preserves the rules established by
Conventions 5.3 and 5.4 (see section 5.4.3).

Using notations (5.77) and (5.78), the three components Ty, T*, T° of the kinetic
energy T given by expressions (5.59), (5.63) and (5.64), respectively, take the following
form now:
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(5.79)

T* = uTmPT(a + b + x'), (5.80)

T° = ^cpTJ<j>, (5.81)

where the matrices M, P, m, and J have the same meaning as defined previously, i.e. in
sections 5.4.4 and 5.4.5. Similarly, we may adopt the expression (5.72) for the considered
class of systems. The potential energy of gravity forces, V% takes the following form
now:

VG = - g m T P T (r + x) - gmTc. (5.82)

In order to carry out all the differentiations of the expressions (5.79)-(5.82) for use in
the Lagrange equations, the real dependence of the column matrices (5.77) on (p^ (pa,
Xgj, xa, and t has to be determined. For this reason, the following decomposition of the
column matrices (5.77) and (5.78) is very useful:

{c} = c{c}, {r} = r{r}, (x) = xW, M = *{*},

{u} = cu{<p}, (5.83)

where S_ is the (n X n) matrix obtained from the incidence (n x n) matrix S by replacing
the 1 entries by zeros and by changing the sign of all the -1 entries.

Using this latter form of the column matrices the formulae (5.78), (5.79) and (5.81)
may be now expressed as follows:

r V = X7} V , (5.84)

where

T,v=-i{a}TM{a}=j{<p}TS_raMarSl{<p},

7/2
v =i{b}TM{b} =i{<p}T

r4
v = {a}TM{b} = {<i>}TS_raMbxSl{<p),

7;5
V = {a}TM{x'} = {<p}TS_raMx(i},

then

r*-5X (5-85)
i=i

where
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T* ={u}TmPT{a) = {q>}

T2* = {u}TmPT{b} = {<p}TcumPTbxSl{<p},

T3* = {u}TmPT{x'} = {<p}TcumPTx{x},

and

V = -gmTPT(? {r} + x{x}) - gmTc{c}. (5.86)

Performing all differentiation due to the Lagrange's method and substituting the re-
sults in the Lagrange equations (for details see Arczewski (1990)) gives

— the equation of motion with respect to angular coordinate cpa:

- (("+ *x)M(rr + xx){ <p_} + (xb + ra)Mx{x}

- (ra + xb)M(rr + YX){(pl} + 2(xb + ra)Mbx{<p_}

+ (rf + xx)Pmcc{<p} - (ra + xb)Pmcc{<p2 }J

T f(ra + xb){<p_} - (rr + xx){<p?} + x{x} + 2bx{<p_ }j

M(a{r} + b{x}) + enacaua, (5.87)

— and the equation of motion with respect to translational coordinate x^

+ 2xMbx{ip_} + xPmucf^}-xPmccfip }I = gMaxa,

(5.88)

where

dt d/ dt

Equations (5.87), (5.88) form a mathematical model for the whole class of rigid body
systems, namely, for the open kinematic chains where the motion is constrained to a
plane.

Despite the rather complicated form of (5.87) and (5.88) their use is simple. This will
be shown in the following section.

5.4.8 Example
A system which we are going to consider now may be thought as a physical model of
four-link robot (see Fig. 5.42). We will assume that the bodies' motion is constrained to a
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Fig. 5.42.

plane (i.e. that of the paper). In addition to the rotational degrees of freedom described by
angular coordinates (p^, (p2, <Pi, <f>4, the first body has a translational degree of freedom
described by coordinate X\. The following data are given: masses of bodies mx, m2, m3,
m4, moments of intertia Jh J2, JT,, J4 with respect to joint points P[, P2> P3, P4, respec-
tively, location of mass centres: I ^ Q ^ q , I ̂ 2 ̂ -21= C2 > I ̂ C31 = C3, |P4C4| = C4; loca-
tion of joints within a system: J/̂ C Î = r2, j ^ ^ l = r3> |^2Q| = r4> anc^ m e orientation
of the xpaxis: £j = K/2.

The equations of motion are to be determined.
The problem will be solved in three stages.

Stage 1 Determination of topological characteristics of the system, i.e. matrices S_
and P.

The regular graph associated with a system is shown in Fig. 5.43, hence the matrices
S, S_, and P are as follows:
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Fig. 5.43.

s =

1 -1 0 0

0 1 - 1 - 1

0 0 1 0

0 0 0 1

thus S_ =

0 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0

and P =

1 1 1 1

0 1 1 1

0 0 1 0

0 0 0 1

Stage 2 Determination of all quantities appearing in (5.87) and (5.88) which do not
depend on a particular coordinate, i.e. those quantities which are necessary for the deter-
mination of any equation of a system and at the same time are calculated only once.

We have

m= d\ag(mum2,m-i,m4),

m, 0 0 0

m2 m2 0 0
mPT=:

m4 0

J= d\ag(JhJ2,J3,J4),

= PmPT =

where

M, =< +/n4>

M = diag(M1,A/2,M3,M4),

a = diag(O, a2, a3, a4), b = diag(bj, 0,0,0),

r = diag(0,r2>r3,f4), u = diag(u,,u2,u3,ii4),

C= diag(q ,c2,c3,c4), r= diag(0,r2,^,r4),

x=diag(i], 0,0,0), <p

Mi
M2

M3

M4

M3

),

M2

M2

0

M4

=*>

c =
x =
X =

IV
0

JV

0

dii

h M4
M4

f3 0

M4

*

M4 = m4.

g(Ci,C2,C3,C4)

ig(xi, 0,0,0),

E(JC,, 0,0,0),
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{<p_) = S i {?} = [0, (px, <p2, (p2 f,

{ ^ } = [ o , ^ , ^ 2 ) ^ 2 ] T , {«p!} = [o> 1
2 , ^ ,<p | ] T ,

{c) = [cltc2,c3,cAf, {r} = [0,r2 ,r3 ,r4]T , {A:}= [ * 1 , 0 , 0 , 0 ] T ,

{i} = t i i ,0 ,0,0]T , {Jc} = [*1,O,O,0]T, *{£_} = [0,0,0,0]T.

Additionally the solar products of the unit vectors appearing in (5.87) and (5.88) are:

rtTj = cos((ft_ - <Pj. + y, - Yj).

r,x7- = S,-b7- = cos(p,._ - <py_ + Yi ~ Bj),

XjXj = bjbj = cos(«p/_ - (pj_ + e ; - e;-),

b,x;- = - s in (^_ - <ph + e,- - £ 7 ) ,

a,x;- = -sin(^>,_ - (pj_ + y, - fiy),

a,-?,- = -sin(<p,^ - <ph + Yi - Yj). (5-89)

bjf,- = -sin(<p,-_ - fl);-_ + e,- - Yj),

?,-£,- = cos(^,-_ - (pj + Yt), x,c7- = cos(<p,-_ - <pj + £,•),

a,c7- = -sin(<p,_ - q>j + 7,), b,cy = -sin(^-_ -<py + e,),

U,-a; a COS(<p, - ?)_,•_ + Yj ). ",'by = COs(<p; - ip;-_ + £j),

UiTj = -sin(q>i - <p7̂  + Yj)> u,X; = -sin(<p; - <pj_ + e}).

Stage 3 Performing calculations due to formulae (5.87) or (5.88) for the subsequent
generalized coordinates.

First we shall determine the equations corresponding to the angular coordinates. Thus
we shall use (5.87). Substituting in it 0= 1, we get

e i r S _ = [ 0 1 0 0],

^ 2 M4r2r4r2r4)ip2,

= m2r2c2r2c2ip2

= -m2r2c2a2c2<p2 - m r c a c i p - m4rc4a2C4<p4
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gmocouo=m1cigu1.

Remaining terms equal zero. After reducing and ordering of the above computed terms,
we finally obtain the equation corresponding to generalized coordinate (p\\

{Jx + M2r2 + m2c1r2a2u2)(p1 + (A/3r3r3 + M4r4r4 + m2c2c2)r2r2ip2

+m3r2c3r2c3ip3 + m4r2c4r2c4<p4 + (M2/2a2x1 +m2c1u2x,)i1

-m2c1r2u2r2(pf - (Af3r3r3 + M4r4r4 + m2c2c2)r2a2(!f\ - m3r2c3a2c3(p^

-/n4r2c4a2c4(p4 = M2r2ga2 + mj«?igUi. (5.90)

Now we proceed to the calculation of terms appearing in the equation corresponding to
the angular coordinate (fa. Thus we use (5.87) substituting in it <7= 2. We have

e 2
r S_ = [0 0 1 1],

p_) = (A/3r3f3 + Af 4 / 4 r 4 ) r 2 r 2 ^ 1 +(M3r3
2 + M4r})ip2,

E 2S_raMx{x} = A/ 3 r 3 a 3 x 1 x 1 ,

J ? } = - ( M 3 r 3 a 3 + M 4 r 4 a 4 ) r 2 f 2 (p 1
2 - ( M 3 r 3

2 a 3 r 3 + Mrar)q>

EE2S_r?Pmcc{<j(J}=

= - / « 3 r 3 c 3 a 3 c 3 < p 3 / n 4 r c a c i p

e u m P rac2e2umP ra{^_} = (m3u3 +m4U4)c2r2a2^1 +(/n3r3u3a3

-c2e2umP rx{(pi}= -(m3u3 +m4u4)c2r2r2(p2 -

c2£2umP x{x}= (w3u3 +/n4u4)c2X]Xj,

ge2S_M(a{r} + b{x})= M3r3ga3 +A/4r4ga4,

Again after reducing and ordering of the above computed terms, we finally obtain the
equation corresponding to coordinate q>>:
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+ M4r4r4)r2r2 +(m3u3 + m4u

+[M3r3a3 + (m 3 u 3 4 4 2 ] i i
- ' * (5-9 1 )

- [ (M 3 r 3 a 3 + M 4 r 4 a 4 ) + (m3u3 + m 4u 4 )c2 jr2f2(p1

+ m4r4u4r4)c2](j>2

r3ga3

Similarly for <p3, substituting in (5.87) a= 3, we have

m r c a c ( p 5 = M3r3ga3 + A/4r4ga4 +m2c2gu2.

u

- q e i umP rr{(pl) = -

lTx{x} =

gm3c3u3 =

All the other terms equal zero. The ordering of the above computed terms, yields the
equation corresponding to coordinate <p3:

2

(5.92)

and for <p4.

( 5 9 3 )

Now we determine the equation of motion corresponding to the translational coordi-
nate x\. We will use the equation (5.88) assuming 0= 1. Thus EJ =[1 0 0 0] and
successive components of the equation are of the form

ETxMx{x}=

)

All the other terms equal zero. The ordering of the above computed terms gives the
equation corresponding to coordinate *i:
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-m3c3x1c3(p3 - mAcAxxcAy\ = Mxgxx. (5.94)

If we want to eliminate scalar products from the equations (5.90)-(5.94) we can use
the functions (5.89).

5.4.9 Concluding remarks
We have shown that the amalgamation of topological information for a system of rigid
bodies and essential system data (i.e. inertial characteristics, location of certain points
within the bodies, orientations of certain axes) provides a relatively simple and system-
atic means of mathematical model determination. The apparent advantage of the method
presented in this section is that the formulae for kinetic energy (5.65), for potential
energy (5.72) as well as the equations of motion (5.87) and (5.88) can be used for many
different systems without performing all the calculations required for the Lagrange equa-
tions. The only requirement is to insert specific problem data into the general formulae; a
great deal of preparatory work is thus avoided. Moreover, each equation of motion, even
each term of the equation, may be calculated independently of all others, which can lead
to substantial savings of computer storage. We hope that the example considered suffi-
ciently proves the efficiency and great labour saving of the proposed method, in compari-
son with the classical approach.

The method presented in this section can be further creatively developed. There are
many questions which have remained unsolved until now. The quite general formulae for
kinetic energy, (4.65), was used to generate the equation of motion for planar systems
only. We are sure that the problem of complex mechanical system modelling is far from
the final solution. It seems that there is a lot to do in the field. A good understanding of
the key idea of the method presented, together with the use of graph theory as a means of
topological structure representation may result in further development of mechanical
system modelling methods.


