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The framework for modelling

2.1 RELATIONSHIPS BETWEEN MECHANICS AND TECHNOLOGY

The word ‘mechanics’ is understood traditionally to mean a part of physics. However, the
basic laws of mechanics formulated in the past were often discovered by mathematicians
who, during their study of mechanics, originated new branches of mathematics so that
differential and integral calculus as well as variational calculus were established.

Here we will not treat mechanics as part of physics or as a source of new mathematical
concepts. Our aim is to develop for the reader the ability to model complex mechanical
systems. This, however, requires a new way of thinking about mechanics, namely as of
one of the fundamental sections of technology. An argument for such a view is the fact
that it would be difficult to find a branch of technological science where one did not
come across the notions of mechanics, although in a new rendition. For the sake of
brevity we shall focus our interest on the development of only one branch of mechanics,
namely solid mechanics.

In the nineteenth century solid mechanics was represented mainly by the theory of
elasticity, which in turn was treated as a part of mathematical physics. Parallel to this
theory, its technological applications were developed, i.e. strength of materials, theory of
plates and shells, and structural mechanics. In the period between the world wars new
sections of solid mechanics were developed, such as theories of plasticity and
viscoplasticity. After the Second World War there was a very rapid development of
coupled field theory. This term means the union of two or even more branches of physics
which had previously been treated separately.

A typical example of such a theory is thermoelasticity, which was established by
combining heat conduction theory and elasticity on the basis of thermodynamics of irre-
versible processes. Its main subject of study is the effect of temperature changes on the
deformation of bodies and vice versa. Other good examples for coupled field theories are
provided by piezoelectricity and magnetoelasticity (generation of electromagnetic effects
in deformable bodes). It is worth mentioning that the impulse for research on coupled
fields has come from engineering in connection with the development of aircraft struc-
tures (such as wings for supersonic planes), gas and steam turbines, chemical installations
and finally nuclear power plant constructions. More and more frequently the elements of
constructions are subject to high temperatures and pressures; they work in conditions of
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radiation, diffusion and strong magnetic fields. Concentrating now on the subject of
thermodiffusion in the solid body, since this phenomenon is sometimes not even noticed
within mechanics in its classical understanding, there are numerous examples of penetra-
tion of gases and liquids into solid bodies. This penetration causes swelling and shrinking
of the body, as in the case of hydrogen, which, on penetration into steel, causes signifi-
cant deformation. Similarly important effects are brought about by heating a body during
the diffusion process. It is known that humidity in a porous medium is changed due to
changes in the temperature field. In order to accelerate liberation of a gas from a metallic
body it is heated. A process such as carbonization of steel takes place in the presence of a
changeable temperature field. Thus a new branch of solid mechanics appears, somewhere
at the boundary of elasticity theory and physical chemistry.

Further examples could be introduced, but we think that the ones quoted are sufficient
for proper evaluation of the role of mechanics in present-day technology. In order to
further this understanding we shall shed some light in section 2.2 on the most important
notions of classical mechanics. We shall then generalize them in section 2.3 in the
framework of integrated mechanics, so that they become helpful in the mathematical
description of various physical phenomena given in the later chapters. Even if not all of
the coupled phenomena get modelled, we shall nevertheless try to show that the method-
ology elaborated is capable of describing them.

2.2 THE FUNDAMENTAL NOTIONS OF CLASSICAL MECHANICS

2.2.1 The mechanical system
One of the fundamental notions of classical mechanics is the notion of a mechanical
system (sometimes the notion of material system is encountered as well). Any set (finite
or infinite) of mass particles, treated as a whole, will be referred to as a mechanical
system. The ‘whole’ should be understood in such a way that motion of every mass
particle in it depends upon the motion of the other particles. The definition of the me-
chanical system given above encompasses, of course, not only rigid bodies, but also
deformable bodies and fluids. However, in classical mechanics it is traditionally under-
stood that a mechanical system is either a system of particles or a single rigid body only.
Since these notions are known from elementary physics, we shall give only some com-
ments. First it should be pointed out that by ‘mechanical system’ we usually mean a
model of the system, not the system itself. A model of mass particles may be used to
describe those motions of real bodies in which the dimensions of the moving bodies can
be neglected relative to the distances characterizing these motions. A classical example is
provided by the Earth’s motion around the sun. Both these celestial bodies are treated as
mass particles, although the radius of Earth is approximately 6.4 X 10%m, and that of the
Sun approximately 7 X 108m. The essential fact, however, is that these dimensions are
small compared with the distance between the two bodies, namely 1.5 X 10''m. On the
other hand it is nonsensical to describe the motion of the Earth about its own axis while
treating the Earth as a mass particle! In some cases even a single atom cannot be treated
as a mass particle, when its spin is considered.

Thus, we cannot always apply the model of mass particles to describe the behaviour of
an object under consideration, and we may be obliged to apply a more realistic model.
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The subsequent possibility is to consider dimensions of the object, but to neglect all the
changes of these dimensions. That is how the model of a rigid body is formed. Even this
model may sometimes prove unacceptable, and the possibility of deformations must then
be taken into account. This leads to a approximation of real bodies in which we treat
these bodies as a certain region filled continuously with matter. This is the so-called
continuum postulate, applied one could say, in spite of the discrete nature of the matter.
This type of idealization will be referred to as a continuous medium (see also section
1.5). The whole of Volume 2 will be devoted to just such model.

Mechanical systems are classified into unrestrained and constrained. A system is said
to be unrestrained when all the particles of the system may at any time take any position
and have any velocity. In this case the motion of a particle belonging to an unrestrained
system is connected with the motion of other particles belonging to it only because the
force applied to a given particle depends upon the positions and/or velocities of other
particles belonging to this system. Thus, for instance, three celestial bodies, Earth, Moon
and Sun, of which we know only that they attract each other according to Newton’s law
of gravitation, form an unrestrained mechanical system.

When positions or velocities of particles of a mechanical system cannot be arbitrary at
any time, then this system is called constrained.

2.2.2 Constraints and their classification

In technical problems we usually deal with constrained systems. A system loses certain
freedoms due to imposition of constraints. Limitations which are imposed on the motion
of a system are called constraints. The notion of constraints was introduced in 1795 by
Jean B. J. de Fourier (1768-1830). It should be emphasized that two things can be
understood within this notion. In Newtonian mechanics constraints are constituted by
bodies which limit the freedom of the motion of mechanical systems; typical examples
are: bearings, joints, supports, pulley wheels, etc. On the other hand, in Lagrangian
mechanics constraints are the analytical description of limitations imposed on the motion
of the bodies, without considering the physical nature of these limitations. This latter
definition of constraints will be considered here. Both these meanings of constraints can
be put together in one notion of material constraints, as opposed to the so-called pro-
gramme constraints, which we discuss in section 2.3, since we treat them in the frame-
work of integrated mechanics.

Before we pass on to classification of material constraints, we shall mention the
difficulties in distinguishing between external and internal constraints. Internal ones
limit the freedom of motion of particles with regard to other points of the same body,
while the external ones set limitations due to the action of some other body. For example:
a rigid body can be represented as a mechanical system in which all points are fixed by
distance relative to all others. Invariability of distances limits, of course, the possibility of
relative translocations and constitutes, therefore, constraints within the system, so we are
dealing with a constrained system. This, however, does not limit the freedom of motion
of the body as a whole. It is only the imposition the external constraints, e.g. fixation of
one or more points of a body by an external agency, that will cause the body to take on a
specific kind of motion,
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We have mentioned that only analytic constraints will be dealt with here. Such con-
straints are classifiable according to four criteria, namely, whether or not

(1) they are expressible as equalities,

(2) they are integrable forms,

(3) they are explicitly velocity-dependent, or
(4) they are explicitly time-dependent.

The first criterion defines bilateral (in the case of equalities) or unilateral (in the case of
inequalities) constraints, the second holonomic or nonholonomic constraints, the third
one defines geometric and kinematic constraints, and the fourth one rheonomic or
scleronomic constraints, These names come from the Greek. The word ‘holonomic’
means ‘altogether lawful’, the word ‘scleronomic’ means ‘rigid’, the word ‘rheonomic’
means ‘flowing’. The second division is sometimes (not properly) identified with the
third one. A difference between kinematic (also called differential) and nonholonomic
constraints or between geometric (alternatively called finite) will be explained below.
When dealing with unilateral constraints rather sophisticated and nonstandard methods
have to be applied. This is why we shall not consider them further, but will deal only with
the classification into holonomic and nonholonomic constraints.

The distinction between holonomic and nonholonomic constraints can be concluded in
the following way: geometric constraints which are not explicitly velocity-dependent
prevent the system from taking some positions, and this is obvious. Differentiation of
constraint equations proves that geometric constraints also impose certain limits on the
velocities of the system. Is the converse true: do kinematic constraints which are explic-
itly velocity-dependent impose certain limits on the position of the system? The answer is
sometimes yes, depending on the specific form of the constraints. It may happen that the
differential constraints can be integrated. We then call them integrable constraints. Geo-
metric and integrable kinematic constraints are also called holonomic, while kinematic
non-integrable constraints are called nonholonomic. The crucial difference between the
two cases is that holonomic constraints prevent the system from taking some positions,
whereas nonholonomic constraints, involving certain limitations on the velocities, never-
theless allow the system to reach every position.

A mechanical system subject to holonomic (nonholonomic) constraints is called a
holonomie (nonholonomic) system. These notions were introduced in 1894 by Heinrich
R. Hertz (1857-1894). Because the difference between these two is essential in the
analytical studies of motion, we shall illustrate this difference by means of the simple
example of rolling of a rigid wheel without slipping, such that the roll axis remains
horizontal.

First consider a wheel rolling without slipping along a specified straight line, as shown
in Fig. 2.1. The velocity of the wheel centre is

Ko =1, (2.1
which can be integrated to yield
X = r +const. 2)

The system is hence holonomic.
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Fig. 2.1

Now consider the same wheel rolling without slipping, but not constrained to follow
any particular curve, The position of the wheel is given by the coordinates (x, y) of the
point of contact S, the angle y giving the orientation of the plane of the wheel, and the

angle @ as in the previous case (see Fig. 2.2). The conditions for rolling are
X, =rQcos y,
el 23)
Yo =r@smy.

In this case, the relationship between the velocities is found to be nonintegrable, and
hence the system must be classified as nonholonomic.

Fig. 2.2

Let us notice that for y= 0, i.e. for motion along the straight line (parallel to the x-
axis), we obtain from (2.3)
X, =1,
= ? (2.4)
Ye =0,

thus y, = const, and x; = r + const which is equivalent to the previous case.
More generally, holonomic constraints have the form
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Sa (X1, 91,2002 X0y Yir 2 ) =0, a=1,...a, (2.5)

where a is the number of holonomic constraints, n is the number of particles. Denoting
the position vector of the vth particle by the symbol r,, (v= 1,..., n), the relation (2.5)
can be also written in the abbreviated form

foltir,)=0,  @=1,..,a<3n, v=1..,n (2.6)

If, for instance, a = 1 and n = 1, then equation of constraints is
f(f,xu)’:Z)=0‘ (2'7)

which will often be referred in examples, since equation (2.7) describes a moving surface
defined by f=0, on which a mass particle has to remain during the whole time of the
motion.

Also, more generally, all constraints which depend on time ¢, on position vectors ry,,
and on their derivatives, and which are not integrable to constraints of type (2.6), are
nonholonomic, and can be written as

Pt Fyi) =0,  B=liasb, veElon, (2.8)

where b is the number of nonholonomic constraints, and »n is the number of particles. A
typical nonholonomic constraint is linear in velocity and can be expressed in the form

n
Pp(t,ry,Ey) = Y @p, (1,1, )iy +Dp(6,r,) =0,  B=1,...,b. (2.9)
v=1
Such constraints can also be written in the equivalent differential form

n
Y ®p, (1,x,) dry, + Dp(r,r,) dr = 0. (2.10)

v=1

These constraints are called catastatic if the functions ®p are not present; alterna-
tively they are defined as acatastatic constraints. In practical technical applications
acatastatic constraints are encountered quite rarely.

We should here emphasize that holonomic constraints limit the allowed velocities and
accelerations within this system. An instance of such a consequence is provided by the
well-known theorem on the motion of a rigid rod which states: the velocity components
along a rigid rod must be equal. On the other hand, nonholonomic constraints, while
limiting the allowed velocities of particles, do not set any restrictions on the position of
the system. For instance, let us impose on the system of particles constraints of the form

zmv("v)"v_)’v-’.‘v)=f(f)» 2.11)

v=]

which means that the angular momentum of this system about the axis z is a given
function of time. The constraints considered are nonholonomic, since they are
nonintegrable. We know, though, that particles of the system can take any position.
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2.2.3 Generalized coordinates

Since this notion is both important and difficult, we would like to start with an example
known from school—for are there any pupils who did not encounter the simple pendu-
lum? Consider the motion of such a pendulum in the plane (x, y) (see Fig. 2.3a). Nothing
seems to hinder the description of the position taken by the bob with the help of coordi-
nates x and y. Why, then, is an entirely different variable applied, as a rule, in the
description of the pendulum motion, i.e. the inclination angle ¢? The answer usually is
that the bob moves along an arc, and it is easier to describe such a motion in the system
of polar coordinates (r, ¢). The value of the first coordinate, r, is constant, because it is
equal to the length of the pendulum, /, and it is only the value of the second coordinate, ¢,
that changes.

(a) (b)

Fig. 2.3.

It turns out, however, that the problem is much more serious than that. We think that it
would be proper, for didactic reasons, to justify this statement. For this purpose let us
express the equations of motion in the coordinates (x, y). We shall make use, of course, of
Newton’s second law, which requires considering the bob in isolation, thereby entailing
introduction of the new unknown, §, i.e. reaction in the thread (see Fig. 2.3b). Equations
of motion shall then take form

;n_lf:.—sﬁ
!

(2.12)
myj =0~ s%

and we attempt to solve two equations to determine three unknowns: x, y, and S. The
missing equation will be provided by the fact that the motion of the bob is constrained,
since it must move along a circle. This way we obtain the constraint equation

x24y2-2 =0, (2.13)
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Having eliminated the unknown S we obtain only one equation of motion

Xy — yx = gx, (2.14)

but it contains two unknowns: x and y. These unknowns are also related through the
equation of constraints (2.13), which may be transformed to yield

xy+yx=0 (2.15)

The final system of equations, (2.14) and (2.15), is quite hard to handle without a change
of variables, since the equations involved are nonlinear.

Let us now describe this apparently known problem, in the spirit of classical mechan-
ics. The very first step does not consist in writing down of the equations of motion, but
the expression of the fact that the bob is constrained, which, of course, leads to equation
(2.13). Then, we analyse the equation, reaching the conclusion that the coordinates (x, y)
are interdependent and that in fact the bob has only one independent variable, say y,
while the value of the second variable can be represented, on the basis of equation (2.13),
in the form x = +V(I 2 -y 2), i.e. by a bivalued function. This means that with the help of
this equation one cannot uniquely define the position of the bob! It is therefore much
simpler to specify its position by the angle ¢, which is not dependent and is free of any
constraint equation. We then have

x=lIsin g, y=Ilcosp, (2.16)

and after substituting relations (2.16) into equation (2.14), we get

—1? sin @(sin @ + ¢ cos @) — 12 cos p({Hcos ¢ ~ ¢2 sin @) = glsin @,

whence

¢+%ﬂn¢=o. 2.17)

i.e. the well-known equation of the simple pendulum.
But what happened to the other equation, that is (2.15)? Let us perform the same
operation as before, substituting (2.16) into it. The result is

12¢psin @ cos o — 12 cos @sin =0, (2.18)

that is 0 = 0, which constitutes an extremely important result. This actually means that the
independent coordinate ¢ identically satisfies the constraints. Speaking metaphorically
we can say that this coordinate abolishes or eliminates the constraint.

Naturally, when all this is known from some other source, then equation (2.17) can be
obtained much more quickly. In fact, we can write the equation expressing Newton's
second law in the direction of the tangent to the trajectory along which the bob moves
(this direction corresponds to the change of the value of coordinate ¢):

dv .
ok : (2.19)
m 3 mgsin @
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Now, taking into account that v =I¢@, we obtain at once equation (2.17). This example
should be studied closely, because it explains the role of so-called generalized coordi-
nates. The inclination angle ¢ is just such a coordinate.

We shall now bring in a broader view of the question. Let the mechanical system be
composed of n mass particles, of which every one is described with the position vector
ry (v=1,..., n). Let this system be subject to holonomic constraints of the form (2.6).
Note that in this case 3n Cartesian coordinates (xy, y,, 2y) are interrelated via a constraint
equations. Thus, there are only

§=3n-az0 (2.20)

independent variables. Some of the Cartesian coordinates can be chosen as such vari-
ables. But there is also another way of proceeding, as in the pendulum example. Namely,
one can introduce more convenient, mutually independent parameters gy, q3,..., g5, Whose
number is defined by (2.20). Such independent coordinates are often called generalized
coordinates. The concept of generalized coordinates refers to the fact that we are not
obliged to choose our coordinates according to some preconceived scheme (e.g. we might
have chosen polar coordinates r, 6, ¢ instead of x, y, z, or any other set of three variables
suitable for a free point in space).
The choice of the generalized independent coordinates is guided by two requirements:

(1) position vectors ry, (v=1,..., n) of all points should be, at every instant, uniquely
expressible by the generalized coordinates, that is

ry=r,(L,q4s), V=lm =155 (2.21)

(2) constraint equations (2.21) are satisfied as identities for all values ¢4 (o= 1,..., ),
that is

Jatry(tgs)) =0, v=1..,n a=l..a (2.22)

Notice that the example of the simple pendulum illustrates well both these require-
ments, see (2.16) and (2.18), and that is why this model example should be deeply
thought out.

Following the important property (2.22), the question to be asked is how do the
generalized coordinates model the nonholonomic constraints (2.9)? In order to answer
this question let us differentiate relation (2.21) with respect to time, thereby getting

- ory
Zg-_q V:I,__,‘n, (223)
o=

Having introduced (2.23) to (2.9), taking account of (2.21), we obtain

> Boo(1.46)io + B3 =0,  B=1,...b, (224)

o=1

where
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Bgg = Z“’ﬁv(r,rv(a%)) gr", o=1..,s (2.25)
v=1 9o
and
B ~i¢> a2 s 0 (1,1, (1,95)) 226
ﬁ_" ﬂv sy »qo' a‘ .B iy :qo' . (‘ )

v=l

Thus, in the case of a nonholonomic system the generalized coordinates g4 (0= 1,..., 5)
may assume arbitrary values, while generalized velocities §, cannot take any values but
those satisfying the relations (2.24).

There is usually no need to use formulae (2.25) and (2.26), since generalized coordi-
nates are being chosen directly, i.e. without referring to (2.21). That is how we proceeded
with formulating the nonholonomic constraints (2.24). Still, it is of interest to illustrate
this fact with another example. Consider the mechanical system consisting of two balls
connected by a weightless rod (a popular model of a satellite or a multiatom molecule).
Assume that they are constrained to move in the vertical plane, and that the velocity of
the mass centre be always directed along the connecting rod (Fig. 2.4a).

Equations of the holonomic constraints have the form

(@2=2) +(—n)’ ~ 1 =0

x=0

xy =0, 2.27)
On the basis of formula (2.20) we have (n =2, a = 3):

s=3n-a=3x2-3=3,

which means that we can determine three independent coordinates. Let these be coordi-
nates of the mass centre (y, z.) of the system, and the angle ¢ between a predefined
direction, say of axis y, and the rod (Fig. 2.4b). Simultaneously, we can check whether
property (2.22) is satisfied. For this purpose let us write the requirement (2.22) in the
proper form for our example:

l l
N =Zc—‘2—005¢’. Y35 Ve +EC°S¢’

] ] (2.28)
2 =zc—Esin(p, %) =zc+55in¢.

Now substituting (2.28) into (2.27) we get
(Isin@)? +(lcos )2 —1% =1% - 1% =0.
The main purpose of this example was, however, illustration of the capacity of direct

formulation of nonholonomic constraints in the form of (2.24). Let us, then, write the
condition formulated in the problem (compare Fig. 2.4b):
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‘z

(a)

Y
.
(b)
Fig. 2.4.
ve =(0,y¢,ic) 05
0B Y o ‘
Yo Y2-n
from where, immediately,
Zc =Yctan g, (2.30)

i.e., an equation of the type of (2.24), in which (b=1,s =3)

5
b3 Bgsqs +Bg = Byyg) + B)pgy + Byagy + By =0, (2.31)

a=]
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whence, having compared (2.30) and (2.31), we obtain
B” =0, Bl2 =-—tlan @, 313 =1 B] =1, (232)

Thus, we have shown that there is no need to use directly formulae (2.25), (2.26)—they
are only of a formal value.

It is possible that some readers have already noticed the emerging need to introduce
the notion which would replace the number of independent coordinates. Such a notion
exists and bears the name of number of degrees of freedom of a system without
nonholonomic constraints, often improperly abbreviated to number of degrees of free-
dom. Such an abbreviation would be valid only for holonomic systems (see 2.2.4). Then,
the number of degrees of freedom is simply defined by the formula (2.20). Hence, the
dumb-bell of the example recently considered will have three degrees of freedom if we
neglect constraints (2.30).

Alas, in the problems in which mass particles cannot be accepted as models, the
advantage of having definition (2.20) is small. In such cases the numbers of degrees of
freedom of holonomic systems are determined by the selection of independent param-
eters, uniquely defining the position of the mechanical system—that is, by the definition
of the independent generalized coordinates. But then the number of degrees of freedom is
less important.

In practical problems it is often more convenient to introduce more generalized coor-
dinates into the model than would result from the number of degrees of freedom of the
system. In this case, these coordinates will be mutually dependent. For the sake of
illustration let us consider the case of the satellite transmission gear. This system has just
one degree of freedom, because it is sufficient to take one generalized coordinate in the
description of this system. However, in order, for instance, to calculate kinetic energy, it
turns out more convenient to use two coordinates, namely the rotation angles: ¢ | of the
crank, and ¢, of the satellite (Fig. 2.5). Using these two coordinates the kinetic energy of
the system may be expressed as

Fig. 2.5.
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T=T.+T, (2.33)

where T, =119, and T, =Lmud +L11c¢3 are the kinetic energies of the crank and
satellite, respectively. Because, however, rolling takes place without slipping, the point of
contact, A, of the two circles is the instantaneous centre of velocity of the satellite. Hence

U= (R+ ?‘)fJ}] i (i?zr (2.34)

so that
; RY.
¢ = (1 +T] ?1- (2.35)

After integration with null initial conditions this yields ¢, =(1+ R/r)¢;. This result
means that generalized coordinates ¢ | and ¢ , are interdependent. Such coordinates can
be called redundant coordinates. We emphasize this in view of the fact that the notion of
generalized coordinates is used to designate independent variables. In reality, the ‘gener-
ality’ of these coordinates concerns rather their ‘universality’—namely, it is not only the
usual Cartesian coordinates that can be used as generalized coordinates.

The question of completeness and independence of generalized coordinates cannot,
anyway, be resolved on elementary grounds; a deeper treatment of this question requires
introduction of the notion of variation, which will be done in section 4.2.2.1.

It seems to us that above-mentioned ‘universality’ of the notion of generalized coordi-
nates should be illustrated by means of the concrete example, and we shall consider
electric charge treated as a generalized coordinate.

Consider therefore an electric system whose basic elements RLC are connected in
series (Fig. 2.6). For these elements relations between voltage u(f) and current i(r) have
the following form

R L 9
|__

i(t) i(r) v

E(t)
Fig. 2.6.
" di 1
ug = Ri, =L—, =—|idt, 2.36
R b =l uc CJ:dr (2.36)

where
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de
=0 2.37
P (2.37)

with e being an electric charge. To avoid confusion we do not use the popular notation g,
because g is traditionally used for the mechanical generalized coordinate.
If a source of electromotive force E(r) is yet introduced into the circuit considered
then, on the basis of the second Kirchhoff law we obtain
e sadi e
Ri=L=+

= Eﬁmzﬂa (2.38)

from which, taking into account (2.37), we get
) &+Ré+—é—e = E(1). (2.39)

Let us refer not to equation (1.25) of damped oscillator with excitation, i.e.

mx +bx + kx = F(1). (2.40)

We now see the correspondence of parameters, and more importantly that the electric
charge e corresponds to coordinate x, which, in this case, is a generalized coordinate. This
means that an electric charge can also be treated analogously as a generalized coordinate.

2.2.4 The number of degrees of freedom

According to the traditional definition (see, e.g. Thompson (1961)) the number of degrees
of freedom of a body corresponds to the minimum number of independent coordinates
required to define its position. Resulting from this definition, the number of degrees of
freedom is given by the formula (2.20). Some comments on nonholonomic systems will
now follow. Considerations on continuous system will be contained in section 2.3.4,

The notion of the number of degrees of freedom was introduced on the basis of
independent generalized coordinates, which are determined with the holonomic constraint
equations, assuming there are no nonholonomic constraints. When there are
nonholonomic constraints present along with the holonomic ones, the number of degrees
of freedom, [, of a system, is defined as the difference between the minimum number of
independent coordinates, s (i.e. the number of degrees of freedom of the holonomic
system), and the number b of equations of nonholonomic constraints, that is

l=5-b. (2.41)

Thus, the nonholonomic system of Fig. 2.2 has 5 -2 =3 degrees of freedom, and not 5,
as would be suggested by the standard definition, quoted before. This has serious conse-
quences for modelling, since a proper model is obtained when the number of equations of
motion is equal to the number of degrees of freedom. It is worth mentioning at this point
that the various texts on analytical mechanics often contain the definition of the number
of degrees of freedom for nonholonomic systems, which involves the notion of virtual
displacement, namely the number of degrees of freedom of a mechanical system is the
number of virtual displacements of this system (see, e.g. Neimark & Fufaev (1972)). This



