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ZAHM 32, T 208 - T 28U (1872)

Zweidimensionale Probleme der nükropolaren Elastostatik

Von W. NOWACKI

1. Einführung

Wir untersuchen einen mikropolaren elastischen homogenen, isotropen und zentrosymmetrischen Körper.
Unter dem Einfluß von Belastungen erfährt der Körper eine Deformation, die durch zwei voneinander unab-
hängige Vektoren beschrieben wird, den Verschie.bungsvektor u(x, t) und den Drehvektor <p(x, t). Aus diesen
Vektoren werden zwei asymmetrische Tensoren konstruiert, der Deformationstensor y^ t • und der Torsions-
biegungstensor x-n, wobei

Yü — %U —skji<Pk> xii = <FiJ> i,j>k=l,2,3 (1.1)

gilt. Der Spamrangszustand ist durch zwei asymmetrische Tensoren charakterisiert, den Tensor der Span-
nungskräftc <r?i sowie den Moinentenspannungstensor^i. Diese Tensoren sind mit den Tensoren yn uncl Xyb

mittels der Zustandsgieichungen

o"? < = (/" + «) Yu + (/" — «) Vu + tyick du ,

P-n = (y + e) Xu + (y — e) Xti + ß «»,•* 8jt , i,j = 1, 2, 3 '

verbunden. In diesen Relationen bezeichnen tu, ß, y, e, /i, X die Materialkonstanten. Wenn wir (1.2) und (1.1)
in die Gleichgewiohtsgleichungen

aru + Xi = 0 ,

olk + fijij + Yi = 0
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einsetzen, erhalten wir das Gleichungssystem der Verschiebungen iincl Drehungen [1] — [4]

(/j, -|- Ä) V2M + (A -f ß — «) grad div u + 2 <xiot<p + X = 0 ,
[(y + s) V2 — 4 a ]y + (/? + y — e) grad chvcp + 2 « rot M + F = 0 . ' " '

Hier sind X, F die Vektoren der Kräfte und Massenmomente.
Die Gleichungen (1.4) müssen durch die Randbedingungen ergänzt werden. Wenn auf der Fläche A,

die den Körper begrenzt, Belastungen (die Kräfte p und Momente m) gegeben sind, nehmen die Rand-
bedingungen die nachstehende Form an:

pi = cr.,in1, mt = fiitnj. (1.5)

Hier sind ri] die Komponenten des Einheitsvektors der Normalen n.
Wir gehen zu den ebenen Problemen der mikropolaren Elastizität über, indem wir voraussetzen, daß

alle Ursachen und Folgen nur von den Veränderlichen xx, x2 abhängen. In diesem Fall zerfällt daa System
der sechs Gleichungen (1.4) in zwei voneinander unabhängige Gleichungssysteme, Das erste dieser Systeme,
in dem die Vektorkomponenten

u = («!,«,, 0) , 97 = (0, 0, 9?3) (1.6)

auftreten, hat die Form

(p + ») V K + [X + p - et) djfi + 2 cc d2rp3 + Z x = 0 ,
(fi + «) yju, + {X + fi-et) 9aß - 2 » dltps + X2 = 0 , (1.7)
[(y + «) Vi - 4«] <p3 + 2 « ( 9 Ä - S2Ml) + y3 = 0 .

Hier wurden folgende Bezeichnungen eingeführt:

V? = 9? + 51 , « = Ml + 92«2 •

Im zweiten System treten die Vektorkomponenten

« = ( 0 , 0 , ^ ) , tp = Oft, <pt, 0) (1.8)

auf. Das Gleichungssystem hat hier die Form

[(y + *) V? - 4«] ^ + (/S + y - «) 9x« + 2« 32M3 + 7X = 0 ,

[(y + e) V? - 4a] y2 + (ß + y - e) d^x - 2« 3 ^ + 72 = 0 , (1.0)

(^ + «) ViM3 + 2 « (9^2 — ^ ^ I ) + X8 == 0 ,

Dabei wurden folgende Bezeichnungen eingeführt:

V? = 9! + 51 •

Wir gehen bei (1.4) zu Zylinderkoordinaten (r, 6, z) über. Indem wir voraussetzen, daß wir es mit axial-
symmetrischen Problemen zu tun haben, erhalten wir aus (1.4) zwei voneinander unabhängige Gleichungs-
systeme. Im ersten System treten die Vektorkomponenten

« = ( « „ 0 , 1 0 , <p = (0, tpe, 0) . (1.10)

auf. Die Gleichungen (1.4) nehmen in diesem Fall die Form

2 - 9* W + (A + p - « ) | i - 2 « ^ + Zr = 0 ,

(y +«) (v2 - ^ ) (|r|3)

an, wobei

da 2 tx d
x) V2M, + {X + p-<x) x - + — s-(r 9?e) + X, = 0

1 3 . , . du, n a 8» 1 3 3«
r 3r 03 or2 r ar dz3

ist. Im zweiten Differentialgleichungssystem, das von (1.11) unabhängig ist, treten die Vektorkomponenten

u = (0,U(,0), <JP = (fr. 0,93») . (U2)
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auf. Das mit (1.12) verbundene Differentialgleichungssystem hat die Form

(V + ß)(ü2 - y^r - 4*fr + (ß + y ~ B ) ^ _ 2 « ^ + Yr = 0,

(1.18)

7)v 9,/v. 3
(y + s) Vfy, - 4« <ps + (0 + y - e) -^- + ~ — (rue) + 7Z = 0 .

Hier wurden folgende Bezeichnungen eingeführt:

1 d , ^ , d(P* m 32 , 1 3 , 32

Nachstehend werden wir ein einheitliches Verfahren zur Lösung der Differentialgleichungen (1.7), (1.9),
(1.11) und (1.13) angeben. Dieses Verfahren, das auf einer Einführung von elastischen Potentialen beruht,
wird besonders bei der Bestimmung der Verschiebungen und Drehungen vorteilhaft sein.

2. Lösung des Glciclmngssystems (1.7)

Wir untersuchen das homogene System der Gleichgewichtsgleichungen (1.7) und nehmen die Lösung dieses
Systems in Form einer Zerlegung des Vektors u = (uv uz, 0) in einen Potentialanteil und einen solenoidalen
Anteil an:

Ul = d±(I> + d^F, u2 = 92(Z> - djW . (2.1)

Hierbei sind 0 und W die atatischen elastischen Potentiale.
Indem wir (2.1) in (1.7) einsetzen, erhalten wir das Gleichungssyatem

(A + 2 fi) dtfl* + 3a Ufi + «) Vfy + 2 et tpa] = 0 ,

(A + 2 p) dfll<P - dj. l[[M + «) Vjy + 2 « <p3] = 0 , (2.3)

Wenn wir ^\\F aus den beiden ersten Gleichungen unter Berücksichtigung der dritten Gleichung eliminieren,
kommen wir zu den CAtrcHY-RiEMANNsehen Relationen

9aV?# + *"• 92 (Z
2 V? - 1) Va = 0 ,

2 . • ( 2 " 4 )

X -\- 2,1t * 3 4 ^ «

Die_Funktionen <ß und (p3 müssen die Gleichungen

V? V? «P = 0 , V2i (Za Vl - 1) <p3 = 0 (2.5)

erfüllen.
Die Funktion W ist mit der Funktion q>3 durch folgende Beziehung verbunden, die sich aus der dritten

Gleichung in (2.3) ergibt:

SJilF = —- [(y + e) \/l — 4-oc] cp3 . • (2.6)

Der Löaungsvorgang des ebenen Problems gestaltet sich folgendermaßen: Wir lösen die Gleichung (2.5),
wobei in diesen Lösungen vier Integralkonstanten auftreten. Die Konstanten bestimmen wir aus drei Rand-
bedingungen sowie aus der CAtrcHY-RiEMANNschen Relation (2.4).

Der Spannungszustand ist in dem hier untersuchten ebenen Deformationszuatand durch die Matrizen

(2.7)
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charakterisiert. Diese Spannungen lassen sich durch die Potentiale 0, xl* und die Drehung <ps folgendermaßen
ausdrücken:

an = ß + 2 /*) \j\<I> + 2 (JL (dx d^P - dl®),

a22 = [X + 2 ft) V10 + 2M(- dj. \W - d\(p) ,

rr12 = ^ [ 2 9] S2<P + (3? - 9?) W] - * 7 f ! f - 2 « </>3 , (2.8)

«rai = ,w [2 3i 32<Z> + (d\ - dl) W] + « \JllF + 2 *f3 ,

A*13 ~ (y "t" e ) ^1 Tä > /*23 = (y "f" 6 ) ^2 9̂ 3 i

fj,sl = (y — ß) 9i (pa > ,M32 = (y — e ) ^2 'Pa •

Es sei vermerkt, daß

ist.
Wir untersuchen beispielsweise die Lösung des nachstehenden statischen Problems. Es möge der ela-

stische Halbraum xx ^ 0 auf dem Rande xx = 0 durch die Kraft p(x2) belastet sein, die in Richtung der
positiven Achse xx verläuft. Die Randbedingungen (1.5) bei n = (1, 0, 0) reduzieren sich auf

Diese Bedingungen bringen wir mit den Potentialen 0, W und der Drehung <pA zum Ausdruck, indem wir
die Relationen (2.8) benutzen.

Die Lösung der Gleichungen (2.5) stellen wir in Form der FouBiEirintegrale

(2.10)
. VßJ>« + D e i

dar. Aus den CAtrcHY-RiEMANNschen Gleichungen (2.4) erhellten wir die Beziehung

C = »^_ililB. (2.11)

Aus der letzten Randbedingung erhalten wir D = — t, C\r\. In den Randbedingungen (2.9)i,g tritt die Funk-
tion W auf, die atis der Gleichung (2.6) zu bestimmen ist. Wir erhalten durch einfache Rechnimg

co

\JJ _ 1 l ~_\x £ &-(Xi _ 2 KZ l2C2 — e ~ ' ' ^ e-*'*«' dC , x* = - 1 va = ^ . (2.12)
1/ „ ĉ / ^ |_ / J

— oo

Die Benutzung der Randbedingungen (2.9)lt2 liefert die Integralkonstanten

(2.13)

mit
(y + e) (A + 2 /<)
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Indem wir uns die Beziehungen (2.7) zunutze machen, erhalten wir für die Spannungen die Formeln

I TC J

- 2 i ^ f Lfj^e-C«. - e-»*«) e-"* f d£ usw.
|/2 JE J ^o

(2.14)

3. Lösung dos Gleichungssystems (1.0)

Wir untersuchen das homogene System der Gleichgewichtsgleichungen (1.9) und nehmen die Lösung dieses
Systems in Form von Vektorzerlegungen von <p = (eplt q>t, 0) in einen Potentialanteil und einen solenoidalen
Anteil

<px = aaß + dzr, 9), = a2ß - 9xr. (3.i)

an. Indem (3.1) in (1.9) eingesetzt wird, erhalten wir das Gleichungssystem

9: [(J8 + 2 y) V? - 4 a] fl + 32 [((y + «) V? - *«) ^ + 2««J = 0 ,
3«[(l8 + 2y )7 ; -4oe ] f l -3 1 [ (y+«)V! - 4«) T + 2« M3] = 0 , (3.2)
(/i+<x)V^-2«y2

1r = o.
Die ersten beiden Gleichungen lassen sich unter Berücksichtigung der dritten Gleichung in Form der CATTCHY-
RiEMANNschen Relation

- 9 i ( v 2 V ? - l ) ß = - ^ ^ ( ; 2 V ? - l ) ^ > 3 2 ( v a V ! - l ) ß = - ^ — S ^ P V I - l ) ! 1 , (3.3)

darstellen, dabei ist

4« 4/i«

Die Funktionen ß und JT genügen den Gleichungen

V?(vaV? - 1) JQ = O, VH?aVi~ l ) P = 0 . (3.4)

Der Spannungazuatand wird hier durch die Matrizen

/0 0 (TU\ y>lx ^ 0 \
a = f 0 0 «j23 , M=l / / 2 1 fe 0 (3.5)

W ff32 0 / \0 0 JJ.J

beschrieben. Wenn wir die Spannung mit den Funktionen Q, F ausdrücken, kommen wir zu den Beziehungen

o-13 = 2 x d2ü , (Ti3 = — 2 « dji , <r31 = — 2 « S2ß + i - ^ - 3xr ,
fj/ ~j~ OC

sowie

M u = (ß + 2 y) \7iß - 2 y 9^ß + 2 y \ dj , /uM = (j8 + 2 y) V?ß - 2 y 3?ß - 2 y dj dj ,

,"33 = |SV?ß, ^ i 2 = ~ ( y + e ) V ? r + 2 y 9 i a 2 ß + 2 y a ^ r , (3.7)

Atai = (y + e) Vf 71 - 2 y 3?P + 2 y 9X 32ß .
Wir untersuchen beispielsweise die Lösung des folgenden Problems. Betrachtet wird der elastische

Halbraum xl ^> 0, der auf dem Rande x1 = 0 mit dem Moment /.in(0, xt) = m(a;2) belastet ist. Die Rand-
bedingungen sind in diesem Fall

pn(0, x2) == m(a;2) , //12(0, a;2) = 0 , cr13(0, x2) = 0 . (3.8)
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Vermittels der Beziehungen (3.6), (3.7) lassen sich die Randbedingungen durch die Potentiale Q, F aus-
drücken. Die Lösungen der Gleichungen (3.4) nehmen wir in Form der FounTEKintegrale

Q = —L- f (A e f-1'. + B Q-n*>) 6-*t*. d£ , F = — L ( (G e~^i + D e"«^) e-'f«« fl!£ , (3.9)
/2TI J )/2n J

— oo — co

an, wobei

V / 2 L« l \l/2

ist. Die Konstanten A, B, O, J) bestimmen wir aus den Randbedingungen (3.8) sowie aus den CAITCHY-
RiEMANNsehen Relationen (3.3). Aus den letzteren Relationen geht hervor, daß

C^iü±^A (3.10)

gilt. Die Auswertung der Randbedingungen (3.8) ergibt

A = - B = *±J£' + 3 ) , 0 _ *< (C. + ttl) , 7) = -

wobei

2W/" z! = ( C 2 + « ) 2 - C 2

^ | /2^

ist. Als Ergebnis erhalten wir die Ausdrücke

H - ̂ (
2 |/2 3r J Aß) f)•-

Die Kenntnis der Funktionen <pv (p2, us erlaubt, die Komponenten des Spannungszustandes zu be-
stimmen.

Das hier dargestellte Lösungsverfahren führt zu sehr einfachen Differentialgleichungen für die elastischen
Potentiale <5, !f und Q, F. Diese Potentiale sind durch die ÜAUCHY-RiEMANNschen Relationen mitein-
ander verbunden.

Der Charakter dieser Gleichungen bringt es mit sich, daß auf sie die Funktionsmethode der komplexen
Veränderlichen mit Erfolg angewendet werden kann, die von J. N. MUSKELISHVILI [5] und seiner Schule
entwickelt worden ist. Diese Methode ist von G. N. SAVIN [6] mit Erfolg auch für das erste ebene Problem
benutzt worden, das mit Hilfe der AmY-MiNDLiNschen Funktion gelöst wird.

4. Lösung des Gleiclningssystems (1.11)

Wir untersuchen das homogene Gleichungssystem (1.11) und nehmen die Lösung dieses Gleichungssystems
in der Form

dr dz dz dr r

an. Wenn wir die Identität:

r dr
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berücksichtigen, erhalten wir das Gleichlingssystem

(y -f- ß) (\72 ^)(pn — 2 a |V2 -j ¥ — 4a<p9 = 0 .

Indem wir durch

neue Funktionen ip und # in (4.2) einführen sowie in bezug auf r integrieren, erhalten wir das Gleichungssystem

(A + 2 //) XJ2(P + — [(/* + «) V2y — 2 « #] = 0 ,

(A -f 2 u ) . V 2 * — (V2 — V71 [(/* + *) V2V — 2 « 0] = 0 , ^ ' '
dz \ dz2/

[(y + ß) Va — 4 a ] ?9' + 2 « V21/1 = 0 •

Wenn wir V2^ aus den ersten beiden Gleichungen (4.4) mittels (4.4)3 eliminieren, erhalten wir die Beziehungen

- 1) •& = 0 . (4.5)

Aus diesem Gleichungasystem ergeben sich folgende Differentialgleichungen, die zur Bestimmung der Poten-
tiale 0 und •& dienen:

= 0- (4-6)

Diese Gleichungen sind durch die Beziehung (4.4)3

A . (4.7)

zu ergänzen. Der Lösungsvorgang des axialsymmetrischen Problems gestaltet sich folgendermaßen: Wir kon-
struieren eine allgemeine Lösung der Gleichungen (4.6), indem wir mit Hilfe der Beziehung (4.7) die Funktion y>
bestimmen. In den Lösungen treten vier Integralkonstanten auf. Für ihre Bestimmung stehen uns drei Rand-
bedingungen sowie die Beziehungen (4.5) zur Verfügung. Die Kenntnis der Funktionen <J>, #, ip erlaubt uns die
Bestimmung der Verschiebungen ur, uz und der Drehung <pe.

Der Spannungszustand wird mit den Matrizen

a„
0

0

000

0

V

rz\
1

1 '
ff«»/

Pj
1

\o

H-rO

0

ßz6

0

0

beschrieben. Wenn wir die Spannungen mit den Funktionen (P, %p und i? ausdrücken, erhalten wir für die
Spannungen die Ausdrücke

(4.9)
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sowie
sdh') , 1 1 dt)-

( + ) ( )
e)d~-(y + e) l~d±. (4.10)

Es läßt sich verifizieren, daß

tfrr + ffflO + <TS2 = (3 2 + 2 ,«) V2* > T,r - Ora = 2 * ( W ~ *) (4.11)
gilt.

Der Lösungsvorgang des axialsym.metris.chen Problems der mikropolaren Elastizität wird nachstehend
an einem einfachen Beispiel erläutert.

Es möge in der Ebene z — 0 des elastischen Halbraums z ä: 0 die axial-symmetrische Belastung p{r) in
Richtung der s-Achse wirken. Die Randbedingungen haben die Form

ff,«0", 0) = - 3>M . orff(r, 0) = 0 , ^„(r , 0) = 0 . (4.12)

Wir setzen voraus, daß für |r3 ~|- z2\ -*• oo die Verschiebungen ur, u, und die Drehung q>Q verschwinden. Die
Funktionen <b, § stellen wir folgendermaßen dar:

oo

0 = f(A + B £ z) e-e« f J0(C r) df ,
o

u/2 (4-13)
{)• = / (0 e-t« + D e-<2) £ ./„(t r) i f , »7 = ( i r + C!

Aus den Relationen (4.5)]]2 erhalten wir dieselbe Beziehung

Die Lösung der Gleichung (4.7) stellen wir unter Benutzung HANKELScher Integrale in der Form

0

dar mit
(y + e)(A + 2^)

Aus den Randbedingungen (4.12) erhalten wir bei Berücksichtigung der Beziehungen (4.9) und (4.10) für die
Integrationskonstanten die Ausdrücke

mit

A0(C) = 1 + 2 w0 f» 1 - i - , p(f) = / p ( r ) r J0(C r) dr .
\ VI o

Auf diese Weise haben wir die Funktionen 0, #, y> bestimmt. Die Spannungen ergeben sich aus den Formeln
(4.9) und (4.10) zu

- / 3 § [ " + Cz)fT ~ — : — . I I (1 I,. / *t\ r\ —C2 I V / 7 f 2 n — 1] Z ft ^ 2 1 T (t v"\ fl f*

2 «„ C2 - (e"«« - e~^)l JX(C r) ^ , (4.15)

0 — — * *̂o I j /?-\"~ i^ — ^ / " i \ s ' ) ^*s usw.

0
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Die obigen Formeln vereinfachen sich bedeutend für das HooiCBSche Medium. In diesem speziellen Fall
müssen r\ = f, Ao = 1 eingesetzt werden. Die Formeln (4.15) gehen in bekannte Formeln der klassischen Elasti-
zität über.

5. Lösung des Gloichungssystcms (1.13)

Wir untersuchen nun das homogene Gleichungssystem (1.13). Wir nehmen die Lösung dieses Gleichungs-
Systems in der Form

dü dr du dr r lr..
cpr = - - — _ , rp, = + — -f - (5.1

dr dz dz dr r
an. Wenn wir (5.1) in (1,13) einsetzen, erhalten wir die Gleichungen

3; [(/? + 2y) V2 - 4*] fl - (y + «)^a ~ :;2j - 4«J^- - 2 « ^ = 0 ,

~[(ß + 2 y) V2 - ^ *] Q + \.(y + ß) V2 - 4 «] (~ + ~j T + ^- ~~ (r «„) = 0 , (5.2)

Wir führen durch

neue Funktionen in (5.2) ein und integrieren in bezug auf r. Auf diese Weise erhalten wir das GIcichungssystem

[(ß + 2y) V 2 - 4 « ] ß + ^ - [ ( y + e ) V ' - 4 « ) Z - 2 « o > ] = 0 ,

9 -[(ß + 2y) V2 - 4 a ] ß - y ä - _ [ ( ( y + e) V2 - 4a) z - 2ix w~\ = 0, (5.4)

(^ + a) V2 ft) + 2 ot Sj2x = 0 .
Wenn wir co aus den ersten beiden Gleichungen (5.4) eliminieren und ein partikuläres Integral der Gleichung
(5.4)3 benutzen, erhalten wir die Gleichungen

V i ) z - o . ^ - .
Aus den vorstehenden Beziehungen ergeben sich zur Bestimmung der Potentiale ü, 1 die Differentialglei-
chungen

V ' C ' V - i ) ß = o , v 2 ( ^ 2 V 2 - i ) % = o . (5.6)
Diese Gleichungen sind durch die Beziehung

(p + «) V2 (w + 2 oc V2 X = 0
zxi ergänzen.

Die Kenntnis der Funktionen 12, ̂  und a> gestattet bereits die Bestimmung der Spannungen. Der Span-
nungszustand ist durch die Matrizen

/0 ar0 0 \ hx„ 0 ^ A
a=iaOr 0 ffoJ, /< = IO ^JJ 0 j (5.7)

charakterisiert.
Wenn wir die Spannungen mit Q, % und 00 ausdrücken, erhalten wir

(5.8)
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Man erkennt, daß

u f

gilt.
Das Verfahren zur Lösung axialsymmetrischer Probleme ist für diesen Fall analog wie in Abschnitt 4.

0. Das zwoidimenslouale Problem der Thcrmoelastizität

Die in den vorigen Abschnitten dargestellte Lösungsweise kann auf stationäre und quasistatische Probleme
der Thermoelaatizität ausgedehnt werden. An Stelle der Zustandsgieichungen (1.2) treten die verallgemeiner-
ten DUHAMEL-NEUMANNachen Relationen [7]

au =(fi+ «) Yu + (ß — «) 7n + ßy*K — v T) $11 ' ,Q ^
Pn ~ (y + e) xn + [y — e) xn + ß *kk öa •

Hierbei ist v = (3 A + 2 /j,) «,, wobei aL der Koeffizient der linearen thermischen Ausdehnung und T der Tem-
peraturzuwachs in bezug auf Temperaturen des natürlichen Zustandea sind.

Die Gleichungen der mikropolaren Thermoelastizität, die in Verschiebungen und Drehungen ausgedrückt
werden, haben die Form [7]

{fi -\- oc) V2 u -\- {X + \i — oc) grad div u + 2 oc rot <p = v grad T ,

(y + e) V2 V — 4 oc <p -\- (ß + y — e) grad div tp -\- 2 ex rot u = 0 .

Das. Temperaturfeld ist durch die PoissoNsche Gleichung

beschrieben. Hierbei ist W die in der Zeit- und Volumeneinheit erzeugte Wärmemenge.
Beim ebenen Deformationszustand, bei dem alle Ursachen und Folgen nur von den Veränderlichen xx

und x2 abhängen, erhalten wir das Gleichungssystem

(ß + oc) V? «i + (A + // — «) 3].e + 2 « 9aip3 = v 3j2',

iß + «) V?«, + (A + /* - «) 32e - 2 « 9l95a = v 3,2», (6.3)

Ky + £ ) V? - 4«] ?3 + 2«{d^ - a2%) = o.

Im „zweiten" ebenen Problem, das durch die Vektoren u = (0, 0, ua), <jo = (q>l7 <p2, 0) charakterisiert ist, treten
keine Temperaturglieder auf. Die Größen w3, <pv cp2 sind also nicht vom Temperaturfeld T(xv x&) abhängig.

Im Fall eines axialsymmetrischen Spannungs- und Deformationszustandes erhalten wir das folgende
System von Differentialgleichungen der Thermoelastizität:

dT

In demGleichungasystem, in dem u = (0, wo, 0), <p = (q>r, 0, <pz) ist (siehe Gleichung (1.13)), treten keine
thermischen Glieder auf. Die Größen u0, q>r, <Pi sind nicht vom Temperaturfeld T(r, z) abhängig.
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7. Das ebene Problem der Thermoelastizität

Wir führen in das Gleichungssystem (6.3) die elastischen Potentiale 0, W ein, die durch die Beziehungen

definiert sind.
Wir erhalten als Ergebnis die folgenden CAtroHY-RiEMANNschen Relationen

<?i (Vi * — m T) + s T--X— Ml2 Vi — 1) % = 0 J
A + 2 «

2 V ( ? ' 2 )
m

' / T \ ' 7\ (72 \"7^ I ^ yn M J»V) ^ ^ •

"Wir haben dabei die dritte Gleichung der Gruppe (6.3) benutzt, die unter Berücksichtigung von (7.1)
die Form

Vf y, = 2 (T3 V? - 1) 9>a . Ta - ^ ^ (7.3)

annimmt.
Aus den Beziehungen (7.2) erhalten wir die Differentialgleichungen

Yi m <P = m V? T , Vi [l* Vl-l)<Pa = O. (7.4)

Die Lösung dieser Gleichungen kann durch

0=0' + 0" , <p3 = f'3 + q>l (7.5)

zuHammengeisetzt worden. Nehmen wir ferner an, daß (p[ — 0 sowie daß 0' ein partikuläres Integral der Glei-
ohung

V? </•>' — m T = 0 (7.6)

ist, Wenn der Körper begrenzt ist, kann angenommen werden, daß auf dem Rande 0' — ü ist. Mit der Funk-
tion 0' sind die Spannungen c'ji =j= 0, fiyt = 0 verbunden, wobei die Spannungen a]i einen symmetrischen Tensor
bilden. Es gilt

oj 1 = 2/1(0', ij - di, #,'M) , fit = 0 . (7.7)

Die Funktionen 0" und cpl müssen die homogenen Gleichungen

Vf v? # " - 0 , V? (i'1 Vi - i) y3 = o (7.8)

sowie die CATJOi-iY-RiBMANNschen Relationen

9i7J ®" + i-P^d* V V? - 1) Vi = 0 , 9.J! 3>" - . - ^ 4 - Si ̂ 2 Vi - 1) fi = 0 (7.9)

erfüllen. Die Gleichung (7.3) nimmt liier die Form

V ! ^ " = 2 ( T * V ! - 1 ) 9 > ; (7.10)

an. Wenn der Rand spannungsfrei sein soll, müssen die Bedingungen

{Oßa + o'ß'a) rjß = 0 , (fii(>a +p'ß'a)riß = O , x,ß = l,2 (7.11)

erfüllt werden.
Untersuchen wir nun den einfach zusammenhängenden Fall eines unendlich langen Zylinders, der auf der

Randfläche erwärmt wird. Die Zylinderachse sei mit der Achse xz identisch.
Bei Voraussetzung eines stationären Wärmeflusses ist \J2T — 0. Die Gleichungen (7.4) werden homogen.

Die Lösung des Gleichungssystems (7.4) führt bei homogenen Randbedingungen (7.11) nur dann zu der trivialen
Lösung

0 = 0, (p3 = 0 , T = 0 , X 6 V, (7.12)

wenn die Temperatur T im Zylinderquerschnitt konstant ist. In diesem Fall sind nämlich auch die Bedin-
gungen (7.2) erfüllt. Die einzige von Null verschiedene Spannung ist die Spannung <%. Wir haben jetzt

was mit dem in [8] ei*haltenen Ergebnis bei Benutzung der AiEY-MiNDLiNachen Spannungsfunktion überein-
stimmt.
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Wir haben hier für den mikropolaren Körper eine bedeutende Einschränkung erhalten. Im HooKESchen
Körper genügt es nämlich, die homogene Wärmeleitungsgleichung zu erfüllen, damit die Spannungen a1t mit
Ausnahme von <% gleich Null sind [5].

8. Axialsymmotrischc Probleme der Thermoclastizität

Den Ausgangspunkt unserer Überlegungen bildet das System der Differentialgleichungen (6.4). Wenn wir
wie in Abschnitt 4 verfahren, indem wir die Potentiale 0, \p und •& einführen, kommen wir zu dem Gleichungs-
syatein

VaVa# = m \?*T , (HA)

V2 {V V2 - 1) # = 0 , (8.2)

Die Funktionen {)• und yi sind durch die Gleichung

V > = - 2 (ra V2 - 1) (>•, Ta = y-^- (8.3)

miteinander verbunden. Zu diesen Gleichungen müssen die Beziehungen

- £ ) (̂  va - 1 ) # - o
hinzugefügt werden.

Die Lösung des Glcichungssystems (8.1), (8.2) stellen wir in der Form

0 = r/j' -|- 0 " , .ß. = #' + &" (8.5)
dar.

Für die Funktionen 0', &' nehmen wir derart an, daß

V20' - m T = ü , &' = 0 (8.6)

gilt. Durch diese Annahme sind die Gleichungen (8.1), (8.2) sowie die Beziehungen (8.4) erfüllt. Die Funktion </J'
wird zum partikulären Integral der Gleichung (8.1). Folglich erhalten wir

( 8 ' 7 )

Die Funktionen &", 0" bestimmen wir aus der Lösung der homogenen Gleichungen

V2\72#" = 0 , V2 (P V2 - 1) •&" = 0 • (8-8)

Wir berücksichtigen bei unseren weiteren Überlegungen die Beziehung

V2 f" = - 2 (T3 V2 - 1) l>" (8-9)

sowie die Beziehungen

(8.10)

Wenn wir beispielsweise das Problem des elastischen Halbraums 2 S; 0 untersuchen, der in der Ebene
z = 0 erwärmt ist, so gelten die Randbedingungen

T(r, 0) = f(r) , azz(r, ö) = 0 , a^(r, 0) = 0 , pz0(r, 0) = ü . (8.11)

Die Lösung der Wärmeleitungsgleichung Sj'^T = ü unter der Randbedingung (8.11) ist die Funktion

T(r, z) = ff(C) e-^t Ja(L, r) d£ , /(£) = / f(r) r Jo(£ r) dr . (8.12)
o o
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Die Lösung der Gleichung (8.6) — der Einfachheit halber unter Berücksichtigung der Randbedingung

= 0 — ist die Funktion

m f f/t)
c/y = -jJ J - y (1 + C z) e-e« J0(C r) d£ . (8.13)

o

Aus den Formeln (8.7) berechnen wir die Spannungen er,';. Auf diese Weise erhalten wir

aiZ = - p m J Ü(£) (1 + C z) e-e« J„(C r) tVQ ,

a'„ = - / I M * / £»/(£) e™^ ^(C r) rfC usw. , (8.14)
o

/ 'so = H-llz = fl'rO = /4r = 0 .

Die Gleichungen (8.8) müssen unter den Randbedingungen

o'zz + cr̂ 'z = 0 , (Tzr + Ott = 0 , (MJO + /4o = 0 für « = ü (8.15)

gelöst werden. Nach Durchführung der zu diesen Randbedingungen gehörigen HANiCBLschen Transformation
haben wir

K'z = fi mf, a'ir = 0 , /%'u = ü für 8 = 0. (8.16)

Diese Aufgabe wurde schon in Abschnitt 4 gelöst. Wenn wir die Formeln (4.15)

p = — [x vif

einsetzen und die Spannungen a'jufJ-'ji zu den Spannungen a'fi, /n'/i hinzufügen, erhalten wir schließlieh die
Spannungsausdrücke

= - [x m fem [(l - 2lj(l + C
0

f
0

^ ¥ ~ (e-'J - e - f ' ) W r) dt, (8.17)

/

n fit)
i W ) ( e ~iz ~c ~"3) Ji(^r) rfC usw-

Wir haben Lösungen erhalten, die mit denen von P. Pum [9] und R. S. DHALIWAL [10] auf anderem Wege,
erhaltenen Lösungen übereinstimmen.

Es sei noch vermerkt, daß beim Übergang zum HoOKBschen Körper (bei« = 0, i] = £, Ao = 1) die Span-
nungen dzt und azr verschwinden [11]. Der Spannungszustand nimmt eine ebene Form an. Die Momenten-
spannungen sind gleich Null.
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