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Zweidimensionale Probleme der mikropolaren Elastostatik

Von W. Nowackr

1. Einfithrung

Wir untersuchen einen mikropolaren elastischen homogenen, isotropen und zentrosymmetrischen Kérper.
Unter dem Einflull von Belastungen erfihrt der Kérper eine Deformation, die durch zwei voneinander unab-
hiingige Vektoren beschrieben wird, den Verschiebungsvektor w(zx, ¢) und den Drehvektor g(x, t). Aus diesen
Vektoren werden zwei asymmetrische Tensoren konstruiert, der Deformationstensor y;;-und der Torsions-
biegungstensor s, wobei

VYii = Wi i — Ekji Pr > iy = Qij > ‘i:,j,k= I., 2,3 (1.]}
gilt. Der Spannungszustand ist durch zwei asymmetrische Tensoren charakterisiert, den Tensor der Span-

nungskrifte o;; sowie den Momentenspannungstensor py;. Diese Tensoren sind mit den Tensoren y,, und x;;
mittels der Zustandsgleichungen

oy = (1 + &) pyr + (@ — &) yir + eyt
fii = (p - &) %3¢ -+ (y — &) %y + ﬁ Ak 5:{ 5 ,§=1,2,3

verbunden. In diesen Relationen bezeichnen , 3, y, &, #, A die Materialkonstanten. Wenn wir (1.2) und (1.1)
in die Gleichgewichtsgleichungen

(1.2)

055, + X =0,

: .
eigeOjx + Wi+ Yi=0 (1.3)
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einsetzen, erhalten wir das Gleichungssystem der Verschiebungen und Drehungen [1]—[4]

(e o) Y2+ (A + p— ) grad div e 4+ 200t + X = 0,
[(p + &) V2 —4ale +(f +y —e)grad dive -|- 2arobtuw -+ ¥V =0,
Hier sind X, Y die Vektoren der Krifte und Massenmomente.
Die Gleichungen (1.4) miissen durch die Randbedingungen erginzt werden. Wenn auf der Fliche A4,

die den Kérper begrenzt, Belastungen (die Krifte p und Momente m) gegeben sind, nchmen die Rand-
bedingungen die nachstechende Form an:

(1.4)

Py = 033 Ny, Wi == [y Ny . (I.ﬁ)

Hier sind n; die Komponenten des Binheitsvektors der Normalen n.

Wir gehen zu den ebenen Problemen der mikropolaven Klastizitit iiber, indem wir voraussetzen, dall
alle Ursachen und Folgen nur von den Verinderlichen z,, x, abhingen. In diesem Fall zerfillt das System
der sechs Gleichungen (1.4) in zwei voneinander unabhiingige Gleichnungssysteme. Das erste dieser Systeme,
in dem die Vektorkomponenten

W= (uy, Uy, ) , o = (0,0, @y) (1.6)
auftreten, hat die Form
(o + o) Ving +(A+p—a)de + 2a 8,0+ X, =0,
(4 + o) Vitg + A+ o — &) Dye — 206 Qypy -+ Xy = 0, (1.7)
[(y + &) Vi— 4] @y + 2 (O1up — Opy) + Yy = 0.
Hier wurden folgende Bezeichnungen eingefiihrt:
Vi=10?4 33, e = 0y%, + Dau, .
Im zweiten System treten die Vektorkomponenten
w=(0,0,u), @=(pyP0) (1.8)
auf. Das Gleichungssystem hat hier die Form
[y +e)Vi—dalo+B+y—e)ox+ 2600+ ¥, =0,
[y +e)Vi—4algy+ (B +y—&) 0 —2adyug+ ¥, =0, (1.9)
(1 + o) Viug + 2 (0192 — Opp1) + X3 = 0.
Dabei wurden folgende Bezeichnungen eingefiihrt:
% = 0y\py + 0oy » Vi=oi+o:.

Wir gehen bei (1.4) zu Zylinderkoordinaten (r, 0, z) iiber. Indem wir voranssetzen, dafl wir es mit axial-
symmetrischen Problemen zu tun haben, erhalten wir aus (1.4) zwei voneinander unabhingige Gleichungs-
systeme. Im ersten System treten die Vektorkomponenten

w = (uy, 0, u;) , @ =(0,p00). (1.10)

auf. Die Gleichungen (1.4) nehmen in diesem Fall die Form °

1 de Glie
(v = S)u+ Gt u—n - 204 X, —o0,

z
1 _ You,
(v -+ ) (v* - T—ﬂ)w —daqo+2a (‘;i — a‘;") +Y,=0, (1.11)
de 2« 0

(4 o) Vius + (A + p —“)5;4‘“1, E_"(‘?‘?-’e) + X, =0

an, wobei

L2, u, I N
=ttt V=gt tan

ist. Im zweiten Differentialgleichungssystem, das von (1.11) unabhiingig ist, treten die Vektorkomponenten

w = (0, ug, 0) , P =(pn 0, ) _ (1.12)
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auf. Das mit (1.12) verbundene Differentialgleichungssystem hat die Form

1 ox ou
(V=)o — dog + By — a5l — 26504 =0,

(1 +2) (72 - lT)‘“-n + 2a(3¢’—aq’—’) + X, =0, (1.13)
il 0z or
0 2 0
(y+8& Vg, —dax A (B +y — &) “52‘4"?0"% (rug) + ¥, =0.

Hier wurden folgende Bezeichnungen eingefiithrt:

12, 2 , 19 @
*=ralrty Vemtrata:

Nachstehend werden wir ein einheitliches Verfahren zur Lisung der Differentialgleichungen (1.7), (1.9),
(L.11) und (1.13) angeben. Dieses Verfahren, das auf einer Einfithrung von elastischen Potentialen beruht,
wird besonders bei der Bestimmung der Verschichungen und Drehungen vorteilhaft sein.

2. Lisung des Gleichungssystems (1.7)

Wir antersuchen das homogene System der Gleichgewichtsgleichungen (1.7) und nehmen die Lisung dieses

Systems in Form einer Zerlegung des Vektors w = (u,, %,, 0) in einen Potentialanteil und einen solenoidalen
Anteil an:

Uy =0, D+ 0,¥,  wp= 0, — O, . 2.1)

Hierbei sind @ und ¥ die statischen elastischen Potentiale.
Indem wir (2.1) in (1.7) einsetzen, erhalten wir das Gleichungssystem

(A + 2 u) L,Vid + as.[(.” +a) V¥ + 2aq4] =0,
(2 + 2 ) 3720 — 2, [(1 + ) V2 + 26 0] = 0, (2.3)
[y +e)Vi—4alg, —2aVi¥ =0.

Wenn wir V% aus den beiden ersten Gleichungen unter Beriicksichtigung der dritten Gleichung eliminieren,
kommen wir zu den Caveony-Rremanyschen Relationen

2
IVI0 4+ — 5, (VI —1) gy =0,

A4-2p
2u uta)  + o) (&:4)
AP, —. = 272 _ = g M U A T 2
,ViP .3.-}-2#61 BVi—1)g3=0, l iuw .
Die Funktionen @ und ¢, miissen die Gleichungen
Vivie =0, Vi®Vi—-Dg=0 (2:5)

erfiillen.

Die Funktion ¥ ist mit der Funktion ¢, durch folgende Beziehung verbunden, die sich aus der dritten
Gleichung in (2.3) ergibt:

VIV =, [+ ) Vi — 4algs. (2.6)

Der Losungsvorgang des ebenen Problems gestaltet sich folgendermafien: Wir lésen die Gleichung (2.5),
wobei in diesen Losungen vier Integralkonstanten auftreten. Die Konstanten bestimmen wir aus drei Rand-
bedingungen sowie aus der CaAvcHy-RieMANNschen Relation (2.4).

Der Spannungszustand ist in dem hier untersuchten ebenen Deformationszustand durch die Matrizen

Oy O 0 0 0 uy
O=105 050 0 |, p=[0 0 puyy (2.7)
0 0 oy Moy pap O
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charakterisiert. Diese Spannungen lassen sich durch die Potentiale @, ¥ und die Drehung ¢, folgendermafien
ausdriicken:

=@A+2p)ViP + 24 (0, 0¥ — 92P),
Toa = (A +2p) Vi®P + 2u(— 0,0, — 910,
O3 = A V1D
O =u[20,0,D +(0; — ) V] —aVi¥ —2xq,;., (2.8)
Oy = (20,0, + (05 — 0) V] +aVi¥ + 2a44,
pas=(y +€) 0 @as  pay=(y+ 0%,
g = (y — €) 0, @3, fag = (y — €) Dy g .
Es sei vermerkt, dafd
on +0=2A+ )i, op—0u=[y+e)Vi—4algy=2a VIV
- Wir untersuchen beispielsweise die Losung des nachstehenden statischen Problems. s moge der ela-

stische Halbraum z, = 0 aut dem Rande ®; = 0 durch die Kraft p(z,) belastet sein, die in Richtung der
positiven Achse 2, verliuft. Die Randbedingungen (1.5) bei m = (1, 0, 0) reduzieren sich auf

o0, we) = — D) . o0 m) =0, g0, @) = 0. (2.9)
Diese Bedingungen bringen wir mit den Potentialen @, ¥ und der Drehung ¢, zum Ausdruck, indem wir

die Relationen (2.8) benufzen.
Die Lésung der Gleichungen (2.5) stellen wir in Form der FFourrerintegrale

f(A + B, b) e~mt=int df,

|/2 7
2 (2.10)
1 . IS AV
= l—/——— f (Cené 4 De~tm)e~ind dl, g= (C“ + 35)
dar. Aus den Caveny-Riemannschen Gleichungen (2.4) erhalten wir die Beziehung
c—ipn*t2tp. (2.11)
Aus der letzten Randbedingung erhalten wir D = — { Cfy. In den Randbedingungen (2.9), . tritt die Funk-
tion ¥ auf, die aus der Gleichung (2.6) zu bestimmen ist. Wir erhalten durch einfache Rechnung
~ & 2
po L ;O-[xlé' o—tm — 2200000 e"m]e—-'m dc, w=2—1, e LR 1)
V2w o 7 l 4
Die Benutzung der Randbedingungen (2.9), , liefert die Integralkonstanten
i 2
~rarane A= ti-sari)e  a=ietiREa,
M 0 " ) L (2.13)
D= — -(:— [0

]

1
mit
(y+ €@ +2u)
A+wap

Au=l+2gaao(l-~%—), o=

1 o
= pla,) el mt da,
2n

OO
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Indem wir uns die Beziehungen (2.7) zunutze machen, erhalten wir fiir die Spannungen die Formeln

By _l ?J{C) ’:(] = "I:t ‘:-) o-tx g 2 ty a—z (n-‘p;.r; oz 5_ ”—t‘.‘.r,)]e--i,rsﬁ (}C ,

V27 4, "

—0
F #(E) ¢
— _.i_ § ;_D{_: £, n—L 2y 9 22 .‘—n;r.__p—cr;] it g g
i T f i [m, fe +2a¢ 7 (e )_ t,‘ g (2.14)
. | A o~

Jag = — i_f’é’_ ] 4-_1_’_@}(9 —ta, _ g-nm) g—in tde USW.

V2 7 P

3. Lisung des Gleichungssystems (1.9)

Wir untersuchen das homogene System der Gleichgewichtsgleichungen (1.9) und nehmen die Losung dieses
Systems in Form von Vektorzerlegungen von ¢ = (¢,, ¢, 0) in einen Potentialanteil und einen solenoidalen
Anteil

1= 0,2 + 2,1, e = 0,02 — 0, 1. (3.1)
an. Indem (3.1) in (1.9) eingesetzt wird, erhalten wir das Gleichungssystem

HhIB+27)Vi—4a]1Q +0,[((y +e) Vi —4a) '+ 200u] =0,

RIf+29)Vi—4a]Q -0 [(y+e)Vi—4a) '+ 20u] =0, (3.2)

(n+o) Viug — 26 VI = 0.

Die ersten beiden Gleichungen lassen sich unter Beriicksichtigung der dritten Gleichung in Torm der CAvcH Y-
Rremannschen Relation

— V-1 Q =fo_“az<zﬂve — I, 2067V~ 1)Q:Hiaaltsﬂv2~ NI, (33)

darstellen, dabei ist

w5=ﬁ+2‘}’ 53:(?_!—5)({“‘_!-“)
4x 4u '

Die Funktionen £ und I" geniigen den Gleichungen
VipPvi—1)02=0, WVi(EVi—1)I'=0. (3.4)

Der Spannungszustand wird hier durch die Matrizen

0 0 o4 My s O
0=10 0 oy, p=|tn 0 (8.5)
Uﬂl ﬂ'az 0 0 0 ﬂas

beschrieben. Wenn wir die Spannung mit den Funktionen 2, I" ausdriicken, kommen wir zu den Beziehungen

4xpu

0'13=2.:!Caz!2, 0‘23=—-29531.Q, 0'31="'"2“aa.9+#+a

ar,

- (3.6)

Un.z=2rxal.9—i—ﬂ—:r—&azf',

sowie
Pu=B +29) Vi — 29002 +290,0,I", pp=F+29)ViQ —2y32Q —290,0,I",
pos =B VIR, = —(y+e)Vil'+ 298 2,0 + 2y 0iT, (3.7)
Pm:(}’—f“a]v%PH2?5?1‘4—2}!81329.

Wir untersuchen beispielsweise die Lésung des folgenden Problems. Betrachtet wird der elastische
Halbraum », = 0, der auf dem Rande x, = 0 mit dem Moment puy(0, x,) = m(z,) belastet ist. Die Rand-
bedingungen sind in diesem Fall

H3a(0, @) = m(ay) , 11200, &) = 0, a13(0, @) = 0. (3.8)
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Vermittels der Beziehungen (3.6), (3.7) lassen sich die Randbedingungen durch die Potentiale £, /' aus-
driicken. Die Lésungen der Gleichungen (3.4) nehmen wir in Form der Fourterintegrale
& «

j (Aetn - Be-nn)e—iln gl M= 5 / (Ce—tn - De—en)e—itndl, (3.9)

Y2 =
o :

1

y2n

1\1/2 1 \12
:}=(Cz-5—1,—2) 3 Q=(fz+‘ﬁ)

ist. Die Konstanten A, B, !, D bestimmen wir aus den Randbedingungen (3.8) sowie aus den Caveny-
Rimmannschen Relationen (3.3). Aus den letzteren Relationen geht hervor, dali

2=

s

an, wobei

O=glE% 4

(3.10)
(a9
gilt. Die Auswertung der Randbedingungen (3.8) ergibt
m ag (E* + ay) mi ., m it 52( I | )
A = — — — r} _——— = A _ — —— s 2
! % da d, '’ 23»/11(g ta), D 4 u A, 14 &
wobei
2 o — . 1 a3 :
a; = Sl f“} y My =(0*+ a)? — 529[1 ‘i’# _’T_{x(%— 1)]a m(E) = ],f_2:$; f m(x,) e’ da, .
ist. Als Ergebnis erhalten wir die Ausdriicke
n=rte [ @+ m|o-tn o] a1 1 Eorenlomienar,
duy2n 4(C) al &0
ia, “’Cﬁg(i;){ . [ g 7 —,-] ( In ??) _ } .
- =l 2 s —Eay o | — 1 Z T la—om ila df 3.9
e =3l 17 Lt bt s i e I
Uy = i‘_zl = (L) [(Ce + @) e tm — _“_Cs (1 -+ i ."‘_}_)e—an}e-r’t T dql .
2y2x ) A) pt o a L

Die Kenntnis der Funktionen ¢,. p,, u; erlaubt, die Komponenten des Spannungszustandes zu be-
stimmen,

Das hier dargestellte Losungsverfahren fiihrt zu sehr einfachen Differentialgleichungen fiir die elastischen
Potentiale @, ¥ und 0, I Diese Potentiale sind durch die Caveny-Riemannschen Relationen mitein-
ander verbunden.

Der Charakter dieser Gleichungen bringt es mit sich, daB auf sie die Funktionsmethode der komplexen
Verinderlichen mit Erfolg angewendet werden kann, die von J. N. MusgeLisEvILT [5] und seiner Schule
entwickelt worden ist. Diese Methode ist von G. N. SaviN [6] mit Erfolg auch fiir das erste ebene Problem
benutzt worden, das mit Hilfe der Atry-Minprinschen Funktion gelést wird.

4. Lissung des Gleichungssystems (1.11)

Wir untersuchen das homogene Gleichungssystem (1.11) und nehmen die Losung dieses Gleichungssystems
in der Form
_oo_ w0 v W

=T 2. T Ty (1)

an. Wenn wir die Identitit:

1\2o @
(V* - ;ﬁ)ﬁ=$"“ﬂ
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beriicksichtigen, erhalten wir das Gleichungssystem

7o _‘”) v o — |(;; b o ('ﬁ* = )')"“ = uf\.l‘[ﬂ]— 0,

0 : |
(2 + 2 p) 5 V2P — (a'{_ o ) [ +x) V2 | 2 g = 0, (4.2)

1 L
(y + &) (Vz - ?_'2')‘}('0 — 2 (V“ = Tg) V—4aqgy=0.

Indem wir durch

oy o0

yw - L g = —— 4.
Z or’ Po = 2r : (2:8)

neue Funktionen p und  in (4.2) einfithren sowie in bezug auf » integrieren, erhalten wir das Gleichungssystem
(A + 2 p) V20 + E%[[;L + )V —2xd] =0,

(* + 2#)519290 . (va B aa;) (4 + ) P — 2000] = 0, (4.4)

[ty +6) V2 — 4a] 0 + 20 V2 =

Wenn wir 72p aus den ersten beiden Gleichungen (4.4) mittels (4.4); eliminieren, erhalten wir die Beziehungen

2u 2 ) 2 o2
W’"Hg#a;”gvz_”ﬁ:"’ —szp+~--+—*“—(vﬂ—-a—z§)(52v2—1)0:0. (4.5)

Aus diesem Gleichungssystem ergeben sich folgende Differentialgleichungen, die zur Bestimmung der Poten-
tiale @ und & dienen:

VIVRD =0,  YABYE—1)9 =0. (4.6)

Diese Gleichungen sind durch die Beziechung (4.4);
V= —5 iy + T 410 (&7)

zu ergiinzen. Der Losungsvorgang des axialsymmetrischen Problems gestaltet sich folgendermafien: Wir kon-
struieren eine allgemeine Losung der Gleichungen (4.6), indem wir mit Hilfe der Beziehung (4.7) die Funktion
bestimmen. In den Losungen treten vier Integralkonstanten auf, Fiir ihre Bestimmung stehen uns drei Rand-
bedingungen sowie die Beziehungen (4.5) zur Verfiigung. Die Kenntnis der Funktionen @, #, 9 erlaubt uns dic
Bestimmung der Verschiebungen u,, , und der Drehung ¢,.

Der Spannungszustand wird mit den Matrizen

Orr 0 Orz 0 Hro 0
=|0 ogpg O ), p=|per O o
Ozr 0 PP 0 P',zn 0

beschrieben. Wenn wir die Spannungen mit den Funktionen @, y und & ausdriicken, erhalten wir fiir die
Spannungen die Ausdriicke

Gl oy 2
—r 2 i T2 .
Opr = ,ua?.,z((b—l az)—i-k\; D

1 @ 7
ﬂ’ao=2#?a?_(@+a;p)+lvg¢,
20 [,
o= 2y |G (v ag) |+2v:0, (4.9)

2r

Fle(r s oo

0

or
a :3 L va—"-?—w — a2 - 20
= ¢|2 az "2 )Y ¥ :
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sowie
a2y L1 ad
o=+ o) 5g —r—8 =5,
'?219 1 29
dor=(y— &) gg —(y+e) - =, (4.10)
22 029
Mz = (}’ i" ) 61 f"‘ Moz = (’Y - “:) ar 3z
[6s Lilt sich verifizieren, dall
Grr + Ogo + 0z = (3 A+ 2;”1} ‘?30') s Opp — Ops = 2% (V’w — ) (J'll)

gilt,

Der Losungsvorgang des axialsymmetrischen Problems der mikropolaren Elastizitit wird nachstehend
an einem einfachen Beispiel erliutert.

s moge in der Ebene z = 0 des elastischen Halbraums z = 0 die axial-symmetrische Belastung p(r) in
Richtung der z-Achse wirken. Die Randbedingungen haben die Form

Gty 0) = — n(r), O(r, 0) = 0, #zn(?'s 0)=0. (4.12)
Wir setzen voraus, daB fiir * - 22| — oo die Verschiebungen u,, . und die Drehung ¢, verschwinden. Die
Funktionen @, ¢ stellen wir folgendermafBen car:

o0

O = [(A+ Blz)e t2L (L) dE,

]
o 5 i (4.13)
0= [@osetpomnenia, n=(5+2)
i
Aus den Relationen (4.5); o erhalten wir dieselbe Beziechung
A+4-2p
‘L{
Die Losung der Gleichung (4.7) stellen wir unter Benutzung HavkrLscher Integrale in der Form

Atp [B+2
?,ﬁ_:‘l‘_‘ /‘C(AF}- & e~82 2 aylte —uz{‘:)c‘jo{c?)d‘_‘

0= —

{B.

0
dar mit

(y+e)@d+2p) (4.14)
4 p (24 p)

Aus den Randbedingungen (4.12) erhalten wir bei Beriicksichtigung der Beziehungen (4.9) und (4.10) fiir die

Integrationskonstanten die Ausdriicke

A+ u G p(C)
A= ——|1 —2aq,2 B B==
Iz (1 g a;) 2650+ ) Al0)

fly =

mit

AoE) =1 + 2y 22 (1 — ;f—) B0) = [p(r) r Joe ) ar

Auf diese Weise haben wir die Funktionen @, 4, y bestimmt. Die Spannungen ergeben sich aus den Formeln
(4.9) und (4.10) zu

e i!p(@; [“ iz et 2a,00 (c—w = -E—e‘“)] Jo& ) de
0
e mff’@) -tz _|. _C_ —NE __ __;Z:IJ 3 d LB
Ozr .[ 2,0 [Cze 4 2%{2?}(9 et [ (&) diE, (4.15)

fzo = — 2@, f ¢ ;o(c'j etz —e %) Jy(Er)dE  usw.
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Die obigen Formeln vereinfachen sich bedeutend fiir das Hookmsche Medium. In diesem speziellen Fall
miissenn = (, A, = 1 eingesetzt werden. Die Formeln (4.15) gehen in bekannte Formeln der klassischen Elasti-
zitit iiber.

5. Losung des Gleichungssystems (1.13)

Wir untersuchen nun das homogene Gleichungssystem (1.13). Wir nehmen die Losung dieses Gleichungs.
systems in der Form
02 ar 02 o' I

= = St o (e SN - h.
P="0r 32’ P2 = 32 I—H:' p )

an. Wenn wir (5.1) in (1.13) einsetzen, erhalten wir die Gleichungen
i) 1 al" 0y
= B ] O — 3 - et s — —_— AN — =
3 g+29V 4] £ [(y + &) (V -ra) 4 Of] % 2 3 0,

1 2n 0
)I‘ + —;l ?)(T-(" Ug) = 0, (5.2)

0 Gl
5o B +29) U — 4] Q4 [y 4 ) 72 — 40 (04

(1 + a]("x_}'2 — ;l,;)u-o - 25\'(?’3—?1)]1 = 0.

Wir fiihren durch
a X am

Uy =
or’ or

neue Funktionen in (5.2) ein und integricren in bezug auf ». Auf diese Weise erhalten wir das Gleichungssystem

(5.3)

[{ﬁ‘i‘2)’)\?2—“45]-@+a%[(?-f'€)‘§?”—4rx}x—2mm]:D,

7} 22
518 +29)V* — 401Q = (V2= 50y -+ &) V* — 40) £ — 20 0] =0, (5.4)
(+®) Vo + 27 =0.

Wenn wir @ auns den ersten beiden Gleichungen (5.4) eliminieren und ein partikulires Integral der Gleichung
(5.4); benutzen, erhalten wir die Gleichungen

-1 @+ -—E Lap 1y =0,

i+ 02
J 2 0 B+2y
gé(vnva— ].].Q——'# ( 5_‘37'2)(52?2— ])x=0, p2 =" do .

(5.5)

_l.. x
Aus den vorstehenden Beziechungen ergeben sich zur Bestimmung der Potentiale £, y die Differentialglei-

chungen
Ery:—1)Q2 =0, V2RV —1)x=0. (5.6)

Diese Gleichungen sind durch die Beziehung
(b +x) V2w +2ax7272 =0
Zu ergidnzen.

Die Kenntnis der Funktionen 2, y und w gestattet bereits die Bestimmung der Spannungen. Der Span-
nungszustand ist durch die Matrizen

0 a0 Ly 0 Mz
0= | Op, 0] Toz |, o= 0 Hoo 0 (5.7}
0 g 0 Her 0 Mzz
charakterisiert,.
Wenn wir die Spannungen mit 2, ¥ und @ ausdriicken, erhalten wir
*w 1 dw 082 a2
—— ) — - — — —_ — I Rl
=+ 53 e — ) 5 = B+ 20V = ),
a*w 1 0w 0 02
— = L S i e EW el L B P
Tpr = (1 — ) 52 (¢ + p) = B +2a P 2m(v azz)x’ (5.8)

e iy L0 gl 0x = Y A
Uﬂt—(.u' (-\) araz 2“8?'(9 +Bz_)' GSB—“(H+m}§;§z+3mﬁ(g+a—z'),
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sowie

02 0 1 0 Gl =
Pre=2y5 s (2+2E) 4 V0,  pae=2y— (04 F)4pvr e,
0 0z roor 0z

LR (., @ e L, » oy N
Paz = 3?;};(‘3‘; —(V — a‘z—g)x) +BVEL,  pe=2 Y5 EJz_('Q " gz—)*— (v + &5 Vi, (5.9)

» (0 ;
por =2y 50 (@ 4+ E) b -0 Ly

Man erkennt, daly

9 a E
Mrr oo + ez = (2 |- 3 ) V202, Mar — Prs = 2y aEvvf

gilt,
o
Das Verfahren zur Losung axialsymmetrischer Probleme ist finr diesen Fall analog wie in Abschnitt 4.

6. Das zweidimensionale Problem der Thermoelastizitit

Die in den vorigen Abschnitten dargestellte Losungsweise kann auf stationdre und quasistatische Probleme
der Thermoelastizitit ausgedehnt werden. An Stelle der Zustandsgleichungen (1.2) treten die verallgemeiner-
ten DunamprL-NEUMANNschen Relationen [7]

O3 = (p + &) ys1 + (0 — &) yig + (Ayee — v T') 04, (6.1)
Hio=(y &) 2% - (y — &) 24y -+ B 25 64 .
Hierbei ist v = (34 + 2 ) &y, wobei o, der Koeffizient der linearen thermischen Ausdehnung und 7' der Tem-
peraturzuwachs in bezug auf Temperaturen des natiirlichen Zustandes sind.
Die Gleichungen der mikropolaren Thermoelastizitit, die in Verschiebungen und Drehungen ausgedriickt
werden, haben die Form [7]
(v +a)VPu+ (A +p —o)grad divu 4 2o votp = v grad 7', (6.2)
(y+e) Ve —dxp 4 (f+y—¢)graddive 4+ 2arotu=0.

Das Temperaturfeld ist durch die Porssonsche Gleichung

W
ja3n <
PES = .

beschrieben. Hierbei ist W die in der Zeit- und Volumeneinheit erzeugte Wirmemenge.
Beim ebenen Deformationszustand, bei dem alle Ursachen und Folgen nur von den Verinderlichen a,
und x, abhingen, erhalten wir das Gleichungssystem

(u+ax)Viw A+ p—a)die+ 200, =v 0,1,
(1 o) Vitg + (A + p — o) 0ge — 200 Oypy = v 0,1, (6.3)
[(y +e) Vi — 4ol gy + 20 (0, — Op1y) =0 .

Im ,zweiten* ebenen Problem, das durch die Vektoren w = (0, 0, uy), ¢ = (¢, @2, 0) charakterisiert ist, treten
keine Temperaturglieder auf. Die GroBen uy, ¢y, @, sind also nicht vom Temperaturfeld 7'(x,, #,) abhingig.

Im TFall eines axialsymmetrischen Spannungs- und Deformationszustandes erhalten wir das folgende
System von Differentialgleichungen der Thermoelastizitit:

1 | Oe dpg 0T
(o) (V= )t + (b= 5 — 2000 =T,

0 19 T
(440 Vs + (4 — ), 20 50090 = (64)

ow, Ou,

1
(? + 8) (v“! —_— ;E)q»’u -l— 2“("a—z'—‘ a'r)'—' 4(,\'.('."5 = 0 b

In dem Gleichungssystem, in dem w = (0, us, 0), ¢ = (¢r, 0, ;) ist (siehe Gleichung”(]._w)), treten keine
thermischen Glieder auf. Die GréBen uy, @y, @, sind nicht vom Temperaturfeld 7'(r, z) abhingig.
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7. Das ebene Problem der Thermoelastizitit

Wir fithren in das Gleichungssystem (6.3) die elastischen Potentiale @, Y ein, die durch die Bezichungen
u, = 0, P 4 0,¥, Uy = 0D — 0,V (7.1)

definiert sind.
Wir erhalten als Ergebnis die folgenden Caveny-Rigmanyschen Relationen

2 g
QTP —m D)+ BT = 1) gy =0,

. ) (7.2)
U .
A42p A42p

Wir haben dabei die dritte Gleichung der Gruppe (6.3) benutzt, die unter Beriicksichtigung von (7.1)
die Form

22 (ViD — m 1) — (Vi — 1)y =0, m =

2:}'%“6_

Vip=2@@Vi— gy, 7 i (7.3)
annimmt.
Aus den Bezichungen (7.2) erhalten wir die Differentinlgleichungen

ViVie =mViT, VilBVi—1)g=0. (7.4)
Die Lésung dieser Gleichungen kann durch

b= } P, Py = @3 + @5 (7.5)

zusammengesetzt werden. Nehmen wir ferner an, dafl ¢ = 0 sowie dafd @’ ein partikulires Integral der Glei-
chung

Vi —am T =0 (7.6)

ist, Wenn der Korper begrenzt ist, kann angenommen werden, dal} auf dem Rande @’ = 0 ist. Mit der Funk-
. - . . , . . a ’ - .

tion @’ sind die Spannungen g;j; == 0, pj; = 0 verbunden, wobei die Spannungen ¢;}; einen symmetrischen Tensor

bilden. Bs gilt

Oji =2u(Dij— 00y Pax)y  pi=0. (7.7)
Die Tunktionen @’ und ¢, miissen die homogenen (leichungen

Vivie”" =0, Vi(PVi—1)g=0 (7.8)
sowie die CAaveny-Riemannschen Relationen

A0 - i =0,  amer — hoa@evi-Ng=0 ()
erfiillen. Die Gleichung (7.3) nimmt hier die Form

V" =2(Vi— 1) g (7.10)
an. Wenn der Rand spannungsfrei sein soll, miissen die Bedingungen

(Oha + 05 M =0,  (ps+puinmp=0,  af=12 (7.11)

erfiillt werden.

Untersuchen wir nun den cinfach zusammenhingenden Fall eines unendlich langen Zylinders, der auf der
Randfliche erwirmt wird. Die Zylinderachse sei mit der Achse x, identisch.

Bei Voraussetzung eines stationiren Warmeflusses ist 727" = 0. Die Gleichungen (7.4) werden homogen.
.})ie Losung des Gleichungssystems (7.4) fithrt bei homogenen Randbedingungen (7.11) nur dann zu der trivialen
LOsung

=0, =0, Y=0, xeV, (7.12)

wenn die Temperatur 7' im Zylinderquerschnitt konstant ist. In diesem Fall sind niamlich auch die Bedin-
gungen (7.2) erfiillt. Die einzige von Null verschiedene Spannung ist die Spannung o5,. Wir haben jetzt

31+ 2u)
=l - e = !i“: e — T:—.H‘_(_..__..___.
R PR T+ p

was mit dem in [8] erhaltenen Irgebnis bei Benutzung der Amry-Minprinschen Spannungsfunktion iiberein-
stimmt,

o 1T, (7.13)
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Wir haben hier fiir den mikropolaren Korper eine bedeutende Einschrinkung erhalten. Im Hooxeschen
Korper geniigt es nimlich, die homogene Wirmeleitungsgleichung zu erfiillen, damit die Spannungen o;; mit
Ausnahme von gy, gleich Null sind [5].

8. Axialsymmetrische Probleme der Thermoelastizitit
Den Ausgangspunkt unserer Uberlegungen bildet das System der Differentialgleichungen (6.4). Wenn wir

wie in Abschnitt 4 verfahren, indem wir die Potentiale @, 9 und # einfiihren, kommen wir zu dem Gleichungs-
system

VEVRD = 7T, (8.1)
VE@EVE—-10=0. (8.2)
Die Funktionen & und  sind durch die Gleichung
2 — — (272 — 1) g JLTE :
Vo= —2@7-1nd, =0T (8.3)

miteinander verbunden. Zu diesen Gleichungen miissen die Beziehungen

V“ffi—mfi‘——zf‘ __{ VE—-Dd=0,

(8.4)
2 2
[v @ —mT]+ ’“ (vs 6?2:2) @y —1)9=0
hinzugefiigt werden,
Die Losung des Gleichungssystems (8.1), (8.2) stellen wir in der Form
b =P | P, ¢ =0 4V (8.5)
dar.
e die Funktionen @', § nehmen wir derart an, daly
V2D —m T =0, & =0 (8.6)

gilt. Durch diese Annahme sind die Gleichungen (8.1), (8.2) sowie die Beziehungen (8.4) exfillt. Die Funktion @’
wird zum partikuliren Integral der Gleichung (8.1). Folglich erhalten wir

, A (Y
Ore =24 —i—?uc.—v’l—2,u(—a-ra- “?‘1’).
’ i . 2 ! ’ ’ ‘)g i
040 = --;‘(i ga‘f‘,“ - ‘?*fff) Uiz =2p (ga‘fi — Vi ) Orz = Ozr = 2 0 -‘—.d) (8.7)
B = Phar="plos = Jicg ="

Die Funktionen &/, ¢"* bestimmen wir aus der Losung der homogenen Gleichungen

VIR =1, VEB Y —1)9" =0. (8.8)
Wir beriicksichtigen bei unseren weiteren Uberlegungen die Bezichung
Vi = — 22— 1) 9" (8.9)
sowie die Beziehungen
Vi — _2p 0 2y:—1)9" =0, 2 Vi | ___2.ﬁ__ (va ){;2 V2 — 1) 9"
A+ 2p 02 0z 0z*

(8.10)

Wenn wir beispielsweise das Problem des elastischen Halbraums z = 0 unter suoh{.n der in der Ebene
z = 0 erwirmt ist, so gelten die Randbedingungen

T(r, 0) = f(r), o.:(r,0) =0, o, 0) =0, Heo(r, 0) = 0. (8.11)

Die Losung der Wirmeleitungsgleichung 21" = 0 unter der Randbedingung (8.11) ist die Funktion

= f floye-tstaende, fo) = uj‘”f(r) rJoll ) dr . (8.12)
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Die Losung der Gleichung (8.6) — der Binfachheit halber unter Beriicksichtigung der Randbedingung

ag).’ = () — ist die Funktion
0z | =0
(= — 2 j(? (1 + & z)e=tJyLr)dl. (8.13)

Aus den Formeln (8.7) berechnen wir die Spannungen o;;. Auf diese Weise erhalten wir

dl=— o | EFO (L) e=t2d L de,

Oop = — JL 10 sz,'z_f[m e & ) dE usw. (8.14)
0

,U-.;u = H»t;z = #;u = ,Hi;r = 0.
Die Gleichungen (8.8) miissen unter den Randbedingungen
o+ 0:=0, 05+0h=0, fhrotpp=0 firz=0 (8.15)

gelost werden. Nach Durchfiihrung der zu diesen Randbedingungen gehérigen HankgLschen Transformation
haben wir

Glo=pmf, =0, [@Wy=0 firz=0. (8.16)
Diese Aufgabe wurde schon in Abschnitt 4 gelost., Wenn wir die Formeln (4.15)

p=—umf

. o il . ’ " . s . . . .
einsetzen und die Spannungen oj;, #j; su den Spannungen o}y, uj; hinzufiigen, erhalten wir schlieBilich die
Spannungsausdriicke

= —um [efi|(1 =g ) +enos —Zer (oo~ Losr)|anac,
P o Ly U]

Gop = — i [ m){( -t ) sori—2n & (oo o--ff)]efm: Mz, (8.17)

Hzo = 2ty o m_[ ff? (et — e=72) Syl r) d usw.
- ()

Wir haben Lésungen erhalten, die mit denen von P, Purr [9] und R. 8. Duaviwan [10] aut anderem Wege
erhaltenen Losungen iibereinstimmen.

Es sei noch vermerkt, dal beim Ubergang zum Hookgeschen Korper (beix = 0,79 = £, A, = 1) dic Span-
nungen o, und o,, verschwinden [11]. Der Spannungszustand nimmt eine ebene Form an. Die Momenten-
spannungen sind gleich Null.
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