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DISTORTION IN MICROPOLAR ELASTICITY

W. NOWACKI, Warsaw

1. Fundamental relations and equations

Consider a micropolar, isotropic, homogeneous and centro-symmetric elastic body, sub-

ject to initial strain 7? ,x°{ depending on position x . This strain can arise in metals in ex-

ceeding the yield limit or during changes occuring in a heat working. A special case of dis-

tortions is the temperature strain 7° = «{S.. 0, je." = 0 where a t denotes the coefficient of

linear thermal expansion and 6 =T-T0 is the temperature increase. T(g) is the absolute tem-

perature at point x_ and To= const is the temperature of the natural state.

We assume that the strain 7^ , Xjj is of the same order as the elastic strain. The intro-

duction of the initial strain 7.° , ttjj into the body produces a state of elastic strain 7^ , y. -^

and the state of stress and couple stress 0^ , \i-^ . The total strain 7^ , XJJ consists of two

parts: the initial strain 7j| >«jj and the elastic strain 7^ , x-j, i.e.

The elastic strain 7^ , x-^ is a linear function of the stress [1 ]

' i + 0*'-a') Oy +X'8ijakk ,

(1.2)

xjl = (l+e) Mji + (V- e') My + ^i^k >

where n , X , a , (3, 7 , e are material constants.

Substituting (1.2) into (1.1) and solving the latter equations for stresses we obtain

a) (7jr7j") + (M- a) (Tij-'Yy) + ^ i j (7kk-7^)

(1.3)

«) (>«jr«jOi) + (7 - e) C»<0-»y) + I3S y (Kk
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where n,\,a,0,y,e are the material constants of the Cosserat medium and

The total strain y^ , «jj can be expressed in terms of the displacement vector u and the

rotation vector <£ as follows [1 ]:

If the stress cr̂  , MM from the formulae (1.3) is introduced into the equilibrium equations

and the relations (1.4) are taken into account, then we arrive at a system of six equations in

displacements and rotations

ct) graddivM + 2 a r o t £ + X= 0 ,

(1.6)

(7+e) V-4a)<£+(/3+7-e) gra6 6\v<£+2arot u + Y= 0 ,

We have introduced here fictitious body forces

xr-4,i> yi = -%^-^,j , (1.7)
where

(1.8)

Eqs (1.6) should be completed by boundary conditions which may be given in displace-

ments and rotations or in surface forces and moments on the surface A bounding the body.

Solving the differential equations (1.6) we obtain displacement u and rotation g .

Eqs (1.4) serve then for the determination of the strain y^ ,x-si and (1.3) makes it possible to

calculate the stress a-^, n^ .

Eqs (1.6) are particularly simple if we are faced with thermal distortions, namely

(1.9)
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Then they have the form

a) V u+(X+M-a)grad divu + 2a rotyj= v grad 0

(1.10)

A different method of determination of the state of stress due to the action of a distortion

was given by K.H. Anthony [2] and W.D.Claus and A.C.Eringen [3].

In view of relations (1.1) and (1.4) we have

= •Y (1.11)

Eliminating from Eqs (1.11) the quantities ^ and u{ we arrive at the compatibility equa-

tions

(1.12)

where

The quantities a^ and 8» are known functions and constitute the distortion densities. Rep-

resenting the elastic strain 7^ , «j's in terms of the stress (^ , jUji by means of relations (1.9)

we obtain the compatibility equations in stresses. Making use of the equations of equilibrium

(1.5) we arrive at equations in stresses constituting the counterpart of the Beltrami-Michell

equations of classical elasticity. Eqs (1.12) are particularly convenient in the case of plane

state of strain.

In the particular case of thermal distortion 7^ = at6 8^ , x°{ = 0 we have 6^ = 0, o^ = ej ih0h

and the compatibility equations take the form

(1.13)

6Jhl*li,h



2. Principle of virtual work

Consider a micropolar body in equilibrium, subject to external loading (body forces and

moments X,Y_ and surface forces and moments £,_m) and a field of initial strain 7? , «jj .

Suppose that on the surface Aa forces and moments are given, while on Au displacements

and rotations are prescribed. We have A = Au+Aa where A is the total surface bounding the

body.

The principle of virtual work for virtual displacement 6UJ and virtual rotation Sipj has

the form

(2.1)

This principle states that the virtual work of the external forces and moments is equal to the

virtual work of the internal forces.

Introducing into (2.1) the constitutive relations (1.3) we obtain the equation

f i i i i J p i i i ^ M i 7ji $ { i (2.2)
A A V

where

The symbols ( ) and < > refer to the symmetric and skew-symmetric parts of the tensor,

respectively. Since the body forces and moments and the surface forces and moments are not

subject to any variation, (2.2) can be written in the form

f i l t f O J $ i r M y l i i i l l ] (2.3)
V A o

We have made use here of the identity

h 4 ? ° (2.4)

The expression in the square brackets in Eq.(2.3) is the potential energy. This energy

takes an extremum value. A procedure analogous to that in classical elasticity proves that the

potential energy takes the absolute minimum.

Let us now return to Eq.(2.2). Making use of relations (1.4) and the Ostrogradski-Gauss

theorem we obtain

(2.5)



Consider now the same bounded body, of the same shape and the same material. Assume

that it is subject to the external body forces and moments X*, Y*; on Aa there act forces

p* and moments m* and on Au displacements ul and rotations <p* are prescribed. We assume

however that initial strain is absent.

We now ask the question, what should the quantities X* and Y* in the interior of the body

be and what quantities p*,m* on Ao with the same boundary conditions on ^4U should be

prescribed, in order that in the considered body there occur the same fields of displacement w

and rotation i£ as in the case of action of distortion 7,° , yl . To answer it we write down the

equation of virtual work for the considered body

(2.6)

Since displacement u and rotation <£ are the same in both cases, the right-hand sides of

Eqs (2.5) and (2.6) are identical. Comparing the left-hand sides of (2.5) and (2.6) we obtain

the relations

j . m*=mi+iJ°ini , x_eAa , (2.7)

The above quantities represent the counterparts of the body forces and moments. This analogy

makes it possible to reduce every static distortion problem to a boundary problem of the non-

symmetric elasticity theory.

3. Theorem of minimum of the complementary work

Consider the quadratic form

, /u'+a'\ /M'-a'\ X' /V+e'\ h'~e\ I3 „ , .

In view of (1.1) and (1.2), we obtain

—-
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where we have introduced the virtual increments of stress SOJJ , 5/Ujj. We assume that the

virtual stress satisfies the equilibrium equations

S^jij = 0 , eiJk6aJk+ 6 ^ = 0 , (3.3)

and that on surface Ao we have 5ps = 0 , 5m! = 0. On surface AU=A-Aa the virtual incre-

ments Sjjj, Sttij are arbitrary. Let us multiply relation (3.2), by 8<jjj and(3.2)2 by 6/Uj, .

Adding the results and integrating over the volume of the body we obtain

/ ( ^ | SoJi+^f 6 V dv= I [Crji-iji) s^ji+Cv^i) 5^ dv

or

/ ^ j ^ j / j j j j ) Wa=}w'adV ( 3 . 5 )
V V V

On the other hand, transforming the right-hand side of Eq.(3.5) we have

•Hii5flys)dV= jiu^
V A (3.6)

v

We have made use here of the definition of strain (1.4). Taking into account the equilibrium

equation (3.3) and bearing in mind that 8pj = 0, 5mj= 0 on Aa we obtain from (3.5) and

(3.6)

A, (3.7)
A u

where

T = K + I^hl+4^ dV-fip^ + m^) dA .
V Au

Here T is the complementary work. As in the classical elasticity we can prove that the com-

plementary energy takes the absolute minimum.

4. Reciprocity theorem

In deriving this theorem we make use of the analogy of body forces and moments.

The reciprocity theorem for a body without initial strain has the form
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/(X*ui'+Y|'ft)cfF+
k (4.1)

where X* , Y* , p\ , m* refer to the first system of loadings producing displacement ux

and the rotation ft , while Xj , Y*, p*, m* refer to the second system of loadings leading

to displacement u[ and rotation ft,

Consider now the same body with the first system of loadings Xj, Y{, px, m\ and the

initial strain 7? , X.JJ leading to displacement and rotation fields u-x and ft , respectively. The

second system of loadings, initial strain and rotation will be devoted by primes. Making use of

the analogy of body forces and moments (2.7) we obtain

j"[(Xi-ajljj)«J+ (Yj-Cejjjjajjj+iUjjj)) ft] dV + J [(p^ a^) u[+ (mj + fi^rij) ft] dA
A (4.2)

After simple transformations, making use of the Ostrogradski-Gauss theorem, we arrive at

the final form of the generalization of the reciprocity theorem to distortion problems:

(4.3)

;ft) dA + j (7j'i<V*'V

Consider a bounded body, free of body forces (Xt= 0) and body moments (Y{= 0) , free

of loadings on Aa , i.e. p(= 0, mj= 0 and clamped on ylu, M = 0, i£= 0. Our aim is to deter-

mine displacement u( and rotation .ft at a point | of the body, due to the action of initial

strain 7^, «jj.

We take for the second system of loadings a concentrated force XJ= 5 Qc-|) 5 ik at point |

acting in the direction of the xk -axis. Thus, YJ= 0, 7]°= 0, Xj,0" 0 . Moreover, we assume

that u[, ft vanish on /iu and p\, m[ vanish on Aa . The action of the concentrated force

X|-8 («- | ) 5ik produces in the body displacements uf*\x,g) and rotations *j (x,^) .

By means of the latter functions we determine the strain 7-?°, xj}0 and the stress a*), Mjf}.

making use of the formulae

(4.4)
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Applying to the two systems of loadings the reciprocity theorem (4.3) we obtain

JM}0/(7JM}
v

= / 5 (*-£> 5 ikMi(x) dV(x) ,

whence

H(*) ff«°fe.D + *«<*) Mtt°(£

We take for the second system of loadings (primed) a concentrated body moment

Y[ = 8 Qc-£) 5 ik . We assume also that X[ = 0 , -yjj°= «•"= 0 inside the body and u\= $[ = 0 on

An ; furthermore, pt = 0 , m; = 0 on vi0 .

The body moment Yj = 8 (x - | ) 5 i k produces in the body displacement u[ = Cf1 (x, | )

and rotation î J = 4^'Qc, g) . By means of the formulae (4.4) we determine the stress

frj^Qc,£) and ft^(x,_|) . Applying to the considered states the reciprocity theorem (4.3) we

obtain

(4.6)

Relations (4.5) and (4.6) constitute a generalization of V.M.Maysel's relations [4], to the

distortion problem in micropolar elasticity. They also hold for an infinite elastic space. In this

particular case the singular solutions uf*, * * ' , uf0, <${ 5 are known, namely [5]

-R/l
(4.7)

and

L
8TTM

16TTM 21 R

where

4a ' B "

Let us now consider a simple example. We shall calculate the change of volume of a

bounded simply-connected body, due to the action of distortion 7^ , MH . We assume that

inside the body X[ = 0 , Y , "0 and p ; = 0 , m{ = Q on the surface A.

The second system of loadings acting on the body consists only of the surface forces

p[ = lrtj. We are faced here with a multi-axial extension a'^ = 1 8^ , for only in this case
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Pi = aji«j = 1 «i • Since X[ = 0 , YJ = 0 , m[ = 0 , 7 ^ = 0 , xj;0 = 0 , Eq. (4.3) takes

the form

fp[uidA = fy?io'iidV . (4.9)
A V

Now we have

JPJMJCM = J a'yln-iuldA = juvn{dA - AV
A A A

where AV is the volume increment of the body. Therefore, (4.9) yields

(4.10)
v

The volume increment AV has the form of a very simple integral formula. The constitutive

relations (1.6) imply the relation

(4.11)

Eliminating 7^ from (4.10) and (4.11) and bearing in mind that

/ | /
V A

we arrive at the interesting relation

(4.12)

Observe that the volume increment AV is independent of the material constants and that

the integrand contains the sum of normal distortions. In the particular case of thermal

distortion we have

= 0 . (4.13)

5. Equations in displacements and rotations

Consider the differential equations in displacements and rotations

V2u+(X+M -a) grad div w + 2 a rot £ + X = 0 ,

(5.1)

V2-4a) £+(|3+7-e) grad div (£+2a rot u + Y= 0 ,
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where

"jk - MjijX i = ~ CTii ,i > y i = ~ eijk "jk Mjij

Applying in Eqs (5.1) the divergence operator we have

(5.2)

where

Observe that for X = 0 the dilatation div « is a harmonic function and for Y^=Q the function

£ satisfies the homogeneous Helmholtz equation.

Applying in Eqs (5.1) the rotation operator we obtain the relations

(.H+oi) V2rot u+2a rot rot £ = -rot X ,

( (y+e) V2-4a) i£+2arot rot u = -rot Y_

(5.3)

Next we apply to Eq. (5.1) t the operator V2D where D = (7 + e) V2 -4 a and making use of

the relations (5.2)j and (5.3)4, after transformations we arrive at the following equation con-

taining only the displacement vector M :

We have introduced here the notations

- V - p , G-V jj3, I -

Applying in Eq. (5.2)2 the operator V2H and making use of relations (5.2)2 and (5.3)!,

after elimination of the function u we obtain the equation

[2 a V2rot X - (M + a) V



Eqs (5.4) and (5.5) are very useful in determining the functions u and £ due to an action of

distortion in the infinite elastic space.

Let us consider some particular examples.

1. Consider the thermal distortion 7? = at0 5^ , x? = 0 . Then

0 i , Yj=0 . (5.6)

Observe that in this case Eq. (5.4) is reduced to the equation

, (3X+2ju)«t

VVrtfl,,. "= X+27 ' (5-7)

and that ^ = 0 . Introducing the potential of thermoelastic strain MS = 4> i we, transform

Eq. (5.7) to the form

Va* = m9, (5.8)

the solution of the latter equation is the function

It is interesting to note that ^ = 0 . Thus, in the infinite space strain Mu and couple stress

îji do not appear. The stress 0j| is now given by the formula

ld[) . (5.10)

In the particular case of the thermal nucleus 6 (x) = do5(x) we obtain

2. Assume now that 7j° = 0 and Hj*- JAO^SJ; . Then

Eq. (5.5) yields uj = 0 and Eq. (5.4) is reduced to the simpler Helmholtz equation

H = V 2 - i . (5.12)

Introducing the potential v>i = flj we reduce Eq. (5.12) to the form
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The solution of the latter equation is the following:

In the considered case «, = 0 . The rotations ^ are given by the formula </>; = Q,{. Besides

the couple stress there occurs also the ordinary stress. We have

n k . (5.15)

(5.16)

In the particular case x°(x) = 6(x) formula (5.14) yields

Consider the case in which the right-hand side of Eq. (5.12) is the stress nx°H(a-r) where

H(z) is the Heaviside function. Eq. (5.12)

° ) , r = (^+4) 1 / 2 . «°= const , (5.17)

is now axisymmetric. Consequently, in an infinite cylinder of radius a and axis x3=z the

distortion x°= const. Outside of the cylinder the distortion vanishes. Since the problem is

axisymmetric, Eq. (5.17) has the form

nKOff(a-r) , (5.18)

Applying to the above equation the Hankel integral transform, we obtain for the rotation

angle \pt the formula

(5.19)

From (5.15), we obtain

27 an an »
= - — - 9 7 . Mefi = - 2 7 - 3 7 , yZ!,= |3V2n. (5.20)

Taking into account that



Cf) for 0<r<a

(^) for

D f"
•Pj-J

(5.21)

x{~) for Q<r<a

for a< r<°°

we obtain

(5.22)

Observe that ntI is a continuous function in the interval 0<r<°° , the function ngg has a

discontinuity on the circle r = a and nzz is different from zero in the interval 0 < r < a .

6. Compatibility equations

Consider the plane state of strain. Assume that all sources and unknown functions depend

on the variables x\, x2- In this particular case the system of equations (1.12) is decomposed

into two independent systems of compatibility equations.

The first system has the form

where

O , -, O . 0

+ 3 7 + X

It is readily observed that in the considered case the displacement and rotation vectors have

the form

!,«2.0) , |£ = (0, 0, ip3) . (6.2)
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The system of equations (6.1) can be transformed to the form

where

, A2 = -dt a3i -9 2a 3 2 , A3=03

(6.3)

Replacing strain yl, x'^ by stress a'^ , jUji (making use of relations (1.2) ) we arrive at a

system of three equations in stresses

(6.4)

The state of stress has now the form

a =

O i l

On

0

an

°12

0

0

0

°33

ft-

0

0

M31

0

0

M32

Ml3

M23

0

(6.5)

Three of the above components, namely the stresses a33, n3l, ^3 2 , can be expressed by the

remaining ones. The system of equations (6.4) contain six unknown components of the state

of stress.

The compatibility equations should be completed by the equilibrium equations

32a2 2= 0 ,

Then the number of equations is equal to the number of the unknowns.

(6.6)

Let us consider two particular cases.



We express the stress by the Airy-Mindlin function

(6.7)

then the equilibrium equations and Eq. (6.4)3 are identically satisfied and the remaining

equations (6.4) 1|2 are reduced to the simple differential equations

VlV]F = Al, V

Let us consider some particular cases.

(6.8)

a) Assume that at the origin there acts a concentrated distortion y°n (x, ,x2) of intensity

7°: y°n(xltx2) = 7°5(x1) 8{x2) . Then Al=-y°dlS{xi) 6(x2), A2 = -7°3, 32S(*,) SO*,) .

Substituting into (6.8) and solving the equations we obtain

2TT(X+2M) [ r ' C-Euler's constant

(6.9)

—

where JC0(-y) is the modified Bessel function of third kind, i.e. the Macdonald function.

The stresses are calculated by means of formulae (6.7).

b) Assume that at the origin there acts the distortion 722= 7 S ^ ) S(x2) ; then

Al=yacl2
l8(x1)d{x2), ^2=7°ai925(x1)6(3Cj).

Solving Eqs (6.8) we obtain the following particular integrals;.

(6.10)

Observe that when 7°,= 7°8(a;1) 6(x2) SJJ, adding (6.9) and (6.10) we have

- — •

(6.11)
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This case can be interpreted as the action of a temperature nucleus at the origin. Observe

that in this case the couple stresses /n13, JU23, M3) , p32 vanish.

2. Consider now the case of the distortion x°3 = - i*°3 = x:c5U1) 8(x2). Thus, we have

Now the representation of stress in terms of the Airy-Mindlin function is unsuitable. Elimi-

nating from Eqs (6.5) and (6.6) in turn the stresses and taking into account the equilibrium

equations, we arrive at the system of equations

V?V?on = p92
2A3 , Vj7?aM-p8?i4, , (6.12)

2 2 _ 4|U(X+M)

V I " i O I j - - p 9 1 9 j A 3 , CT21-CT

Solving them we have

where

Let us now examine the second system of compatibility equations related to the so-called

second problem of plane state of strain, when

M = ( 0 , 0 , U 3 ) , £= (v , ,V2-0 ) . (6.14)

This system has the form



9i 732+*'ii = 0:22,
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(6.15)

U + «M = «33 .

where

0 0 0

Making use of the constitutive relations (1.3) we transform Eqs (6.15) to the form in which

only stresses occur:

(6.16)

e (JLI + a)

u + a

0,03,+9^03-,) = 2eB4 ,

where

B 3 = a 3 3 - ( a n + a M ) , B4 = a2 1-a1 2 , B 5 = a 3 3 .

The system of five equations (6.16) contains eight unknown stresses. Completing the

compatibility equations (6.16) by the three equilibrium equations

(6.17)
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we obtain a system of equations, the number of which is equal to the number of the un-

knowns.

In the particular case of the distortion y°3= 7O6(x,) 5(x2), the remaining distortions

being equal to zero, we have

8(x2) .

Eliminating in turn the stresses from Eqs (6.16) and (6.17) we obtain the following equations

for the stresses:

(6.18)

Here

- 1 , As = -y°dl 5(Xl) S(x2) .

Solving the above equations we obtain

(6.19)

where

Eliminating the stresses from Eqs (6.16) and (6.17) and making use of Eqs (6.18) we arrive at

the following system of differential equations for the couple stresses:

(6.20)



Solving them we obtain the formulae

(6.21)

A determination of the singular solutions (the Green functions) for the distortion components

makes it possible to calculate by integration the state of stress due to distortions distributed

over an arbitrary bounded region V .
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