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DISTORTION IN MICROPOLAR ELASTICITY

W.NOWACKI, Warsaw

1. Fundamental relations and equations

Consider a micropolar, isotropic, homogeneous and centro-symmetric elastic body, sub-
ject to initial strain '7; ,xfi depending on position x. This strain can arise in metals in ex-
ceeding the yield limit or during changes occuring in a heat working. A special case of dis-
tortions is the temperature strain 'y; =0 6” g, xjoi =0 where a, denotes the coefficient of
linear thermal expansion and 0 =T-T, is the temperature increase. T (x) is the absolute tem-
perature at point x and Ty= const is the temperature of the natural state.

We assume that the strain 'yjei' ,xjol is of the same order as the elastic strain, The intro-
duction of the initial strain 'y; ,xﬂ into the body produces a state of elastic strain 'lei ,x;i
and the state of stress and couple stress oy , f; . The total strain v;; , %;; consists of two

parts: the initial strain 'yﬂ ,x]r; and the elastic strain 'y;i 3 xj'l e,
=alqat aeo=nli (1.1)
T =N M o S .
The elastic strain ‘y;, s";i is a linear function of the stress [1]

7in = (p' +a) o+ (Ju’—oc’) oy + R’ﬁijakk :

(1.2)
"_;j = ('Y""e') by + ('Y" E'} Myt ﬁ’aijﬂkk ’
where ,u', )t', a', ﬁ', 7', ¢ are material constants,
Substituting (1.2) into (1.1) and solving the latter equations for stresses we obtain
a
05 = (pta) (’Tj;")’ﬁ) +(h-o) (‘Yij“?:}) i 7\5i| ('Ykk"fkk)
(1.3)

iy = (y +€) (a2 + (y=€) (=2 + B Gty = i)
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where p,\,a, B, v, € are the material constants of the Cosserat medium and

1 g v |
2“=ﬁ’2“=§5’ 27=j§,25—z,

A

N=- v F e TeET -

The total strain » %4; can be expressed in terms of the displacement vector ¢ and the

rotation vector y as follows [1]:
Vi = Ui €k o % T P (1.4)
If the stress o; , b from the formulae (1.3) is introduced into the equilibrium equations
%, = 0 €O+ 4, = 0 (1.5)

and the relations (1.4) are taken into account, then we arrive at a system of six equations in

displacements and rotations

(u+a) Viut(N+p-o) grad divu+2arotp + X=0,

(1.6)
((y+e) vz 4a) ot (f+y-€) grad divpt2arotu+¥Y=0 ,
We have introduced here fictitious body forces
0o 0
Xp=-ofli» Yi= €M » (1.7)
where
0
05 = (u+e) 7+ (- @) 5 + A8y
(1.8)

B = (r+e) i+ (y-€) %) +B8 g -

Eqs(1.6) should be completed by boundary conditions which may be given in displace-
ments and rotations or in surface forces and moments on the surface A bounding the body.

Solving the differential equations (1.6) we obtain displacement u and rotation ¢ .
Eqs (1.4) serve then for the determination of the strain 7ji » #;; and (1.3) makes it possible to
calculate the stress Oji s My -

Eqs (1.6) are particularly simple if we are faced with thermal distortions, namely

‘)’}?=d.5;j9(az). x§=0 (1.9)
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Then they have the form

(u+a) Viu+(A\+u-a) grad divu+2atotp=p grad § |
(1.10)
((y+e) V-4 a) pt (Bty-€) grad divp+2arotu=0, p=(3N+2p) o, .

A different method of determination of the state of stress due to the action of a distortion
was given by K. H. Anthony {2} and W.D, Claus and A.C, Eringen (3].
In view of relations (1.1) and (1.4) we have

0 " [} +
Ui B = Vit Vi 9T gt Ry (1.11)

Eliminating from Eqs (1.11) the quantities y; and u; we arrive at the compatibility equa-
tions
EhMi,n~ %+ 8% = %

(1.12)
€ #,n = i

where

= 0 0 0
%5 = =€ Nii,n * %y~ 8y X

=5 0
051 = =€z, n -

The quantities og; and 0y are known functions and constitute the distortion densities. Rep-
resenting the elastic strain ~j;, »;; in terms of the stress o, uy; by means of relations (1.9)
we obtain the compatibility equations in stresses, Making use of the equations of equilibrium
(1.5) we arrive at equations in stresses constituting the counterpart of the Beltrami-Michell
equations of classical elasticity. Eqs (1.12) are particularly convenient in the case of plane
state of strain.

In the particular case of thermal distortion ;= a0 8, %5 =0 we have 0;=0, oy = €, 0 ,
and the compatibility equations take the form

€Y1 n~ %5+ 03 %k = %0 n
(1.13)

Em*i,n=0 .
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2. Principle of virtual work

Consider a micropolar body in equilibrium, stibject to external loading ( body forces and
moments X, Y and surface forces and moments p, m) and a field of initial strain 'y;: 3 xﬁ 3
Suppose that on the surface A, forces and moments are given, while on A, displacements
and rotations are prescribed. We have A=A +A, where A is the total surface bounding the
body.

The principle of virtual work for virtual displacement &u; and virtual rotation &y; has

the form

v A k'

This principle states that the virtual work of the external forces and moments is equal to the
virtual work of the internal forces,
Introducing into (2.1) the constitutive relations (1.3) we obtain the equation

[ (Xi8u;+ Yi80) dV+ [ (piduitm8p) dA = dw- [ (o 8y +uidx)dv | (2.2)
A A v
where

A B
W =I(H'Y(ij3']f(ij) oy s YaijsT ’-2'7kk7nn+7”(1j)”(ij)+excij>n¢:ijb+§xkkxnn}dv .
Vv

The symbols ( ) and <> refer to the symmetric and skew-symmetric parts of the tensor,
respectively. Since the body forces and moments and the surface forces and moments are not
subject to any variation, (2.2) can be written in the form

8 (W- [ (Xju;+ Yi0) dV- [ (pyu-myp) dA - J(qﬂajii-xﬁpj,)dV] =0. (2.3)
v Ag

We have made use here of the identity

0 0
0%+ M = 05+ My - (2.4)

The expression in the square brackets in Eq.(2.3) is the potential energy. This energy
takes an extremum value, A procedure analogous to that in classical elasticity proves that the
potential energy takes the absolute minimum.

Let us now return to Eq.(2.2). Making use of relations (1.4) and the Ostrogradski-Gauss
theorem we obtain

JUX = 055) S+ (V- (uf + € 0f) ) gy AV
v .

+ [ ((pitojimy) Bu; +(mit i) 8] dA=5W . 2.5)
A
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Consider now the same bounded body, of the same shape and the same material. Assume
that it is subject to the external body forces and moments X', Y;; on A, there act forces
p; and moments m; and on A, displacements »{ and rotations ¢ are prescribed. We assume
however that initial strain is absent,

We now ask the question, what should the quantities X{ and Y; in the interior of the body
be and what quantities p?, m? on A, with the same boundary conditions on A, should be
prescribed, in order that in the considered body there occur the same fields of displacement u
and rotation g as in the case of action of distortion 'yj[; , xﬂ . To answer it we write down the
equation of virtual work for the considered body

[ (X{oui+ Yidp) dV+ [(p8u;+m;Sp) dA=5W . (2.6)
v A
Since displacement u and rotation y are the same in both cases, the right-hand sides of

Egs (2.5) and (2.6) are identical. Comparing the left-hand sides of (2.5) and (2.6) we obtain
the relations

Xi= Xi—oﬂlj , Yi=Y- (e,_ik.of,'ﬁp;‘j) , xeV,
pi=pitopn m;zmi'i'pj?"j , x€Ag, (2.7
=g, o= xed, .

The above quantities represent the counterparts of the body forces and moments. This analogy
makes it possible to reduce every static distortion problem to a boundary problem of the non-

symmetric elasticity theory.

3. Theorem of minimum of the complementary work

Consider the quadratic form

; H""a‘ “]_al mi 7F+E| 7! EI ﬁ

In view of (1.1) and (1.2), we obtain

Mo _ ., o ;
5?:-: (W+a') o3t ('-a') oyt N0y 855 = %=} »

’

ow ,
apj_:= (7' + &) mypt (r=€) iy Bitiac B35 = %5 % (3.2)
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where we have introduced the virtual increments of stress doy; , 64;. We assume that the

virtual stress satisfies the equilibrium equations
8051,;=0, € B0y + By =0, (3.3)
and that on surface A, we have §p;=0, 5m;=0. Onsurface A ;=A-A, the virtual incre-

ments 8p; , Sm; are arbitrary. Let us multiply relation (3.2), by Emj, and (3.2), by B;xji .
Adding the results and integrating over the volume of the body we obtain

v“

8W,+ [ (rdoy +x8uy) dV = [ (8o +»dy)dV, Wo= [WodV (3.5)
v v v

AW,

5o + a;xj,} dv= f [y v) oy + Cey=431) S| AV (3.4)

or

On the other hand, transforming the right-hand side of Eq.(3.5) we have

f(yjiﬁaji-l‘xhﬁuji) dv= f(uiﬁpiﬂoiSmi) dv

4 3 (3.6)
_f [niﬁuju Tt B (Eijk Sajk+ 8“]],] )] dv s ﬁpl = Bﬂjiﬂj ) ﬁmi =, Spjlﬂj '

¥

We have made use here of the definition of strain (1.4). Taking into account the equilibrium
equation (3.3) and bearing in mind that §p;=0, dm;=0 on A, we obtain from (3.5) and
(3.6)

8Wyt [ (doyt+ duy) dV = [ (ubp;+9dm)) dA (3.7
v Ay

or

where

P=w,+ \[ (vjioyi+ #jiby;) V- ;! (piui+myp) dA .
u

Here I' is the complementary work. As in the classical elasticity we can prove that the com-
plementary energy takes the absolute minimum.

4. Reciprocity theorem

In deriving this theorem we make use of the analogy of body forces and moments.
The reciprocity theorem for a body without initial strain has the form
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| Xiui+ Y o) dV+ [ (pf ui+m] o)) dA
v A 4.1
= [(X;"uit Y{"0)dV+ [(p;" uy+ m;" ¢)) dA

v A

where X; , Y[, p; , m; refer to the first system of loadings producing displacement 1

and the rotation y;, while X;', Y;', p;', m;' refer to the second system of loadings leading
to displacement u; and rotation ¢ .

Consider now the same body with the first system of loadings X;, Y,

1

» pj» m; and the
initial strain 'yj': i x.ﬂ leading to displacement and rotation fields u; and ¢, , respectively. The
second system of loadings, initial strain and rotation will be devoted by primes. Making use of
the analogy of body forces and moments (2,7) we obtain

f[(xi*g;:d) “;*‘ (Y{’ (Eijk gji"‘ﬂjti',]) ) 59;] dV"'f [(Pi"' 0;:??_1) u;+(ml+pj°inj]q?;}d,4
v A
(4.2)
= [[(XG-0j) it (Yi- (e o + i ) @) dV+ [ [(pi+ ojm) it (mi+iti'ny) @] dA .
v A

After simple transformations, making use of the Ostrogradski-Gauss theorem, we arrive at
the final form of the generalization of the reciprocity theorem to distortion problems:

f(Xiu;+Yi-p;) dV+I(piu;+mitp;)dA +f(7ﬁoj'1+xﬁp;i}d1/
v A A
(4.3)
= [(Xiw+Y{@) dV + [ (pius+mip) dA +‘fr(7;;’aﬁ+u;fg")dv.
v A

Consider a bounded body, free of body forces (X; = 0) and body moments (Y;=0), free
of loadings on A,, i.e. p;=0, m;=0 and clamped on A;, u=0, p=0. Our aim is to deter-
mine displacement u; and rotation.¢; at a point § of the body, due to the action of initial
strain yjj, % .

We take for the second system of loadings a concentrated force X;=5 (x-£) 8y at point ¢
acting in the direction of the x, —axis. Thus, Y;=0, 7;1°= 0, x J'f =0. Moreover, we assume
that u;, v; vanish on A, and p;, m; vanishon A,. The action of the concentrated force
X,=5(x~E) 8, produces in the body displacements UM (x, £) and rotations & (x, ) .

By means of the latter functions we determine the strain -yj(ik], xfik) and the stress aj(ik), ;.:j?‘},

making use of the formulae

)

O (ure) o' (a0 o

o= (u+a) rff + A8y am »
(4.4)

!uj{[k": (‘Y"‘E) xjtik}‘i' ('Y“E) K{ik)"' .Gﬁuxg) .
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Applying to the two systems of loadings the reciprocity theorem (4.3) we obtain

[ o xiu) AV = [ (- i) dV )
N

whence
w(®) = [ 1) 0P, B +2f () uf (e, DIV () . (4.5)
\'

We take for the second system of loadings (primed) a concentrated body moment
"= §(x—E) 8. . Weassume also that X, = 0, v,'=# =0 inside the body an n;= a,a;= on
YVi=8(x-£8y. W Iso that X;= 0, v;'=#;’= 0 inside the body and 0
A, ; furthermore, p;=0, m;=0 on A, .
The body moment Y= 6 (x~£) 8, produces in the body displacement u{ = U\ (x, £)
and rotation ¢; = $® (x, £). By means of the formulae (4.4) we determine the stress
Erj(ik)(i,ﬁ) and pjfik)(f, £) . Applying to the considered states the reciprocity theorem (4.3) we

obtain

G = [ [ ) 8, B) + i) i, DIV () (4.6)
v

Relations (4.5) and (4.6) constitute a generalization of V.M.Maysel’s relations [4], to the
distortion problem in micropolar elasticity. They also hold for an infinite elastic space. In this

particular case the singular solutions Um, CIJ?‘), f]i(k), Ci’fk] are known, namely [5]
R/l -R/I
y_ | A+ u g
Ui&‘S_,m(sikvzk‘m.sz,ik)"'B(f( R ik~ dik )
(4.7)
i 1 RA_
Cl)-l =—mekﬁ (—-'R ]J ,
and
=R/
7 e SR i
i Bgu Kt RO
(4.8)
S0 | (1~e"‘")+ | (e-n,ﬂu_e-Rﬁ) X pha 5 R
T " léeme* R 16mo R ik T ] 6raul® “ik R
where
B+2y ., (nta)(yte) o
= -— 2: = =
R D = P e B e

Let us now consider a simple example, We shall calculate the change of volume of a
bounded simply-connected body, due to the action of distortion 'y;: : xf, . We assume that
inside the body X;=0, ¥;=0 and p;=0, m;=0 on the surface 4 .

The second system of loadings acting on the body consists only of the surface forces
p;i=1n;. We are faced here with a multi-axial extension aj'i =1 §;;, foronly in this case
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pi=0ym =1n;. Since X{=0, Y[=0, m{=0, v =0, #;?=0, Eq.(4.3) takes
the form

[piwidA = [ vjoidV . (4.9)
A v
Now we have
jp;uidA =foj'iuju|dA =fu|,nidz‘1 = AV
A A A
where AV is the volume increment of the body, Therefore, (4,9) yields
AV = [y dV . (4.10)
v

The volume increment AV has the form of a very simple integral formula. The constitutive

relations (1.6) imply the relation
O = BA=2 1) (Y- 10) - (4.11)
Eliminating 7& from (4.10) and (4.11) and bearing in mind that
AV =fﬁk‘de= f“ihidd
v A
we arrive at the interesting relation
JoredV=0 . (4.12)
v
Observe that the volume increment AV is independent of the material constants and that
the integrand contains the sum of normal distortions. In the particular case of thermal

distortion we have

AV=3a, [0dV, [ohdV=0. (4.13)
v v

5. Equations in displacements and rotations

Consider the differential equations in displacements and rotations

(u+a) Vu+(\+p -a) grad divu+ 2arot p+ X =0,
(5.1)
((y+e) V-4 0) p+(B+y-¢) grad div p+2arot u+¥Y=0 ,
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where
(V] (1]
Xi=-055, Yi= €Ok Mij -
Applying in Eqs (5.1) the divergence operator we have

V2 div g=-i—-_;1§—ﬁdiv£

(5.2)

H div E:FF‘:—?{'_Y divY

where

Observe that for X =0 the dilatation div  is a harmonic function and for Y=0 the function
¢ satisfies the homogeneous Helmholtz equation.
Applying in Eqs (5.1) the rotation operator we obtain the relations

(uta) V2 rot u+ 2 e rot rot pg=-rot X ,

(5.3)
((y+e) V'-40) g+2arotrotu=-rot Y .

Next we apply to Eq.(5.1), the operator V> D where D=(y+e¢) V>4 and making use of
the relations (5.2), and (5.3),, after transformations we arrive at the following equation con-

taining only the displacement vector « :

DVzv'zg:ﬁzuaVzrotX~{7+e)VZG£

(5.4)
3 .
_14+a2u grad div X + (“‘;:3& *Dgrad div GX] .

We have introduced here the notations

g2 L1 oot oo (HREERE) . E
D=V P,G—V “2,[" 4’1& ,x—4a.

Applying in Eq. (5.2), the operator v*H and making use of relations (5.2), and (5.3),,
after elimination of the function u we obtain the equation

DHV? 9= oo [2a Vrot X - (u+0) V2 HY

(5.9)
2 -
ﬁih grad div y + £ -9@+a) £ +£2}Er *2) prad divyly]
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Eqs (5.4) and (5.5) are very useful in determining the functions u and g due to an action of
distortion in the infinite elastic space.

Let us consider some particular examples.

1. Consider the thermal distortion _oni =a,0 8, xﬁ =0. Then

X;=-Q2u+3N b, ¥;=0 . (5.6)
Observe that in this case Eq. (5.4) is reduced to the equation

(3A+20) &,
V2u1=mﬂ‘i 5 m=—hﬁp—" 5 (5.7

and that ¢;= 0. Introducing the potential of thermoelastic strain u;= fb,i we transform
Eq.(5.7) to the form

Ve =mo , (5.8)

the solution of the latter equation is the function

_m @AV
@4 {RED G

It is interesting to note that y; = 0. Thus, in the infinite space strain »;; and couple stress
i do not appear, The stress o}; is now given by the formula

Uj;= 2#(‘I’I1j—5|lj¢'lkk) . (5-10)

In the particular case of the thermal nucleus 6 (x)=0,8(x) we obtain

__mbo . 511
4?I'R(£,0) 3 ui—¢l| v ( . )

P(x)=
2. Assume now that y§ = 0 and #j = x"(x)&;. Then

X;=0, Y;=-(3p+2y) xj .
Eq. (5.5) yields u;=0 and Eq. (5.4) is reduced to the simpler Helmholtz equation
1

2
Hpi"_-nx:]i, n:m—v—-, H=V'~=-—= . {5.12)

Introducing the potential ¢; = £ ; we reduce Eq. (5.12) to the form



50

HO =nx’(x) . (5.13)

The solution of the latter equation is the following:

5 xo(f) e-R,"v
Q(x) =—3—ﬂ\[wdw§) ; (5.14)

In the considered case w; = 0. The rotations ¢; are given by the formula ¢;= £ ;. Besides
the couple stréss there occurs also the ordinary stress. We have

p.!i=2'r(ﬂ‘|j-5ijﬂ'kkj, Uji=—2ae‘mﬂ._k . (5.15)

In the particular case x°(x) = 8 (x) formula (5.14) yields

“R/p

e 2

; R-‘-(xf+;v«c.i+:v¢:3)l"‘2 5 (5.16)

Consider the case in which the right-hand side of Eq. (5.12) is the stress n%° H (a-r) where
H (z) is the Heaviside function. Eq.(5.12)

HSU(r) = nx"H(a-1) , r={x:+x;)”2 , %°= const, (5.17)

is now axisymmetric. Consequently, in an infinite cylinder of radius a and axis x,=2z the
distortion »°= const. Outside of the cylinder the distortion vanishes. Since the problem is
axisymmetric, Eq. (5.17) has the form

r

2
(ai,j +%§;—;‘;) Q) = nxHa-r) . (5.18)

Applying to the above equation the Hankel integral transform, we obtain for the rotation
angle ., the formula

29, FEL GG

=3y ; df, A=nax®. (5.19)
1] E e

From (5.15); we obtain

2y a0 LRy

M =TT G Be == My 6VQ. G203

Taking into account that
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p = [ $LGALGD LG KG)  for 0<r<a
|= —_i_ —+
0 §1+; Il(%)K1(£] for a<r<eo
y (5.21)
“CnGagn |GG for 0<r<a
e s
° 5-14.? 0 for a<r<eo
we obtain
PI Py
Ma=-2YAS" , Bgg=-27A (P-=1) , 1, =BAP, . (3:25)

Observe that . is a continuous function in the interval 0<\r <eo, the function uyy hasa

discontinuity on the circle r =a and p,, is different from zero in the interval 0 <r<a.

6. Compatibility equations

Consider the plane state of strain. Assume that all sources and unknown functions depend
on the variables x;, x,. In this particular case the system of equations (1.12) is decomposed
into two independent systems of compatibility equations.

The first system has the form

al'Y'u = B:Tln ""|3=0fal s
al'Yln' 31'?'11"”'13=°‘3: s (6.1)
ai”;a' a,x’,3= B35,

where

= 0 0, o0
a3 =-01 Yt 0yt xa,

" o )
Q3 =0, Y2t 02 ¥iat %3,

0 0
O33=-0 %93+ 213 .

It is readily observed that in the considered case the displacement and rotation vectors have
the form

u=(uy,u3,0), v=(0,0,¢3) . (6.2)
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The system of equations (6.1) can be transformed to the form
337+ a::')’;z_al az('Y;z +9) =4,
" 0 2.0 ' ] [
9,0,(7,~ Y22) * 03712~ afT!l R TE TR P 2l PR (6.3)
al";a_ aa“’na =A,,
where
Ay =03+003-0,05 , Ay=-0,03,-0203 , A3=0j.

Replacing strain 'yj'i, x;i by stress "i'i ; uj'i (making use of relations (1.2) ) we arrive at a

system of three equations in stresses
2 2 A 2 3 =2
azﬂil'fala,z,'mvl(a”"'ﬂn)—31 2(0at0y)=2A,,
2_y? #a du +0,0,,) 4282 =4pA
(9= )0t oy ) 45 v1(012"02|)+,},_+_€(a|#13 21Ha3) 102(0~02)=4pA, ,

01 Ma3= 0oy = (y+e) Ay . (6.4)

The state of stress has now the form

0y 013 0 0 0 py;
g=| 0210220 p=10 0 ppy (6.5)
0 0 o3 M3t Hap O

Three of the above components, namely the stresses 033, M3y, M2, can be expressed by the
remaining ones. The system of equations (6.4) contain six unknown components of the state

of stress.
The compatibility equations should be completed by the equilibrium equations
8101140309, =0, 8,013F0205,=0, 3 py1atdylyt0-09=0 . (6.6)

Then the number of equations is equal to the number of the unknowns.

Let us consider two particular cases.

1. 4,#0, A, #0, A,=0.
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We express the stress by the Airy-Mindlin function
0,=03F-0,0,%, 0,=031F+d,8,¥,
12=—8133F—a:\11, 02,=—8131F+af\1.r, (6.7)

H=0, ¥, Hp=0, W,

then the equilibrium equations and Eq. (6.4)5 are identically satisfied and the remaining
equations (6.4), , are reduced to the simple differential equations

4u\tp)
VTV?P=T;§7‘“—A, , VHPVE-1) ¥ =-(y+e) 4, . (6.8)

Let us consider some particular cases,

a) Assume that at the origin there acts a concentrated distortion 'y?, (x,,x,) of intensity
¥ ey, ) =78(x,) 8(x,) . Then A, =-9°2328(x,) 8(x,), A,=-9°9,0,8(x,) 8(x,) .
Substituting into (6.8) and solving the equations we obtain

At a2
F= '2%(‘)@%%’)’ 3x [r*(lnr+C)], C - Euler’s constant

) (6.9)
(y+e)y' @

e 2w dx, dx,

Uinr +Ko (D],

where Ku(-}} is the modified Bessel function of third kind, i.e. the Macdonald function,
The stresses are calculated by means of formulae (6.7).

b) Assume that at the origin there acts the distortion ng‘_' -y°6(x1) 6(x,); then
=4°878(x,) 8(xy), Ay=7°,8,8(x,) 6(x,) .

Solving Eqs (6.8) we obtain the following particular integrals:.

pA+py’ 8
F=aOWim 3 37 [ (lr+0)],
(6.10)
_(yte)y’ 3’
¥=S5 e g, U tKe(D).
Observe that when 9 =7°8(x,) 8 (x,) b, adding (6.9) and (6.10) we have
_u(?\m)'r _2u(\tu) -
B= ot [ (I +0)) = 55y (nr+0), ¥ =0. (6.11)
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This case can be interpreted as the action of a temperature nucleus at the origin, Observe

that in this case the couple stresses {3, Ma3, Hay, M3 vanish.

2. Consider now the case of the distortion ;= - #),= #°8(x,) 8(x,) . Thus, we have
A=0, A;=0 A3=(3;+35) x°8(x)) 8(x) .

Now the representation of stress in terms of the Airy-Mindlin function is unsuitable. Elimi-

nating from Eqs (6.5) and (6.6) in turn the stresses and taking into account the equilibrium

equations, we arrive at the system of equations
vf“l.!: —(7+E) a;Aa ' vfp‘:;: {7+E) aIAJ )
vTvTGII=Pa:A3 ’ vaf"n:Pa?As ’ (6.12)
292 . _ . 4p (\+p)
ViVi0,=-pd,0,4;, 0,=0,,, p= A2u
Solving them we have
1 1
Bya= 5= (y+e) %0, (8,+3,) I, Hpa=- 5= (y+e) x°0,(3,+3,) I,,
27 27
2° \ 20
a..=f’—21r 2(3,+0 I, on=% 339, +93,) I, (6.13)
= PR
C12=" on 8,9,(8,+03) I, 0y=0y,,
where

I=-(lnr+C), I,=r*(lnr+QC) .

Let us now examine the second system of compatibility equations related to the so-called
second problem of plane state of strain, when

u=(0,0,u3), ¢=(p,¥;,0) . (6.14)

This system has the form
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Dymtrpn =0y, =0y Yt Ky =0y,
0yYn~%3 =0y, =073 -K12=04,, (6.15)

01723=0, Y3t %yt % =gy,

where
— o 0 _ 0 0
Qy =-02Y31" 22, 07 =B Va2~ My
.. 0 0 _ 0 0
Oy =-075F%q, Gq1 =3y 731+ %12,

_ 0 $ oD
@33 =-01 Y23+ Y13~ %11~ %23 .

Making use of the constitutive relations (1.3) we transform Eqs (6.15) to the form in which

only stresses occur:

i
TR T T+ Vit pyy) =0, 3, (Hyat Hay) =29 B,

(ag_a?)(un'*ﬂn)+%Vf{ﬂ”'_.ugl)_23162“122-#“) =47 B, ,
8, (0y3%04) =0,(04,%0y3) =21 By, (6.16)

y+p u+o
B thgt o (3,045,-0,04,) = (Y +P) (2Bs~ =1~ By) ,

e(pta)
2o

Hyg= Mg~ (8,04,%0,05)=2€B,,

where
_ a2 2
B =9 0, +0,00,+8,0,(0, tay)
=9,d + ey -2)
B,= 0,0, (0py~ayy) + 0505,-01 0y
By=oga—(0 tag,), By=0g=0,, Bg=0y, .

The system of five equations (6.16) contains eight unknown stresses. Completing the
compatibility equations (6.16) by the three equilibrium equations

Byt 0yt 0y3-05,=0 , 3yt 3y Mgt 05,-0,3=0,

9,0,318,0,=0, (6.17)
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we obtain a system of equations, the number of which is equal to the number of the un-
knowns.

In the particular case of the distortion 'yga= 705(::,) &(x,), the remaining distortions

being equal to zero, we have
B,=By=B,=0 , B3=Bs=-7"0,8(¢,) b(x,) .

Eliminating in turn the stresses from Eqs (6.16) and (6.17) we obtain the following equations

for the stresses:

DVio,,=-8,NA;, , DV;jo0,,=3,NAs,

(6.18)
DVio,=-8,MA; , DVio,=0 MA, .
Here
N=(a+p)D+a, M=(u-e) D-a, D=1"V}-1, Ag=-7"3,8(x,) 8(x,) .
Solving the above equations we obtain
'}'0 v "ra ¥
0355, 8,9, (ul taly),  05,=55 8,0,(ul,-aly),
o ) )0 ) (6.19)
0= 5= 3 Wl,-al,) 03,= =57 8 (ul, +al)
where
v r 29+8 !/
I,=-(lnr+0), IL,=Kq(3) P=(—47;‘} %

Eliminating the stresses from Eqs (6.16) and (6.17) and making use of Eqs (6.18) we arrive at
the following system of differential equations for the couple stresses:

B
DVTM2,=-(‘YB:+-§V?}')AS s
D2 = 2 E 2
k== (Y8 +3 V) A, (6.20)

2
Dvlp‘l!:_z?a]a:AS! Iu‘z1=p12, 4‘15="‘)’°a|5{x1)5(x2) :
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Solving them we obtain the formulae

0
s By y
=37 3 [1-2931 - 1)1
Y. By v
=" 5= 3y 3 1-2v3(,-I)] , 6.21)

0
_ B (i D »
Hyp= By == 010,(1y- 1) .

A determination of the singular solutions (the Green functions) for the distortion components
makes it possible to calculate by integration the state of stress due to distortions distributed

over an arbitrary bounded region I .
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