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DYNAMIC PROBLEMS OF THERMODIFFUSION IN ELASTIC SOLIDS

W. NOWACKI (WARSZAWA)

1. Introduction

An earlier attempt to describe the phenomenon of thermodiffusion in an elastic body
made in papers [1, 2] in which a governing system of the differential equations was
ved. In the present paper, we give another way of deriving these equations and prove
mber of general theorems relating “external forces” and resulting “states” of a transient

ther with an immobile one. In particular, a gas diffusing into a solid body may be
ribed by such a model. As a reference system for the diffusion flow, a crystal lattice
'he immobile component may be assumed.

oij = 2Gei;+ (Ao e~ Py0—p.C) by,
S = ﬁnsu-l-(:“9+ﬂcy
#, = —ﬁ‘.a,;k—aﬂ+bC.

o;; and ¢; denote the stress tensor and the strain tensor, respectively, 0 = T'— T,
“Where T is the absolute temperature of the solid and 7 is the reference temperature of
4 natural state with zero strains and zero stresses, C stands for a concentration field. Mo-
feover, G, Ay denote the Lamé constants, fy = 3Ke,, f. = 3Ko,, where K = A,+(2/3)G
{8 the bulk modulus and o, is the coefficient of linear thermal expansion, while o, is the
soefficient of linear diffusive expansion. The coefficients ¢¢, a and b occurring in (1.1),,
- (1.1); denote the specific heat at constant strain and concentration, the coefficient of
~ thermodiffusion and the coefficient of diffusion, respectively. The functions S and u are
fo be identified with the entropy and the chemical potential of the solid.
For a dynamic process, the functions &;;, y;, 0;;, C, S, u are functions of position x
d time t. If &, 0, p are treated as independent variables, the Egs. (1.1) can be rewritten
“in the alternate form:

oij = 2Ge;;+ (Aege—yol—yup) 6ij,
2) S = yoeu+cl+du,
C = yuewtdi-+na,
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where we adopted the following notations

2 a
A= 10_ %‘s ?G=ﬁ0+?ﬁcs Pup= lzr:’

__ e az_ = i
‘=rm vt 5 "t

For our two-component model obeying the laws of irreversible thermodynamics, the
entropy source function is given by the formula (cf. [1]):

(1.3) G = LT (q-X@ 9. X0),

where q and 7 denote the flux of heat and the flux of mass, respectively. These two fluxes
are related linearly to the thermodynamic stimulus (X, X®) through

q= LWX(-‘I)_}_LNX(H)’
X@4 L, XM,

where, according to the Onsager postulate, L,, = L,,. Since the entropy source G is to
be a positive function, Ly, L,,—L,,L,, > 0, and we have

(1.4) G

ni

q= - LJ_',,M grad T—L,,Tgrad (%&;) 5

(1.5) T

n= - ~;—, L,,gradT—L,,Tgrad (%) .

Eliminating 7' grad (u/T) from the Egs. (1.5); and (1.5),, we obtain

1 LgoLie—L3 L
(1.6) q= —kgradT+on, k=—-9"m"Za 5 o =1
. T Ly Ly,
An alternate form of (1.5), reads:
1
(1.7) N = — = (Lyg—puL,,)grad T—L,, gradp.

T

Neglecting non-linear terms of (1.6) and (1.7), we get

(1.8) q= —kgradT, wn = —Dgradu, D=1L,,.
Now using the entropy equation
(1.9) TS = —divg-+pdivn

and again neglecting non-linear terms, we obtain:
(1.10) TS ~ kVT.
To derive the heat conduction equation involving 0, &, and u, we assume that [0/7| < 1
and substitute (1.2), into (1.10). As a result we arrive at:

k
Ty
A generalized diffusion equation can also be derived if we use the mass conservation law
in the form

(1.11) V20 = yyi+c+dis.
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{1.12) C = —divn,
Substituting (1.2); into LHS of (1.12) and using (1.8),, we get
(1.13) DV2u = y, b +di+nji.

The last equation generalizes the well known diffusion equation to thermal and dilatational
effects.

To obtain a complete set of the governing equations of thermodiffusive elasticity,
consider the equation of motion in the form:

{114) O'H,Jr-i'X[:Qi;[,

where u; stands for the displacement vector and X; denotes the body force vector.
Substituting a;; from (1.2), into (1.14) and using the strain-displacement relation

(1.15) Eij = —:13— (Ui,,f“"“_.',i),
we get
(1.16) GV2ui+ (A+ Q) uy, ji+Xi = oili+y40,i+yupt, i

The Egs. (1.16), (1.13) (1.11) constitute a fundamental system of field equations describing
the phenomenon of thermodiffusion in a two-component solid body.

If w and o denote the amount of heat and mass produced in the body in unit of time
and volume, and if these functions are prescribed, then the Egs. (1.10) and (1.12) are to
be replaced by

(1.17) TS & kV*T+w, C = —divn+o,

while the Egs. (1.16), (1.11) and (1.13) take the forms:

(1.18) GV*u+ (G + A)graddiva+X = pii+y,gradf+y,grad u,
K os : =r

(119) ?V 0= ygeu+f:0+a’p—W,
a

(1.20) DV = y,bg+d)+nu—o, W = w[T,.

This is a coupled system of equations in which a ,,state”, described by the functions u,
0 and u, is produced by the external ,,forces” X, o, W and the boundary-initial data.

If an elastic body ¥ is bounded by a regular surface 4, the boundary conditions as-
sociated with the Eqs. (1.18)-(1.20) can be assumed in the form:

(1.21) opn; = pi(x,1), t1>0, xeAd.

(1.22) 0x, 1) = k(x,1), wplx,t)=hx,t), >0, xeA,
while the initial conditions read:

(1.23) ui(x,0) = fi(x), w(x,0 =gk, t=0, xeV,
(1.24) 0(x,0) = m(x), wux,0) =nx).

Here, p;, k, h, fi, g, m and n are prescribed functions. If the displacement vector u is.
given on A, and the flux of heat and the flux of mass are prescribed on A, then (1.21),.
(1.22) are to be replaced by



108 W. Nowacki

up= Uylx,t), t>0, xed,

(1.25) on u
_3;=5(x,;), -g;—f(x,r), XxeAd.

where U;, s, r are given functions.

2. Wave-Like Equations. Potentials of Thermodiffusive Elasticity

To discuss a solution to the system of Egs. (1.18)-(1.20), let us decompose the vectors

u and X into potential and solenoidal parts according to the formulae:

u = grad¢+rot¥,

(L) X = p(gradd+roty),
subject to the conditions
(2.2) div?/ =0, divy =0.
Substituting (2.1) into (1.18)-(1.20), we find that (1.18)-(1.20) is satisfied if
1
@3 (1 = mod-+muu—— 0,
1
1
(2.4) (LY = -—=%
(4}
@2.5) D,0 = djs+y,V2P—W,
(2.6) Dyp = di+y,V2P—0,
where the following notations are introduced:
1/2
O =vi-fah, Da=vi-fot, a=(22%)7 a-|
(4] 5] e
D =—k-V2—(.'3 D, = DV?—né T I
1 To ty 2 (&) a QC% ] 1t % .

The Eq. (2.3) describes.a longitudinal wave in thermodiffusive elastic medium, while
(2.4) covers a transverse wave. Note that the Egs. (2.3), (2.5) and (2.6) are mutually
coupled. In an infinite thermodiffusive elastic solid, the Eq. (2.4) is independent of the
Egs. (2.3), (2.5) and (2.6), and in this particular case the temperature 6 and the chemical
potential x have no influence on the shear wave which propagates with the constant ve-

locity ¢,, without damping and without dispersion.

Eliminating the functions 6 and u from the coupled system (2.3), (2.5), (2.6), we obtain

the higher order wave-like equation for ¢.

@.7) (ChiH— (o Mk mu M) V201 = = (HO-+M, W+ M),
1
where
H = DI Dz‘dzalz; MI =~ yﬂDz'l'?ydan MZ =t y;aDl']'yﬂdap
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The Eq. (2.7) does not lend itself to discussion. Assuming a periodic vibrations of the solid,
we can show that the longitudinal wave ¢ is to be damped and dispersed throughout
the solid.

Similar separated equations for 0 and u can be derived by means of the Eqgs. (2.3),
(2.5), (2.6).

A solution (¢, 0, x) of the system (2.3), (2.5), (2.6), which is similar to the Galerkin
solution of classical elastostatics, can be obtained if (@,0, u) is expressed by a vector
field 2; (i = 1,2, 3) by means of the determinants:

Ql — iy —m, Dl Ql —my, l
(2.8) ¢=|2 Dy —do |, &=|-yV? 2, —di|,
Q:; _‘daf Dz ‘_"ypvzaf !23 DZ
[l —my £
n = —}!gV26", Dl Qz A

—'}J,,Vzal -'ﬂ'l':], QJ '

or by
1
(2.9) b= H.Q,—{-%(MIQ‘;—I-MZQ;‘),
1
(2.10) 0= M1V13,91+(D1'D2—yﬂm,,\?2 0,)8, 'l"{Dld+yﬂn7;cV2) 9,85,
(2.11) po= M;V29, 2, + ([, d+y,meV?) 9,2, + ([, Dy — yomeV?81)25.

Substituting the Eqs. (2.9)-(2.11) into (2.3), (2.5), (2.6), we obtain wave-like equations
which must be satisfied by £2;:

(2.12) [H[ )y — (mgM, +m,M;)V?9)2, = — %2-1?,
1

(2.13) [H[ )i —(myM,; +m,M;)V?*3)2, = —W,

(2.14) [Hgl_(’nﬂMl+mpM2)v23l]Q3 = =0

If W=o0=0, we can put 2, = Q; = 0; while if $ = 0, we can assume 2; = 0.

Let us discuss one more treatment of the system (2.3), (2.5), (2.6) with = W = ¢ = 0.
The Egs. (2.5) and (2.6) can be reduced to the form
(2.15) HO = M,8,V*®, Hu= M,3,V*®,
the RHS of which contains the dilatation V¢ = divu.

Let G = G(x, E, t) be the Green function satisfying the equation
(2.16) HG = 6(x—E)d(1)
in an infinite space subject to the condition G — 0 for [x—§| - co. Assume also that G
is to meet the homogeneous initial conditions.

Applying the Laplace transform to (2.15), and assuming homogeneous initial data for
0 and p, we obtain:
HO = M pV?D,

(2.17) _
Jf’ﬁ = .A?’ngZfD,

3 Problemy drgan
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where
H = (lc_ V"‘-—cp) (DV*—np)—d*p?,
Ty
Moo= '}’;adP"l'}’aBz, My = yﬂdp'l-?nﬁl s
D, = iYJ’Z—(.;:), D, = DV*—np.
Ty

The Eq. (2.10) in the Laplace transform domain reads:
(2.18) HG = 6(x—E).

Combining now (2.17), with (2.18), we get
(2.19) f (GH0—0G)dV = f G, pV*$dV —0(E, p).
v vV

LHS of (2.19) can be transformed by means of the divergence theorem to a surface
integral. If we assume that V" covers an infinite domain and (¢, 0, x) are to vanish at in-
finity, the surface integral vanishes because G — 0 as |x—§| — oo, and the Eq. (2.19)
yields:

(2.20) 0(E, p) = |, pGV"Bav(x).
14

Similarly, combining (2.18) with (2.17),, we get

2.21) AEp) = [ p GBI ).

Now applying the Laplace transform to (2.3), we obtain
1 = - -
(2.22) (V2 --;:?pz)dﬁ =m0 +m,u.

If 0 and z from (2.20) and (2.21) are substituted into RHS of (2.22) and the result-
ing equation is inverted, we find that @ satisfies the following integro-differential equa-
tion:

t
1 o? , 0
223) [hP(x,t) =— fd‘rfG'(x,x’,t—r) (Zypygd—-—z +y3 Dy ——
ciey . T at
2 n d 2 ! Lo ’ k 2 ' 2
+y,,D1—a—_r— V2O(x, 1)dV(x'), Di= ?OV —cdr, D)= DV?>—nd,.

The potential ¥ describing a shear wave in the infinite elastic body satisfies the Eq. (2.4)
with x = 0:
(2.24) [(L¥(x,t) = 0.

If & satisfying (2.23) is known, then 6 and x can be computed from (2.20) and (2.21).

In this way, the problem of finding a solution of the Eqs. (2.3)-(2.6) in an infinite

domain has been reduced to finding the solution of (2.23) and (2.24).
&



Dynamic problems of thermodiffusion in elastic solids 1t

Now we have to show that the Green function G(x, §, f) can be obtained in a closed
form. To this end, we transform (2.16) into the Laplace transform domain. We obtain:

= 1 k
2.25 o (V2=K32 206 = —— = e
( ) (v klp)(v kZ)G kDD 5(x E)’ k To ]
where
ki 1 - kon+cD ne—d? )
{k%—'?(ai'/a —-4ﬁ), N—W'—, ﬁ— kOD >0, o >4ﬁ.

Clearly, the only solution of this equation vanishing at infinity takes the form:

= 1 “kRVP _ K2RV
(2.26) Gw m(e e ).

Inverting now (2.26), we arrive at the following form of G:

1 1
G(x’ E,l‘) = _4?EkDDR (A;;,_Ai) (#’L(RJ)—%(RJ)),
where
= MR r:}q:’(_'ﬁjrz2 —__‘ai&ex — %Rz)
Y e a | Ty T |

3. Variational theorem of thermodiffusive elasticity

A starting point of this Section is the principle of virtual work under variations of
displacement. This principle is valid for an arbitrary elastic solid, and reads:

(31) J'(X[—‘QH;)(SH,(IV“F fp‘ (SHidA = fﬂ'ﬁéé‘j;dy.
v A Vv

LHS of (3.1) contains three components: the first stands for the virtual work of the
body forces X;, the second denotes the virtual work of the inertia forces gi;, and the
third one covers the virtual work of the surface forces p;. RHS of (3.1) gives the virtual
work of the internal forces.

Making use of the constitutive equations

(3.2) 0y = ZGEU“J"(;{SM_?OG_?#I“‘) (T
we write the Eq. (3.1) in the form:

(.3) Vf (Xi— oiiy) b dV + Af PidudAd = SW— Vf (Vo0 -+y,10) decsdV.

Here, the following integral is introduced:

A
W = f(GS;JE]J"‘?E”‘EM) dav.
14

If 0 and u are prescribed functions, the Eq. (3.3) yields the well known variational principle
of elasticity. In a thermodiffusive elastic solid, the functions u, 6 and x are mutually coupled

3+
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and the Eq. (3.3) is to be coupled with two additional relations characterizing the phenom-
enon of thermal conductivity and diffusion. Taking into account the fundamental rela-
tions of thermal conductivity discussed in Sec. 1

(3.4) TS = —divq, q= —kgrad0,
(35) 8= }’nﬁkk-f‘ﬂg-i‘d‘u,

and introducing, after M. A. Biot [3], the vector H connected with the entropy S through
the relation

(3.6) § = —divH,
we obtain:
3.7 ToH+k0, =0, —H.;=ypoeu+co+du.

It can be shown that elimination of H; from (3.7), , leads to the Eq. (1.11).
Multiplying the Eq. (3.7), by dH; and integrating the result over ¥, we obtain:

(3.8) f (e,i 2 _29‘ ;;q) SH,dV = 0,
V
or
39 f O, OHdA — f 08H, ;dV+ i;?. f H0H,dV = 0.
1% v ‘¥

The Eq. (3.9), together with (3.7),, implies:

(3.10) Yo fﬂéeudV+df63de+ rf}n; SHdA+6(P+92) = 0,
v 4 ¥

where the thermal potential 2 and the function of thermal dissipation & are defined
by

(3.11) P = -;-fochr/, 0P = cfeaadV,
V V

(3.12) _ 09D = -3;2 f H;6H;dV.
V

The Eq. (3.10) is the second integral relation of the variational principle of thermo-
diffusive elasticity. It contains the term fﬂﬁs“dV, which appears also in (3.3).
v

The last integral relation of our variational principle will be obtained by making use
of the relations (cf. Sec. 1):
(3.13) n = —Dgrady, C= —div,
(3.14) : C = Yueu+di+npu.
Introducing the vector F through .
(3.15) C = —divF,
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we reduce (3.13) and (3.14) into the forms
(3.16) Fi+ Dy =0,  —Fiy = yuepc+d0+nu.

Proceeding in a manner similar to that used in obtaining (3.10), from (3.16) we find:

(3.17) f(y,,+ —J]D-ﬁ,) SFdV = 0,
v
(3.18) Vo | pOewdv+d [ psbav+o(s/+3) =0,
Vv v

where the diffusion potential & and the function of diffusive dissipation # are defined
through:

(3.19) o =% f w2dv, sl =n f ududv,
4 vV

(3.20) eSS f OF,dV.

Combining now (3.3), (3.10) and (3.18), we arrive al a final form of the variational theorem
of thermodiffusive elasticity:

@21) W +P+A+D+B+d [ pbdv) = [ (Xi=git) duidV
v V
-+ fp; Ou;dA — fﬁn;(ﬁH;dA— f,un,-éF;dA.
V v v

Note that RHS of this relation include: the body forces, the inertia forces and the surface
data p;, 0 and u on A. '

4. Fundamental Energy Theorem and Uniqueness Theorem of Thermodiffusive Elasticity

Assume that the virtual displacements du;, the virtual temperature 60 and the virtual
chemical potential u satisfy the relations:
31.*; 80 é‘y df =

6H,' = j‘f[df = — %g.is 6F1 = F[df = “Dﬂ.i, etc.

0

.1

where (ﬁ;, 0, u)stands for a solution of the governing equations of thermodiffusive elasticity.
Then substituting (4.1) into RHS of (3.21), we get

d
(4.2) ?t—(.?if+')’;‘7”+93+&¢+dfp0dl’) + 20+ 2
4

— fX,-v,-a‘V—P fp.-w;d/i+ %f6?0,;;1;'{14-%0[##,;?!;4‘4,,
v A 0y v
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where %% #* and # in this order denote the function of thermal dissipation, the function
of diffusive dissipation and the kinetic energy of the body given by

(4.3) Y= —;_‘: f(ﬂ_,)de, =D f(‘u,g)de,
v v

(4.4) A = % f v 0:dV.

v
Eq. (4.2) is a fundamental energy equation of thermodiffusive elasticity, RHS of this equa-
tion reveals the energy of external forces: the body force X;, the surface force p;, the
surface temperature 0 (or the flow d0/dn) as well as the surface chemical potential x (or
the flow du/dn). Note also that the expression

4.5) ostd [ poav =1 [ @0 +2ut+mdyay,
K 14

occuring in LHS of (4.2) is always positive since, by laws of thermodynamics, cn > d2.
Now let us prove a uniqueness theorem of thermodiffusive elasticity to the effect
that there exists at most one state (u;, 0, w) satisfying the Egs. (1.18)-(1.20) in ¥ and
subject to the conditions (1.21)-(1.24).
To carry out the proof, we assume that there exist two solutions (u;, ', u')
and (ui’, 0", u"') satisfying (1.18)—(1.24). Then the difference

(4.6) b= wp—uf, 0=0-0", jp=u—u",
satisfies the homogeneous set of equations associated with (1.18)-(1.24). We shall prove

that the state (# , g, ) vanishes throughout the domain V'x [0, o).
To this end, we use the fundamental energy theorem (4.2) in which we set:

4.7) ¥ =0, xeV, p=0, 0=0 p=0 xe4.
As a result, we obtain:
(4.8) %(ﬁ’+"f?’+.@’+ﬁ+d fﬁédv) = -+ <0,
V
ar
d 2 l AA ~ A~ 1 A o) ]- Az ﬂz AA
(4.9) EJ 5 OO+ e €+ Tsﬂam%—T(cﬁ +np®+2dub) | dV
v

=~ [@ipav-p [Guyav<o.
T, P .

Since LHS of (4.9) vanishes for t = 0 due to the homogeneous initial data and it is always
negative for + > 0, RHS of (4.9) also vanishes at 1 = 0, and the integral of RHS is a de-
creasing function of the time ¢ for ¢ > 0. Since this function is non-negative for ¢ > 0,
we obtain:

(4'10) X+W+@+M+d;’-ﬁﬁdy=0,
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which reduces to

(4.11) =0, &;=0, 0=0, A=0 for ¢>0.

The Eqs. (4.6), (4.11), together with the constitutive Egs. (1.2), imply:

(4.12) vi=v, ey=¢y, @ =0, uw=p ;=09

The Eqs. (4.12),, (4.12), show that 6= f = 0. On the other hand, (4.12), leads to %; = 0

in ¥ x [0, ), from which, in view of the homogeneous initial data, #;(x, ) = %(x,0) = 0
in ¥'x [0, c0). This completes the proof.

5. Reciprocal Theorem of Thermodiffusive Elasticity

We say that G = {u;, 0, u} is a state of thermodiffusive elasticity (on ¥) correspond-
ing to the homogeneous initial data and to the external forces X; on ¥ and (p;, 0, u) on
A, if G satisfies the Egs. (1.18)-(1.24) with W =o =fi =g, =m =n = 0.

These external forces are denoted by

(51) I= {thi;ﬁ’ﬂ'}s
and the elastic thermodiffusive state by
(5.2) G= {u,0,u}, xeV.

Let G’ be another elastic thermodiffusive state produced by a second system of external
forces I':

(5.3) I'= {X{,pi;0', 0}, G = {u;,0; pu'}.

Applying the Laplace transform to the governing equations for G and G”, and appropriately
combining the resulting equations, we arrive at the identity:

(5.4) EiJE;J —Efﬁu = ()’99—' + ?yﬁ’)é = ()’a§+ yﬂﬁ)?a € = &y,

where

]

0%, p) = f e"ay;(x, 1)dl, etc.
0

This identity can be used to obtain the following integral relation

(5.5) Vf (X, — X7 dV + Af (peith~ ;) dA

+ b enmear— | ol +y.it)edv = o,
which constitutes a first part of the reciprocity theorem. To get its second part, we combine
the following equations

(5.6) ;‘f— V20 = p(yge+cl+dn), -.;f— V20’ = p(yee' +c0' +di),
0 0

which are obtained from (1.11).



116 W. Nowacki

Combining (5.6), ,, integrating the result over the body volume and using the Green
theorem, we arrive at
0 o' —
(5.7) ?k- (9' el 86 )dA =p f[y,,e%—dy)ﬂ* —pf(yo e +duoav.
0
A

an

Simi]arl;:, taking advantage of the equations
(5.8) DV2fi = p(y,e+d0+np), DV*i = p(ype’+d0'+nu),

which are obtained from (1.13), we obtain:
(59 D f (*’ Bk )dA p f (y,&+dOyE'dv—p f (y,& +d0)adv .

The Eq. (5.9) constitutes a third part of the reciprocity theorem. If we now eliminate
the common terms of the Eqs. (5.5), (5.7) and (5.9), we arrive at a final form of the rec-
iprocity theorem in the Laplace transform domain:

610 p[ [ i~ Xipav + [ pii—pimya]

k ([0 - o e\,
= (B—»a?—ﬂ—a—)dA+Df( pRLE an)dA_O.

In this equation are present only the states G and G’ corresponding to the external forces 7
and I'.

Inverting (5.10), we obtain the reciprocity theorem of thermodiffusive elasticity in the
space-time domain:

1) [Xeu-Xeuwdv+ [ (neu-peu)dd
¥V A
k 0, a0 o By _

where

ou; (x 7)

fX,@u;dV fd'r fX(x t—1)——=dV(x), etc.

(5.12)

fo* o i fd'r ]o(x = )aﬁ(" 5 Jiix), ete.

The Eq. (5.11) is also valid if G and G’ are quasi-static states, or if one of the two states
G and G' is quasi-static. For a static state of thermodiffusive elasticity, the reciprocity
theorem reduces to the following relations:

f(Xi:rE—-Xiu;)dV-f— f(p;ui—péu;)dA + f(yoﬂ+ypp)e’dV— f(y,,—ﬂ’+yﬂp‘)edV =0,
v A v ¥
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[, 00, 80 _ f au ,dp _
(5.13) J (9 in -0 —a—n-) dd =0, (,u Craa = dA = 0.

A
The Eq. (5.11) can easily be generalized to include nonhomogeneous initial data and
nonvanishing heat and mass sources,

6. Relations Resulting from the Reciprocal Theorem

In Sec. 5, we proved the reciprocal theorem under the assumption W = o = 0. If
W # 0 and o # 0, the fundamental system of field equations takes the form:

(6.1) GV2u+ (A+G)graddivu+X = gii+yp grad 0+y, grad u,
62) .I’;vza = ¢b +da+y,divi-0,
(1]
(6.3) DV2u = nji+d0+y, divi-o, O = —;,','—
(4]

while the Eq. (5.11) should be replaced by:

J . M k an’
69 [ xeu-xiowart [ (nou-pieudit (e*%.
v "

T,
' ao 3#-’ .! alu‘ ] f r_n -
-0 E) d’A+D! (p ¥ = — ' ¥ _EJ}T) dA + J (Ox0'—=Q" % 0)dV
+ f(o’ ¥ p =o' ¥ wdv =10,

v
where
r
X.Qu = r Xi(x,t—1) ili‘—(;:’ (] dr,

0
0x' = [ Ox, 1= (x, D)dr, ete.
0

Note that the Eq. (6.4) is required to hold under the homogeneous initial data only, and
the following identities to be observed

- B iy, BB O
Pe= il o =™ Ton T ox

where n in the outward unit normal to A.
Consider an infinite thermodiffusive elastic medium in which the source functions
X, Q and ¢ are defined in the bounded domain ¥, and assume that the state (u;, 0, p)
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due to these sources is to vanish as [x?+x3+x3| - co. In this case, the surface integrals
of (6.4) vanish, and we obtain:

(6.5) f(Xi@u;—X;@u,}dVJr f(Q N0 —Q X 0)dV+ f(ouy’-—o"w)dl/: 0,
V v v

where the external forces

I= {stQag}s I'= {X;JQ'r OJ}
and resulting states

C= {u,0,u), €= {u,d;u};
are included.

In what follows we shall define a number of singular elastic thermodiffusive states
(Green functions) which will be used to give further reciprocal relations and to obtain
some integral representations of a thermodiffusive elastic state. If I = {6(x—&) 6() 6;;, 0, 0}
is the set of external forces in the Egs. (6.1)-(6.3), then the resulting state will be denoted
by

G = {Uy(x, & 0), OF(x, & 1),  MF(x, &0}

Thus, G is a singular state of thermodiffusive elasticity produced in an infinite space by
an instantaneous concentrated force which is parallel to the x;-axis and applied at the
point E.

Similarly, we can introduce a singular state {U2, ®2, .#2} corresponding to an in-
stantaneous concentrated source of heat: 0 = §(x—E) 6(¢), as also a state {Uf, 07, #°}
due to the source of mass of the form o = d(x—E) d(¢).

These three singular states are listed in the Table

C
I
ui 0 Fa3
{Xi = 6(x—§)8;0(1), 0,0} ’ Ui oF H¥
{0, 5(x—%§)8(1), 0} Uy 0! MO
10,0, 8(x—E)8(1)} ug O MO

Consider two different sets of external forces acting on the solid

I= {0(x—E)5(1);;,0,0}, I'= {6(x—E)()dx,0,0}.
Corresponding states are given by
G ={Ui;(x,8,0,0f(x,§,1), 4] (x,E, 1)}, G' ={Uu(x, ', 1), OF(x, §', 1), M¥(x, E, 1)}.

The reciprocity equation (6.5) associated with these two states reads

f dv(x) f o(x—8)3;;0(t~7) —=; "}U‘*(" Ni ¥
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- de(x)f O(x—8") 0y d(f—17) _5_[{31______(;‘; L)) dr.
v b

Thus,

Ujk(gy E'x t) = Uk}(gr! E: f),
and by the homogeneous initial conditions we obtain:
(66) Ujk(g: E,: t) = Ukj(gfr E: t)-
Assume now that I and I’ reduce to

I= {0, 6(x—§)d(1),0}, I'= {0, d(x—§)d(),0};
then

G = {U{Q(x! gs t)) Qg(x) g: t)) "#Q(X! g’ lf)}’
G' = {UP(x, §,1), 0%, ¥, 1), #°x, E, 1)},
and the reciprocity equation (6.5) leads to:

(6.7) %%, E,t) = 0%%, E,1).
If I and I' take the form:

I={0,0,3(x-8)d(N}, I'={0,0,d(x-E)d1)},

then we obtain:
(6.8) MO(E, B, 1) = ME, E1).
Assume next that 7 and ' are of the form:
I= {8(x—E)d(1)8:;,0,0}, I'= {0, (x—E)d(t),0}.
Then the Eq. (6.5) reduces to

L] ’ Q r r
J dV(x)f d(x—E)d(t—1) ﬁfﬁ_(;_;'é_,_)_ e
4 0

= de(x)f S(x—E)8(t— D)OX(x, E, 7)dv,
V 0

which implies
(6.9) UR(E, &, 1) = OF(E', E,1).
Similarly, if we set

I= {é(x_g) 6(!)6[1, 0’ 0}! I' = {0: 0! 6(x—€’) 6“)}'
we obtain:
(6.10) US(E, €, t) = MIEE, D).
Finally, if 7 and I' are given by
I={0,8(x=E)d(t),0}, [I'= {0,0,d(x—%8)o(1)},
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by virtue of (6.5) we obtain:
(6.11) O°(E, €, 1) = MUE, E, 1).
The Eq. (6.6) generalizes well the known J. C. Maxwell theorem of the classical elasto-

kinetics.
Consider now the case in which

I=1{0,0,0}, I'={0,d8(x—x)d),0},
G= {u,0,u};, G ={U%6%.4%.
Then, by (6.5) we obtain:

(6.12) 0(x', 1) = [ av(x) f Q(x, t—1)@°x, X', 7)dr.
v 0

If QO describes a concentrated source of heat moving with a constant velocity » along
the x;-axis, then substituting

(6.13) O(x, 1) = Qo 0(x) (x3) 6(x3 —v1),
into (6.12), we obtain:

.t
(6.14) 0(x', 1) = Qo f@ﬂ(o, 0, 97; X}, X3, X5 t—1)dx.
0
The last formula yields the temperature at the point x’ and at time 7, if @2 is available.
If we assume that

I=1{0,0,0}, I'={0,0,d8x—x")0(},
and if Q is given by (6.13), then by (6.5)
f
(6.15) u(x, 1) = Qo f.w(o, 0, v7; X\, X3, X4, t—1)dr.
0
Finally, if we set
I={0,0,0}, I'= {d(x—x)¥()6;,0,0},

the reciprocity equation (6.5) leads to
{
(6.16) ui(x', 1) = Qo f@}f(o, 0,v7; xy, x5, x5, t—7)dr.
0

Similar integral representations of other functions describing a thermodiffusive elastic
state can be achieved if we take into account a concentrated source of mass moving with
a constant velocity or a concentrated movable force.

Also note that the Eqs. (6.6)-(6.11) remain valid for a bounded body ¥V provided
we let

u=0, 0=0, u=0 on: A4,

all /)

w0 H

ﬁ .__' . —a’—? = () on Ag, (A = An +A0)
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Uy=U8=U=0f=02=0@"=Mf=M=#"=0 on A,

00X  90° 20"  awuX o LT
x = Q = @ — — —hj - e — D - e —— R —— ] = e— =
s e én on n on dn on 0 o A

where
pf = ofm, p¥=o%n., pj= ohn.

7. Somigliana Formulae of Thermodiffusive Elasticity

In the classical theory of elastostatics, there are integral formulae, called the Somigliana
formulae, which relate the displacement vector at an internal point of a solid to the dis-
placement vector and the stress vector on the boundary of the solid. In this Section, we
shall obtain similar formulae for a thermodiffusive elastic solid.

Assume that we are given the state G:

G' = {Ufi(x,x'; 1), OF(x, x'; 1), M} (x, x5 1)},
corresponding to the externel forces
= {5(!(—1’}5(?)5‘_;, 0, D}.

Substituting these sets of functions into the reciprocity equation (6.4), we obtain:

Al w0 = [(GEU+Q%6F+oxAN)av
V

20F 7}
e f(pf@UlJ"Pi@ﬂt)dA+ T; J‘([}* i -0 % ZH)dA

where .
pl = of(x, X', Om(x), ol = 2ueli+ AdeXs,

e %( aag::j + 35(;'::‘,)
If I’ and G' are chosen such that

= {0, (x—x)4(1),0}, G = {UR, 0% .9},
then by (6.4) we obtain:

12 0x1) = [(Xi@UL+Q % @+ % MO)dV
v
] 0. 90
i (pi®U; —p,@u;)dA-i——- B%__._() _)(__ dA
A

oM 0., M
+Df( ¥ Sy an)dA,
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where
v ] ]
P? = O'?k"k, Oy = 2peg+ Adijen,

. _ 1 [au} an)
Eut = Bxk 5‘x; '

Finally, choosing I' = {0, 0, d(x—§)d(¢)} and using again (6.4), we obtain:
(13 p,0) = [(GOUI+Q%6"+ox% M)AV
A

beli)
dan

o [lo 22

= f(p;@U"-—p¢®u)a'A+——f( *W‘Qd )‘M
A

where
pi = ofnj,  of = 2uel;+ Ay h,,
1 (aug aU;')

b = ? axk 5x;

The formulae (7.1)-(7.3) constitute a generalization of the Somigliana formulae of the
classical elasticity to dynamic thermodiffusive elasticity. The surface integrals of (7.1)~(7.3)
a0 du
*“on " Ton
are prescribed in a boundary-initial value problem of thermodiffusive elasticity, the formulae
(7.1)~(7.3) are of a somewhat theoretical character. They may be modified to a useful
form if the Green functions ipvolved in (7.1)-(7.3) concern a bounded solid and if they
satisfy proper boundary conditions.
First assume that Ufj, @, ..., # vanish on 4. Then (7.1)~(7.3) reduce to

involve the six functions: u;, p;, 0 Since only three of these functions

74 . wx',f)= ~fp TQudA+ — foae 25 dA+Df ¥ -——dA
k 200 oM
! = — Q L el Bhessr' s
(7.5) 0, 1) fP:@u;dA-i— Tﬂf@* - dA+Dfp* s
A A A
' I Mﬂl
(7.6) u(x, 1) = —fpf@u;dzi+ fa* dA+Df ¥ ——dd,
A

where we have assumed: X; = Q = o = 0.

The formulae (7.4)-(7.6) determine the state (u;, 6, 1) subject to the boundary con-
ditions

(7.7) u=fi, =g, pu=h, xed, t>0,
where f;, g and & are prescribed functions.
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If we choose the Green functions occurring in (7.1)-(7.3) in such a way that

pfi =0, pe=0, Pl =0,
90} 262 267
on 0, n #s an 0
oMY ome o
on =0 =0 on =0 e 4
then the Eqgs. (7.1)-(7.3) imply:
(1.8) i, 5 [ sieUadi= [ 0D aa=b [ A5 %25 i
i il ToJ) 27 on I o
A A A
(7.9) 6(x', 1) = {pt@tft gl f@ﬂ—- == A wa%c——g{:hm,
A

(7.10) (X, t)—fp:@U;dA— f@°* dA— DJ MK ‘;*”' dA.

The last formulae determine a thermodiffusive elastic state subject to the boundary con-
ditions

a0 . op
on an
where A;, r, s are given functions,

(7.11) pi =l =s, xed, t>0,

8. Generalized V. M. Maysel Theorem

Assume that the source functions X;, O and ¢ do not vanish in ¥, and the state (u;, 0, )
is required to.satisfy the following boundary conditions:

w=f, O0=g, p=h, xed, t>0,

(8.1) a0 [0u

Pi = &i, 5;:!’, E=S, XEAg, t>0.

Assume also that it is possible to find the Green functions Ujj, ..., #° that satisfy the
boundary conditions:

Uf=:..=#°=0 on A,
p'tx=03 P?=0, P?-_—O,
20 200 267
D oo T T
o (2]
3..#1 =0 %:0’ o# =0 on A,.

an 2 on on



124 W. Nowacki

Then using (7.1)~(7.3) we arrive at the generalized Maysel formulac

k do
@®83) W, 0= f (Xi® Uiy + Q#Of + owdl ) dV + f(ﬂi@ Uy= 59 3,
4 Ag

au k , 00 oMX
Xo SR _ nX A ol A S A e
— DM 3:1)dA+ (( @ u+ T 0 I + Do o dA,
AN
Q Q 172 k Q 90
84 O, 1) = f(X;@U?+Q*QJ+U*J{ YdV + f POUS— 0% —
v Ag 0
o k , 902 EAQQ)
—_ Q. “ir —pl D G [ e
D% aﬂ)dA-{- f( Pr@u;+ Te 0 n + Dy o dd,
Ay
. . ko, 0
®.5) 1) =J (X;® US +046° + ax M) AV + f POUF— =6
4 Ag 8
. ou , k . 807 aA@°)
— D *E) dA']‘ .[ ("‘ﬁj ®u; + ?O'B*W +Dﬁ‘|= an dA.

Note that these formulae refer to a mixed boundary-value problem of thermodiffusive
clasticity. They reduce to the Egs. (7.4)~(7.6) for X; = Q = ¢ = 0 and 4, = 0, and they
imply the Eqs. (7.8)-(7.10) if X; = Q0 = o =0 and 4, = 0.

9. Simplification of the Governing Equations of Thermodiffusive Elnsticity

One of the assumptions of the classical elastokinetics is that of a slow heat exchange
between two adjacent parts of the body. Under this assumption, every part of the solid
can be treated as thermally insulated and a thermodynamic process taking place in the
solid is classified as adiabatic, In addition, it must be assumed that the heat sources vanish
throughout the solid and its boundary is thermally insulated.

Since in an adiabatic process the time derivative of the entropy vanishes, from the
constitutive equation

©.1) S =y diva+co+dp,
we obtain:
9.2) 0=— %(‘y divu+du).

The Eq. (9.2) implies that the temperature 0 is proportional to the elastic dilatation and
to the chemical potential, Substituting (9.2) into (1.18), (2.10), we arrive at

9.3) GV*u+ (A'+G)graddivu+X = pii+ngrady,
(9.4) _ DV*u = n'p+ndivi—o,
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where

2 =
PP N o
(i c

>0, n:yﬁ(——gi)>0.

e
Thus the governing equations of thermodiffusive elasticity (1.18)-(1.20) have been reduced
to two coupled equations (9.3) and (9.4). If a solution (u;, u) of (9.3)-(9.4) is known, 0
may be computed from (9.2).

Observe that the resulting system of equations (9.3)—(9.4) is similar to that of the coupled
thermoelasticity [3]. Solution of it can be obtained using the decomposition formulae
(2.1). The resulting system of wave-like equations now reads:

2 1
9.5) Ch® = mup— —,
1
1
(9.6) (L¥=—--—Z3%
C3
97 L u—nVio = —g,
where
" 1/2
n,, =, o= (_% 2 ) , Dy =DV-n'd,.
&) 44

Eliminating first » and then @ from the Eqs. (9.5), (9.7), we obtain:

1
(9.8) (O Dy—nm V20)P = — 2] Dy 9 —my0,
1
1
(9.9) Y =-—=5%
3
1 2
(9.10) (O Da=ym, V22 p = = —5 V20, 9= 0.
1

It can be seen that the longitudinal wave @ and the chemical potential u are subject to
dispersion and damping. The Egs. (9.8) and (9.10) can be used to find singular solutions
of the diffusive elasticity in an infinite space.

To obtain the reciprocal theorem of diffusive elasticity, we make use of (6.4) and (9.2).
We obtain:

. au

O11) [ (riou-Xioudr+ [ (@ui-pi@u)as+D f (,u %4
v : A N
' 3,” ' i A
— %) dd+ [ (0% w' =0 % wad,
v
which for an infinite domain reduces to
9.12) f(X;®u§+0' ¥ wydv = f(xz@u,+g' X pdv.
i 7

The Green functions associated with the system (9.3)-(9.4) can be listed in the follow-
ng Table:

4 Problemy drgan
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I I M
X = 6&—E)5(1)8;, o=0) Ui Lo o
X;i=0, o=0x-800) o i

It can be shown that, by virtue of (9.12), these Green functions satisfy the following recip-
rocal relations:

(913) Ujk(ga g’, f) = UU(E” E’ I)a ‘j[l(g: E’: f) = "”U(Ej’ Es t):
Ui (8, &,1) = M8, E, ).

It can also be shown that the Somigliana formulae of the diffusive elasticity take the form:

9.14)  wj(x', 1) = f Xi@ Ui+ o M)AV + f (7i® Uyy—pFr@u;)dd
v A

oMy >'s 31“)
+Ddf (“* T HK ) s

015 pE,0= [KEU+oxa)dV+ [(p® U —p;@u)dA
v A

A g 0N
+D!(p9(- n — M- E{) dA.
In a similar way to that of Sec. 8, we can obtain the Maysel formulae of the diffusive
elasticity.

10. Neglecting Elastic Dilatation in Like Heat and Diffusive Equations

The governing equations of thermodiffusive elasticity are considerably simplified if
div 1 is neglected in the Eqgs. (1.19) and (1.20). Under this assumption the temperature
and the chemical potential satisfy the equations which are independent of the elastic de-
formation and the Eqs. (1.18)-(1.20) reduce to the system:

(10.1) GV*u+ (A+G)graddivu+X = gii+yygradf+y,gradp,
(10.2) LI B +dp—W,
T,

(10.3) DV?u = nji+di—o.

If a solution (@, ) of the Egs. (10.2) and (10.3) is found, RHS of (10.1) is known, and to
solve our simplified problem we have to integrate the Eq. (10.1) to obtain u.
Assuming that
u = grad®+rot¥, div¥ =0,

10.4
@) X = p(grad?+roty), divy =0,

and eliminating 6 and x from (10.1) by means of (10.2), (10.3), we obtain the wave-like
equations
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1
[LY = —"gx-

(10.5) H;

If W = o = 0, the functions @ and ¥ can be found from the equations

1 1
and it is seen that both the longitudinal wave @ and the shear wave W are undamped
and undispersed.
Ifd = W=y =0, we have:
(10.?) HD].@ = - 'c_:e‘”Mzﬂ-, ‘P = 01|
1

and the longitudinal wave consists of an elastic part and a diffusive part.

In our simplified theory, a reciprocal theorem can be also obtained. Setting e = divii =
=0, ¢’ = div’ = 0 in the Egs. (5.7) and (5.9), from (5.5), (5.7), (5.9) we get:
(t08) [ @i~ Xiayav+ | (pii—pinad

F J (y,ﬁ+ypﬁ)é'dV— J(ygé’-}y#ﬁ’)zdl/ =0,

k a0 a0 ) f —
0.9 6'————-3— dA = pd, 0" —u' 0)dv,
(10.9) T, ( n p . (10" —p'0)
g E:‘ﬁ 3# e
(10.10) D W -—,,a—am dA = pd O —0'wyav.
A

If we add the Egs. (10.9) and (10.10), we arrive at

_, on _ O e , 80 aa')
(10.11) D f( B o=l 3n)dA+ To ( =i 3 d4d =0.

Inverting now (10.8) and (10.11), we obtain the following reciprocal relations:
(1012) [ (Xiwwi=Xinu)aV+ [ (pisui—pi«u)dd
7 A

+7, [@se—0 xe)dV+y, [(uxe'—u ve)dv = 0;
Z 14

(10.13) Df( gy )d/ur_f(’ aﬂ)dA_o

In a similar way to that of Sec. 9 and by means of the Eqs. (10.12), (10.13), we can arrive
at simplified, formulae of the Somigliana and of the Maysel type.

4
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Streszczenie o

DYNAMICZNY PROBLEM TERMODYFUZJI W CIELE STALYM

W pracy wyprowadzono odmienng niz w [1] postaé¢ réwnan termodyfuzji, przyimujac jako funks
niezalezne przemieszezenie u, temperature 0 oraz potencjal chemiczny p. Uklad podstawowych row
rozniczkowych termodyfuzji daje sie sprowadzi¢ do ukladu réwnan falowych. Wykazuje sie, ze fale p
dluzne, propagujace sig w nieskonczonej przestrzeni sprezystej, sa thumione i podlegaja dyspersji, pod:
gdy fale poprzeczne sy nietlumione i nie ulegaja dyspersji. h

Przedstawiono szereg twierdzen podstawowych termodyfuzji, jak twierdzenie wariacyjne, podstawdwe:
twierdzenie energetyczne, twierdzenie o jednoznacznosci rozwiazar oraz twierdzenie o wzajemnosci prac,

Oméwiono wnioski wynikajace z twierdzenia o wzajemnoécei prac, podajgc rozszerzone na ter '
dyfuzje twierdzenie Somigliana i Majziela. B

Wresznic omdwiono dwa przyblizone modele termodyfuzji. W pierwszym zaklada si¢ adiabatyczno§é
procesu termodynamicznego, w drugim pomija sie wplyw dylatacji na pole temperatury i potencjalu
micznego,

Peswome

OJUHAMHWYECKAS 3AIAYA TEPMOIOUMDGY3HUM B TBEPIOM TEIIE

B paGore prisesen jipyroit uem 8 [1] Buj ypasueanit repmomudidbysnu, NpuHHMasT KAK He3aBHCHM
dynrmun nepemertenue u, Temmeparypy 0 u xumuveckuii norenuan pi, Cucremy ocroBHBIX Tuddepesy

OHEPTETHUECKAsA TEOPEMA, TEOPEMA SIHHCTEBCHHOCTH PEILCHHMIT, a TAK¥Ke TeopeMa BaauMHocTn pabor.
OGcy)</IeHbl CIE/ICTBUA BBITEKAIONIUE U3 TEOPEMLI BIAMMHOCTH PaGOT, TPHBONA PACIIMPEHHYS
Ha Tepmopucdysuio Teopemy Comurnsana w Maiizens. B3,
Haxkoneny oficysaens! ase npubmwiennsie mofeny tepmopuddysnun. B mepsoil npepmonaraerc®
amalaTHBHOCTL TEPMOIHAMIUECKOTO IIpoLeccd, a BO BTOPOit npenebperaerca BIMSHHEM [HIISTALH!
Ha IOJIA TEMIEPATYPEI ¥ XHMHUECKOrO TOTeHLINANA, :
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