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1. Introduction

Coupled thermoelasticity is a synthesis of the theory of elasticity and that of heat
conduction. Within the framework of this theory, which is founded on the thermody-
namics of irreversible processes, a number of general theorems have been proved. The
most important of them include the variational theorems, [1, 2}, and the reciprocity the-
orem [3]. In the present paper, we shall be concerned with the propagation of a longi-
tudinal thermoelastic wave in an infinite body, our aim being to prove the generalized
G. Kirchhoff theorem. The problem is to represent the potential of thermoelastic dis-
placement and the temperature at an internal point of the region, by means of surface
integrals involving the potential as well as the temperature and the normal derivatives
of these quantities.

After the generalized Kirchhoff theorem has been derived, two particular cases are
considered. The firstis that of the theory of thermal stresses in which the coupling between
the temperature and the displacement field has been disregarded. The other case con-
cerns the passage from the coupled thermoelasticity to the classical dynamical theory of
elasticity.

Finally, the generalized Kirchhoff equation is expressed in an approximate manner
making use of the perturbation method.

2. Equations of Thermoelasticity

Let us consider a homogeneous isotropic elastic body, in the region B. The follow-
ing linearized differential equations are valid [1]:

2.1) bty g+ (A )ty i +X; = v 0,400 it
1. : s
2.2) Op— OBy = — 2, 1,7=1,2,3,

Equations (2.1) are the displacement equations; Eq. (2.2) is the generalized heat equa-
tion, The quantities u;(x, 1) are the components of the displacement vector and 0(x, t) =
= T—1Ty is the temperature increase. By T, we denote the absolute temperature at the
point x and the time 7; 7, is the temperature of the natural state, in which the stresses
and strains are zero. X;(x, 7) are the components of the vector of mass forces. The func-
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tion Q(x,t)= W/c, expresses the intensity of the heat sources. By W, we denote the
quantity of heat produced per unit time and volume, and by c,—the specific heat with
constant strain.

The quantities u, A are Lamé’s constants, referred to the isothermal state, gy—is the
density and y = 3Ke,, where K = A-+(2/3)u is the modulus of compressibility and e, is
the coefficient of linear thermal dilatation.

Next » = Ao/c,, where 4, is the coefficient of heat conduction and fy = pT,/4,. The
dot above the symbol of a function denotes differentiation with respect to time.

Equations (2.1) and (2.2) should be completed by the Duhamel-Neumann equations
expressing the dependency of the stress and strain tensor on the temperature

(2.3) 0;; = 2peij+(Aewe—p0) 65,
and the relations between the strain and the displacement are

1
(2.4) &j =7 (@, j4uy,0).

On resolving the displacement vector into the potential part and the solenoidal part

(2.5) = D i+ €, j»

we reduce the set of Eqs. (2.1), (2.2) (with X; = 0, Q = 0) to the simpler set of equa-
tions

(2.6) (V’—~ -El?- 3,2) D = myl,

2.7 (VZ— cl 33) v =0,
2.8) (vzm% a,) 0—Bod, V' = 0,

where the following notations have been introduced

1/2
= ( A1+2u ) ’

172 v
€ = (i) My = ‘sr' L]
o i Qo

0o
_ Ty 8 . @ @
fo= c, %’ 8,—&, Vh_é‘xi ax;

Equation (2.6) represents a longitudinal wave, (2.7)—a transversal wave, and (2.8) is
the generalized heat equation.

In further considerations, it will be more convenient to introduce the following new
variables:

€1 C1
fale. iy,
b4

By using these variables, the wave Eqgs. (2.6) to (2.8) assume a somewhat simpler form

(2.9) V=)D, 7) = mh(C, 7),
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(2.10) (V2 —d* )€, ©) = 0,
(21]) (Vz—a‘ﬂ)o(t, ‘t)‘—ﬁa'vzgﬁ(c, T) = 01
where
Jd 0 . d 2
V2 = ?EI— _&Ei-’ dr = '3_{“, m==my C_f,
. ﬁu f-";' 2__ € %
=y =&

3. The Integral Form of the Solution of the Equation of Potential of Thermoelastic Displacement

Let us consider the inner region B* bounded by the surface 4. By B~ we shall denote
the complement to the region B* in the infinite three-dimensional space E;.

We shall consider the propagation of a longitudinal wave in the internal region B*.
The representation of the function @ at the point v € B+ in terms of the functions 0,
aflén, @, d@/én on a closed surface A4 is of particular interest.

Let the functions @, 0 be regular in B*, and have their first and second derivatives
continuous in the closed region BTUA. Let us assume next that the initial conditions
for the functions @ and 0 are homogeneous. We consider therefore the set of equations

(3.1) V=)D =mb, (V*—0,)0—po.V*P =0,

with no singularities in the region B+*UA. Eliminating from these equations the tempera-
ture, we obtain

(3.2) [(V*—&) (V*—0)—mpay1 D (5, ©) = 0.

On performing on this equation the Laplace transformation and taking into considera-
tion the homogeneity of the initial conditions, we have

(3.3) 03,03, 96, p) = 0,

where

3, =V—22, a=1,2, &Fp)=2L@C, )= [ DE e dr,
1]

The quantities 4,, 4, are the roots of the equation
P—=2plp+(1+el+p* =0, &= pm,

where
A% D 2 27142
(= 7 pHlteklP’—2p(—e)+1+8T7:
2
Let us consider the auxiliary solution G(§, v, 7), which is the solution of the equation
(3.4) [(V2—8) (V*—d,)—ed, VP1G(E, 0, 7) = —md(E—n)8(r), +neB*

in the infinite region,
The right-hand member of this equation represents the action of a concentrated in-
stantaneous impulse at the point . It can casily be observed that this impulse is equi-
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valent to the action of a concentrated instantaneous heat source at the point . It is as-

sumed that the initial conditions G(§, », 0), ('?(Z, 1, 0) are homogeneous. On performing

on (3.4) the Laplace transformation, we find

(3.5) 003,03,G&, 0, p) = —mdé(G—n).

The solution of this equation is already known [4, 5], and has the form:
m(e~*12—e~*20)

(3.6) G(‘; N, p) = 4W' 0> = (Ci—n) Ci—n).

The function G represents a spherical wave with its centre at the point v, propagating
from this centre to infinity. Let us denote by K(§,n, 7) the temperature accompanying
the potential G(€, v, 7). On performing on the equation

(3.7 (V2= G, m, 7) = mK(&, 1, 7)
the Laplace transformation, we obtain
& y
K(csﬂ,P)=;D1G(§s‘I-P)’ Dl=vz‘_—p2'
Hence,

(3.8) E(‘;, 3, ) = (R —pY)et1e—(2—p?e—Hae

dmo(Ai— %)

In order to obtain an identity determining the function @ in the region B+ for M € Bt
in terms of volume and surface integrals, we start out from the equation

(3.9) Vf(é' 03,05, 9—8013,003,6)av = J@?“é—@?’“é—
— (A2 B2)(GV2D—DV2G)) dV.

On applying the formula for the bi-Laplacian

(3.10) f(Gv-*cb —DVAG) AV = f(V’Gﬁ?-—@—ai—VzG—i-GiVlfD Vzé‘ﬁg—f) dv

and the Green’s transformation

(3.11) f(dvzgﬁ—évzé)dy — r(G %p— — 2 ——) d4,
A

v
Eq. (3.9) takes the form

G12) [ (63,0605, 0)dr = | (é S OO0 ch“;) dA
7 A
—_ ’ (Vz@ T —V2G - Gg) dA, [*=V2—(A+4).
Making use now of Egs. (3.3) and (3.5), we obtain the equation

.'?l

(3.13)  @(n,p) = J[ &, p)— 1*P &, p)—DE, p)——DZG@ n, p)]dfi ®
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i f[vzg&(c,p) G, n,p)—V*G(E.n,p)

which is valid for v € B*. If n € B-, we have @(n, p) = 0.
It is known that the temperature 0 is related with the potential @ by the equation

D, p)
22| e,

(V*—8,) D = m0.
On applying to this equation the Laplace transformation, we obtain:
(3.14) 0= —:1—1),65, D, = V*—p2.

Making use of this relation and introducing the operator [} = V>*—(A}-+A2—p?), we
obtain the function (f'(*q p) in its final form

i oG I ob - 5
(3.15) D(n, p) = J{ gﬂ B o )!A+ f(mzc-ﬂ—qb- iG)dA(g), v € B+,
A

For n € B~, we have fﬁ(’q,p) = 0.

Equation (3.15) expresses the function &)(n,p) in the region B* in terms of the func-
tions d®/dn, D, 80/on, O on the surface 4. On applying to (3.15) the inverse Laplace
transformation, we obtain

(3.16) D, 7) _J dv' 1f(o‘(§ 0, 1—1v') 28 6@ i) e(z;,rjﬂ?_@%:;_ﬂ) dA()
+ 1 [(6@m, 2287

A
Hd}(;: T,J%é(ca TI,'-‘—'—T'))JA@)}, 'GEB+'

The notation G = 2-(0%6) expresses the inverse Laplace transformation of the
function [12G. Equation (3.16) is a generalization of the familiar Kirchhoff equation
of the classical dynamic theory of elasticity to coupled problems of the thermoelasticity-
If the causes producing deformation vary in time in a harmonic manner, Eq. (3.16)
constitutes an analogue of the Helmholtz theorem of the classical dynamic theory of
elasticity [6).

4, Integral Form of the Solution of the Temperature Equation

To determine the temperature field 0(§, 7) connected with the potential @(C, 7), let
us consider the singular solution of the equation

(4.1) (V2 =) (V2 —dr)—ed: VI H(E, m, ) = —(V*—32) 68 —n) 8(7)
in the infinite elastic space. It is assumed here that the concentrated instantaneous per-

turbation acts at the point n and that the initial conditions of the function A are homo-
geneous.
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On applying to (4.1) the Laplace integral transformation, we obtain the equation
4.2) 03,003, HE, W, p) = —D1 6(—n).
The solution of this equation is

_ (Bp)e—(B—pen

Let us construct the following identity, analogous to (3.12)

a ,.
44y [ 0O —6 03,03, dv = f ( 2 ppd—6 -2 DzH)dA
¥
o

2 )aa, o =v-giea.

- f(Vzéﬁ——V{H
A
Bearing in mind (3.3) and (4.2), we find:

7 _ﬁ”a z"_"az" __f 2"!? 23_@5
(4.5) leb(mp)mjﬁ (H—E;ch (PWDH)dA . Vi@ ———ViH — | dA.

Let us consider Eq. (3.14). After some simple transformations, we obtain the equation

- &0 - oH
(4.6) mb(n, p) = mAJ (H 3——0 = ) dA

[l a2 cialas, ner
the structure of which is similar to (3.15). The function B(v],p) at the polnt n € Bt is
expressed here also, in terms of surface integrals involving the functions @, 80/on, @,
adlon.
Equation (4.6) is valid for n € B*. If y € B~, we have 0(n,p) = 0 in the region B*.
On applying to (4.6) the inverse integral transformation, we obtain

T

@n o, 7= j}zf{ i [H(t:,n,rﬂ')@g,;—”—om HERGees ”)dA(r;}

0 A

~.--Lf(mc,n,-r—r*)"i”{5-”—) P, 7)o A, n,r~r>)dA(c>}

m . an
A

where the notation A = #~'([J3 H) has been introduced. Equation (4.7) can be treated
as a generalization of the familiar Green’s theorem of the theory of heat conduction to
the problem of coupled thermoelasticity.

The equation for f(n, p) can also be obtained in another way, making use of the func-

tion G(, 0, p). Let us perform on Eq. (3.15) the operation % D, it being borne in mind
that D, [0f = (03, 03,-+p’. Thus, bearing im mind Eqs. (3.8) and (3.14), we obtain:
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N o oK ep? oD _ 5 G
(4.8) G(n.p)——dj (K;_GT)"A+THTA ( on ){M

for n € Bt and 5{1],;;) = (0 for ne B~

5. The Non-coupled Problem of Thermoelasticity

In the analysis of non-coupled problems of thermoelasticity in the domain of the
engineer’s theory of thermal stresses, the set of Eqgs. (2.6) to (2.8) is simplified by rejecting
the term f,d,V*@ in the equation of heat conduction (2.8). The rejection of this term
influences in an insignificant manner the distribution of the temperature and the stress,
but affects essentially the character of the wave motion. In the domain of coupled problems
of thermoelasticity, the waves @, 0 are damped and undergo dispersion. In the theory of
thermal stresses, the function @ is composed of a purely elastic wave and a diffusion wave,
and the function 0 has the character of a diffusion wave.

Within the framework of the theory of thermal stresses, the equations for the functions
@ and 0 will be obtained from those obtained in Sec. 3 and Sec. 4, by substitution of ¢ = 0.

In this case the Green’s functions é, ff, H will take the form

o ~apif2 —ap'/2
- m  e—tP_—p—ep - - e—r
(5.1) Gleo = e ple=l] Klpeo = Hlemo = P
It can also be easily verified that
me™% -
(5.2) [03Gleao = o OiHle=0 = 0.

Thus, Eq. (3.15) becomes

: [~ 80 d '[{ eer\ ad
(5.3) D(n, p) ~-:! [Gie=o'm —0 E‘Ge o] dA+ T_! [(—g)a?

e—op
—Gb—( )] dA, v € Bt,
on 0
where 0 is a known function, obtained from the heat equation for f§, = 0.
Let us consider first the second of the surface integrals. On introducing the notations

—0p

- = 3¢~ a&-j
f— a—0p — =
[D] = Devr, l ]—3”9 1

on
the second of the integrals (5.3) can be transformed to obtain

G4~ p) =4 {[ T (;)——1— <o [p«is]_i[ff-]} A, neB"

Bearing in mind that
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e ( ee) - % 8(o—7), £ [B]=[ DG, 1—7)8(e—7)d7' = PE, 7—0) = [P, 7)),

o 22 D, v

L[98] _ [ee® =) . D& T—0) [3@(5 r)J
% [T] *J—"gf?——"‘(e—”‘“ =— @

we obtain, for @,(n, 7), the equation

o [ 00,
(5.5 (v, t)_—_f{{p(c T)]a (1)_ ; aila E}Crr)]
1[ 09, 7) .
*?[T]}dﬁi@), n € B*.

The function @2(n, 7) is expressed in terms of the retarded potential [@(§, 7)] and its
derivatives. Equation (5.5) represents the familiar form of the Kirchhoff equation.

Let us perform the inverse Laplace transformation of the function G (€, N, P)le=o- We
obtain the function

(5.6) GE&sM; T)le=0 = -4-” (e**—1)H(r—0)— 4—?:9[5'(9, 7)—erfc —1’ = ],
where
U= %T [e‘° erfc(2 5; — ]./_1.:) +eterfe ( 25? + ]/?)],
and
Hii—p) = {0 for v <»p
1 for 7 > p,

is the Heaviside’s function.
The first term of the expression (5.6) represents a spherical elastic wave, moving from
(A+2p)

the point v to infinity at the velocity ¢, = ( ,
Oo

12
) . The second term has the charac-

ter of a heat (diffusion) wave.

On performing on the first surface integral of Eq. (5.3) the inverse Laplace transforma-
tion, we obtain the equation

T

67 o= [de ({66 n, iy 2ET)

an
0 A

06, %) 4y GG, =) dA



Thermoelastic wave-motions in an infinite body 215

in which the function G|,., is determined by Eq. (5.6). The potential of thermoelastic
displacement @ is composed, within the framework of the theory of thermal stresses, of
two terms—a diffusion wave @, and a pure elastic wave @;.

Let us consider, in addition, the temperature field in the case of ¢ = 0. From Eq. (4.6)
or (4.8), we obtain

. 1 (fee™ a0 - 2 [e*"\|
_—— — = — | — - af=
(58) itn.p) = | 1 — 5 ( _ )‘ A, veB*

4
The performance on (5.8) of the inverse Laplace transformation yields

T ‘_0 : ,
9 0, =5 [ar | {F(c, RN
0 A

0, )5 FG,m, =)} a4, me Bt

where
1 —p*
FE,m,7) = @) exp (“4‘{)-
Equations (5.9) enables determination of the temperature 6 at the point v and at the mo-
ment 7, if the functions 6 and 80/dn are known at the surface A.
Let us observe that the quantities u, 4 involved in the equations of the present section
(through the variables § and 7) concern the isothermal state.

6. The Passage to the Classical Dynamic Theory of Elasticity

In the considerations of the present section, it will be more convenient to use the co-
ordinates x, 7.

Let us consider the equation of the potential of thermoelastic displacement @, having
a regular solution in B*

(6.1) (VZ— -:f 5?) D(x, t)—myl(x, 1) =0,

where

Oo

Ar2up\'? 3240420y
Clz(_.?_-._!_ _#._T) > '!n(':( T;r #r}g_‘,
Cibo
and the quantities uy, Ay are measured under isothermal conditions. In order to solve

Eq. (6.1), let us consider a singular solution of the equation
, 1
(6.2) (V3~ -t:? 6;) G*(x, X', 1)—my K*(x, x', t) = — 2 O(x—x")o(r)
1 1

in the infinite space. It is assumed that the initial conditions of the functions G* and K*
are homogeneous. By 0(x,?) we have denoted the temperature connected with the
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potential @ and by K* —the temperature connected with the function G*. Let us perform on
Egs. (6.1) and (6.2) the Laplace transformation. On combining Eqs. (6.1) and (6.2), we find

.. S - g - |
(6.3) [ (Gv2d— V26 dv—m, [ @6+—k*®)av = — B, p).
4 v 1

The classical dynamic theory of elasticity is, of course, based on the assumption that
the heat exchange between elements of the body is very slow. Thermodynamic processes
are assumed in the dynamic theory of elasticity to be adiabatic. This assumption implies
the following relation between the temperature and the dilatation

T
(6.4) 0(x, 1) = —nrx = —rxV2P,  r :%.
£
We have also the following analogous equation:
(6.5) K*(x,x', 1) = —nr#V2G*(x, x', 1),
The relations (6.4) and (6.5) replace, in the classical dynamic theory of elasticity, the heat
equation. On introducing (6.4) and (6.5) in (6.3), we obtain

(6.6) D(x',p) = ¢ J (GV2D—DVG¥)AV, ¢ = A (l4+nrnox).
V
On substituting (6.5) in (6.2) and performing the Laplace transformation, we find:
2 i~
6.7) (V"— %) G* = — :—z o(x—x’).

A solution of this equation is the function

W 1 2
6.8 * ) e
(6.8) GHx, X, p) =5

Making use of Green’s transformation, we can reduce Eq. (6.6) to the form
5 d -
(6.9) d(x',p) = ¢ J (G* 2 @fg ) dA(x), X eB*.

n
A

Bearing in mind (6.8), we have

(6.10) D(x, p)_—”( - e _”_(%("?ﬂ)] dA(x),

where ¢ is the velocity of the longlmdmal wave with adiabatic constants g, 2, and, [7],

¢ = 2+ Hr#®yr .
Qo

The inverse Laplace transformation performed on the expression (6.10) yields the Kirchhoff
equation in its classical form

(6.11) &, 1) = ‘ql—f{@(x :)_(_1) 13 o [acb(x r)]
A

r or dt

_ _1 [E?%Q}} JAKX), x' eB*.

In this equation [D(x, 1)] = D(x, t—r/c) is a retarded potential.
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7. An Approximate Form of the Potentials @, 0 for the Coupled Problem

The determination of the potentials @, 0 from Eqs. (3.16) and (4.7) encounters serious
difficulties due to the necessity of performing the inverse Laplace transformation on the

functions G, H and their derivatives. This difficulty will be evaded by making use of the
perturbation method, in which the small quantity is ¢ = fm ('), which characterizes the
coupling between the temperature field and the strain field. Let us assume, therefore, that
D = QgD 2Dy ...,

7.1
( ) G = Go‘i—BGr}‘SZGz'!- veey

and introduce them in Eq. (3.16). The function G occurring in this equation can be ex-
pressed in terms of the function G as follows

= (V*—(14#)d,)G.
Confining ourselves to the first two terms of the series (7.1), we find

. a0 el
(72 @D, 7) = dt’{ (G‘c—-—-—ﬁ ’)d‘A
! [ an

d

1 oD, d :
+-;.r[(NGD)W — By (NGO)]dA} —|—ef T { ( )dA

A 0 A

4 }I;T f [(Nc;jua Gy d@;_{pi g (NG~ .G.,)] dA}.
b .
where N is the operator N = V*—4,.

For e = 0, Eq. (7.2) becomes the sum of Eqgs. (5.4) and (5.7) of the problem of the
theory of thermal stresses. On substituting (7.1) and
(7.3) H = Hy+eH +H;+ ...
in Eq. (4.7) and confining ourselves to two terms of the series (7.1) and (7.3), we find

o0 s (e e o [ 302

1 oD, d |.
+ E‘J‘[(Nﬂl—a"ﬂq) _d_.’;. '—@g -Ej_?; (NH| — 0y Hu)l ifAI

It remains to determine the functions Gy, G, and H,, H,. We expand the quantity Ai(e, p),
A3(e, p) in Maclaurin’s series in e. By confining ourselves to two expansion terms, we have

2

(1.5) R P .

p—1

78 B p— g,

(1) This quantity is equal to & = 0.0168 for copper, £ = 0.0356 for aluminium and & = 0.00237 for
steel.
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14 P [ DA
A %P'1"i—(5:ﬂ &, 12~P‘;2(1 2(,0—1))'
I (1_ s(P+1))
-3 " plp—1) (p—1»)]

On substituting 4,, 4, in the expressions e~*¢, e~*2¢, we find

o (1__62_9_ pﬁ l)e_w,

(7.6)

12
ey (1-.— 82‘? pp—l ) e-or'l?,

Finally, on substituting (7.5), (7.6) in the expression (3.6), we find

m eer—eor'l’

G0 = Ohmo = %ag ~20—1)
= 1 om p+1 gg) i (}H 1 2) _aplfz]
&= g po—17 [(p—l g + '

The quantity Go = Glop is expressed by Eq. (5.6). For the function G,(g, 7), we obtain
the following equation [8]

|

(7.7) Gl(e,r)=—z’j:—9”((r—e)3+(r~g)( —1)+1)e‘““—1]H(r—9)—oc(e,f)%
2 L 2
L lres)oer it G) (-5

—[;"J“ “‘““] U+( 8 9__) V*‘*rf"( e ) * (%)m °xp ( Zﬁ)l

where the following functions have been introduced

P [ "’erfc( . -—]/-r) eeerfc( = +|/1:)]

2

12 12
a(p, ) = f[(r.rl— é ) Ve, to)— = U(g, ru)+(-——) exp( ;—f:)] dz,.

1]

The function U(p, 7) was given in Sec. 5. In the function G, (g, 7) we can discern, similarly
to the case of the function G, two types of waves—an elastic wave and a diffusion wave.
If we introduce (7.5) and (7.6) into the expression (4.3) for the function H(p, p), we obtain

"'y l 172
Hy(o,p) =——e@"",
(7.8) o

]?l(@sp) 4?:9(19 I)z{ -ep_l,l P2 (p— 1)_1] —cp' }
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On performing on these functions the inverse Laplace transformation, we find
1 —p?
Ho(p, ©) = Boy T P (—4;-),

(7.9 H\(p, ) = 41—@{(r~9+l)e““H(T—e)—[(r+I)U(e, r)——% Ve, r)]

(4

. 1 —e
1l o)

The function H, has a diffusion character. In the function H,(g, 7) are contained terms
having the character of an elastic wave and a diffusion wave.

For practical purposes, the strain and the stress in machines and structures can be
determined by rejecting the coupling between the temperature field and the strain field,
and by assuming ¢ = 0 in Eqs. (7.2) and (7.4). In this way we arrive at the equations
discussed in detail in Sec. 5.
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1.
2.

Streszczenie

FALE TERMOSPREZYSTE W CIELE NIESKONCZONYM

W pracy rozpatruje si¢ propagacj¢ fali podluznej w nieograniczonym termosprezystym osrodku. Po-
tencjal termosprezystego przemieszczenia oraz temperatur¢ w pewnym punkcie wyrazono w postaci calek
powierzchniowych w ktérych wystepuja potencjal, temperatura oraz ich pochodne w kierunku normalne;j.
Uzyskany wynik stanowi rozszerzenie znanego z klasycznej teorii termoprezystosdcei twierdzenia Kirchhoffa
na sprzezona termosprezysto$é. Rozpatrzono dwa przypadkiszczegélne tego ogdlnego twierdzenia, przy czym
pierwszy z nich dotyczy niesprzezonego zagadnienia termosprezystego, a drugi klasycznej elastokinetyki.
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Pesome

TEPMOVIIPYI'ME BOJIHBI B BECKOHEYHOM TEIIE

B pafore pacemarMpBaeTcH pPACIpOCTpaHEHHE TPOLOMLHEIX YIPYTHX BOMH B OCCKOHEUHOI cpepe.
ITorentman Tepmoynpyroro nepemeuiess @ u Temneparypa (0 B HexoTopoil Touxe 5 e B+ BhIpaaercs
B BHJE TOBEPXHOCTHLIX MHTEIPAIIOB, B KOTOPhIX CYLIECTBYIOT: MOTECHIHAJ, TEMIIEPATYpa M UX HIpOns-
BOJHBLIE IO HAUPABJIEHHIO HOpmanu. ITonyuyeHHBII pPE3yNBTAT SBIAETCA PACHIMPCHHEM H3BECTHOIT
reopembl Kupxroddpa us kaccmueckoll QuHAMMUYECKOH TEOPHM YIIPYTOCTH HA CIYHAl COMPAYKEHHOH
Tepmoynipyrocti. PacemMaTpuBaloTcs [Ba YACTHBIX CIyuas 3roit ofluel Teopembl, TpHYCM IEPBEIT
M3 HHX KacaeTcA HECONMpsyKEeHHOH 3ajaym TEpMOYIpPYLOCTH, 4 BTOPOH KIIACCHUECKOI MHHaMHYecKOoit
VIIpYTOCTH.
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