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A RECIPROCITY THEOREM FOR COUPLED MECHANICAL AND
THERMOELECTRIC FIELDS IN PIEZOELECTRIC CRYSTALS

W. NOWACKTI (WARSAW)

The equations governing small vibration of piezoelectric crystals, taking into
consideration the coupling between deformation, temperature and electric field
have been derived by R. D. MINDLIN, [1]. These constitutive equations and those
of motion will be used in the present paper to derive a reciprocity theorem, and
to discuss a number of conclusions following from this theorem.

The coupled problem under consideration consists in determining the stresses
0;;(x, 7) and the strains &;(x, 1) of the C) class, the displacements u(x, 1), the
temperature @(x, {) and the electric potential @(x, ¢), of the C® class, for x e B,
t >0, that is in the region B, bounded by the surface S. By x we denote the
geometric coordinate x = (xy, x,, x3), and by f — the time.

In the region B and for t > 0 the following equations should be satisfied.

The equation of motion

(@) oy, =0i—X;,  5j=1,2,3,
the generalized heat equation

@) w0, ="Tes, i,j=1,2,3,
and the equation of quasi-stationary electric field

3) Dy=—y, i=1,23.

X, denotes components of the mass force, s — the entropy per unit volume, D; —
components of electric displacement, y —intensity of electric charge, T,— the
absolute temperature referred to the natural state in which the stress and the strain
are zero, x;; are coefficients of heat conduction and ¢ the density.

These equations should be completed with boundary and initial conditions.
The following quantities may be assigned at the surface S.

The displacements or loads

(4a) u = U(x,1),

(4b) oym =R, xeS, 1>0.
The temperature or heat flow

(5a) 0 = 9(x,1),

(5b) —wi0.m, =k(xt), xeS, t>0.
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The electric potential @ or the electric surface load
(6a) D = p(x,1),
(Gb) D;ﬂ;:d(x,f), XES, t>0.

The initial conditions will be assumed to be homogeneous, it being understood
that all the causes producing the coupled mechanical-thermal-electric field started
to act at the moment ¢ = 0"

(7 u(x,0) =0, 1(x,0)=0, 0(x00=0, @(x,0)=0, xeB, t=0.

In addition, we have the constitutive equations which have the form [1, 2].

(8) 01;= clueu—eaiBe—M0,  Ex=—D 4,
©) D; = e+ i Ei+pi0,
(10) § = Aen+piE+a*t0, xeB+S, 1=0.

These equations must be completed by the stress-strain relations

1
(1) & =_2_(ux‘.j+“j.f)-

Equation (8) is the Hooke relation generalized to coupled problems, the constants
¢Fq playing the role of stiffness constants measured under isothermal conditions
with constant electric field. The relation (9) enables us to express the components
of the electric displacement vector and the relation (10) — the entropy, by means
of the functions ¢;, E; and 6. The material constants in these equations are discussed
in detail in Mason’s monograph [2]. In further consideration we shall need Egs.
(1), (2), (3) expressed in functions u;, @ and @. We shall obtain [1]

(12) cgrit“k,u =1 eﬁu@,m—lﬂﬁ'.r +X; = pii,
(13) ehijth jk— VDo +110, = — 1
1 : : .
(14) T i i — aF0 +pid  — Mty ;= — W,
1]

where W denotes the quantity of heat generated by a source of heat per unit time
and unit volume.

In the problem under consideration, the motion is assumed to be produced by
mass forces X;, a heat source Q, electric charges y, and also the quantities appearing
in the boundary conditions such as surface load R;, temperature (heating) ¢, poten-
tial @ etc. )

The resulting quantities are the displacements u;, the temperature 6 and the
electric potential @. In order to obtain the reciprocity theorem, we shall consider
two sets of causes and effects; the latter will be denoted by «primesy. In further
analysis, we shall use the equations (1) to (14) in a transformed shape by applying
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to them the one-sided Laplace transformation. We start out from the following
identity obtained from Eq. (8):

_ 2= = = R I -
(15) (G +2AE0 + ey ENEy = (610" + ek EEy = cliuEnsl, = efiugnty,

where

oo

G (x,p) = Lloy;(x,0)] = fé"'cr,-j (x,0)dl1, ete.

1]

On integrating (15) over the region B, we obtain the equation

(16) f (68— 038 )dV = — J 25@5;1_0-’56;}4,/_ feﬂﬂ(gké;j—g,:gu)d v,
B B B

Bearing in mind that &;&; = &;;(6j;,+®;;)) = & ; becauwse &;m; =0 (in
view of the skew-symmetry of the rotation tensor), the left-hand side of (16) can,
taking into consideration (1) and the boundary conditions (4a), (4b), be represented
in the form

(17 4 (@8 — 008, AV = J (@it y— it AV
- Bf (Gyit}), — (@), 1AV — ;{ @yjojili— L) AV
— ! RU;— R, 0)as+ [ (X — Xiiw)dv.
By uniting (16) and (17), we obtain ’
(18) [(Riai—Xiapdv+ [ (RU —R;U)ds
B 5
= Bj 2B, —0',)dV+ hf (D (&l — B AV, Eg=— D,
Equation (14) will now be made use of by multiplying it by €', and integrating

over the region B and subtracting from it the analogous equation with “primes”,
multiplied by 6 and integrated over B. We obtain the equation

(19) —; fx'.- (00— Jav=p lfz;-j:(a.., ' —a} Bdv
i)
B B

— @,;G_’—-q?jie_)dv}- f (T — BV,
B B

The left-hand side of Eq. (19) yields, on applying the divergence theorem, the
equation .

(20) A1 f xu(ﬁ,,ﬁ_ﬁj,.,,&”)dyzl f (0.0 —07 0)n,dS.
Tc Tﬂ
B Y
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Bearing in mind the boundary conditions (5a), (5b) and uniting (19) with (20),
we obtain

1 o o = S o
= ' —k"®)dS = (D0 — D H)dV
2n = f (kD ) p[ f PP i)
o B

- f xg(a;,jo*'_a;,jﬁ)dv}— f (WO'— W')dv.
B B
Similarly, making use of (13), we obtain
(22) [15® & — B, B)aV= [ by, 1D~y D)V
B B
+ 9@, 0By + [ B — 7 B)aV,
B B
or, on applying the divergence theorem,

@3) [y5(D, 0 —B! DyndV= [ ety @ — i BIndS — [ ety ;B x— i ;B AV
B Y B

+ [iO0P' —0'B)ndS— [p0F,— 0D yav + [ (1@ — 7' P)av.
s B B

Bearing in mind (9) and the boundary conditions (6a) and (6b), Eq. (23) may
be given the form

@4) [ @) —dp)ds = [ ey, ® o— i D )dV-+ [ BOD,—0'D )av
5 B B
_ f (D — 3 D)dV,
B

On eliminating from Egs. (18), (21) and (24) the repeated integrals, we arrive at
the following equation involving all the causes and effects

@5 [(Xai—Xayav+ [(RU—R; TydS+— [ W —wyav
B s P B

+

. [ ~%9)dS+ [ @@ — %' B)av + [ (dg' — d'g)dS=0.
PTys B s

This equation expresses the reciprocity theorem in its transformed shape. On perfor-
ming the inverse Laplace transformation we obtain the reciprocity theorem in the
following final form

; ou(x,7) oui(x,7)
26 oy TUNT)  yere s oy OHET)
(26) nf dr ,,f [X;(x,r s X (x,t—7) - JdV(x)
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(2.6) e f dr f :R;(x,r—z)%l—x;(x,r—r)a%—xﬂ] ds(x)
0

[cont.] T T
t
5
fef
0 B

Wt~ W'(x,t—-r)ﬁ(x,r)]fz'.V(x)
+El_; f dr f [k(x,r—-r)vﬁ“'(x,r) -—kf(x,r-—r)ﬁ(x,r)J as(x)

+fa'rf[x(x t—1) ——=— o (A’T) %' (x,t—1T) ad)éﬁ]dlf'(x)
T

+ f ¥ f [d(xt BEPLUA L PN T):IdS(x)
T

The reciprocity theorem has a particularly simple form in the case of an infinite
body, because in this case the surface integrals vanish,

Below are obtained equations for the functions #;, 0 and @ inside the body
if boundary values are known together with their derivatives.

As a set with “primes”, let us assume an instantaneous concentrated force at a point
& of the infinite body, directed in the x; direction.

This force X; = d(x—&)d(7)d;;, will produce in the infinite body a displacement
u; = GD(x, & 1), i,j=1,2,3, a temperature 6'= CY¥(x, &, 1), and a potential
WPU(x, & 1). The above Green’s functions G{), CY), W) will be obtained by solving
the set of Egs. (12)-(14), assuming that X; = d(x—¢&) 8(2)0;;, ' = 0, W = 0.
These functions will, in what follows, be assumed to be known. On substituting
up =GP, 0’ = CP and @' = P, and X; in Eq. (25), we find

@7
#,(6,p) = [ Xi(x.p)GPO(x,£.0) AV (%) + [[Ri(x,0) G(x.&,p) — RO ox.£,p) Ui(x,p)1dS(¥)
B s

CO(x,&,p) — kD (x,&,p)D(ex,p)]dS(x)

+_-l_'f ﬁ’(x’P)EU)(x:E’p)dV(I) -J— 1
PB Top %

+ [ 200, p) PO,E,p)AV () + [[dx,p) PO, £.)— dD(5,,)P,P)ASE).
B 5

In this equation R\ is the value of o{{, on the surface S, the stress off) being
expressed by (8) in terms of the Green’s functions G{), CY) and ¥, Similarly
we have k= —,CPn, and dP = DPm;, where D is expressed by (9) in
terms of the functions G, C¥, W),
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Equation (27) enables us to determine the displacements at the point & € B with
a known distribution of mass forces, heat equations and electric charges and with
known values of R, U, k, #, d and @ at the surface of the body. Equation (27)
comprises a number of special cases. Thus, with no electric coupling, this equation
becomes that of the thermoelastic problem. If there is no electric and no thermal
coupling, the body being merely loaded by the mass forces X; and the loads R,
Eq. (27) becomes the Somigliano equation generalized to the dynamic problem.

Let us assume in turn that the set with “primes” is a product of the action of
an instantaneous concentrated source of heat in an infinite body. Under the action
of this source of heat, there occur displacements u; = Vi(x, &, ¢), temperature
0= K(x,&,t), and potential @' = Q(x, ¢, 1).

The above functions will be obtained by solving the set of equations (12)-(14)
by assuming that X{ = 0, " = 0, W'= 6(x—&)0(#). Assuming the Green’s functions
thus obtained to be known, we obtain, by substituting them in the reciprocity Eq,
(25), the relation

(28)
0(£.0) = 1 Xi(x,p) Vi £.0)aV () +p [ [Ri(%,0) Vi(o6,p)— ROV(6,,p) Ui(x,p)1AS(x)
B s

+ [ Wox.p)R(x£.p)dV () + -;,— [x,p)Kx,£.0) — KOx.8.p)0(x, p))dS ()
B 08
+0f 1P) 20 E.0) AV (%) + [[d0x.0)200,6,0) — AV (5,0 P)IS(X),
B 5

where R™ is the expression {}’n;, where of}? is obtained from Eq. (8) by substi-
tuting =V, 0'=K, @ =Q. Next, k™= —u,K;n, and d")= DM,
where D™ is given by (9) and expressed in terms of the functions ¥, K, 2.

Equation (28) enables us to determine the temperature inside the body for
a known distribution of the mass forces, heat sources and electric charges, and for
prescribed values of the functions R;, U, k, ¥, d and ¢ at the surface.

Finally, let us assume as a set with “primes” the result of action of an instanta-
neous concentrated electric charge at the point & of the infinite body. This charge
2= 0(x—&)0(?) produces the displacements u; = W(x, &, ), temperature 6’ =
= L(x, & 1) and potential &' = I'(x, &, f).

These Green’s functions will be obtained by solving the set of equations (12)
to (14) with X{ =0, W'= 0, 5 = 6(x—&)3(#). On substituting y', W, I" in the
reciprocity Eq. (25), we find the following expression for the electric potential

(29) B(&.p) = [ Ki(x.p) Wil p)dV(x) + [ (R (x,p) Wi(x,.0) — RO £,p) Oix,p) 1S ()
B S

1
Top

+—;—f ) (& p)dV (5) —— [, p) ) — KO, 8, B 6, IS()
B S

+ J 206P)TCx,8,p) AV (x) +- [[d(x,p) T (x,6,p)— A9 (x,,) 9, P)] IS ().
hy
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From this equation the electric potential @ can be determined at the point & ¢ B
for a known distribution of the functions X;, W, 7 and for values of the functions
R, U, 9, k, d, and ¢ prescribed at the surface S. Equations (27) to (29) express
the Somigliano theorems generalized to the coupled dynamic problem. Let us observe
also that Egs. (27)-(29) undergo considerable simplification owing to the relations

(30) PVExp) = CO(xkp)  WilEx.p) =P O(x,E,p),
L(Ex,p) = pQA(x,E.p),

which follows from the application of the reciprocity theorem for an infinite region
assumed to be acted on, by turns, by the instantaneous concentrated agents X; and W’,
then by X; and %’ and, finally, Wand %"

Let us build up the functions G, ¢, W . v, K (; W, L, I"in a bounded
region B, with appropriate boundary conditions. Let therefore an instantaneous
concentrated force Xj acts at the point £ of the region B. The effect of its action is
described by the functions G, CY, W@ which are selected in such a way that
the quantities Gi, CP, VU are zero at S. Next, the functions V,, K, 2 descri-
bing the effect of an instantaneous concentrated source of heat are calculated in
B with the boundary conditions V; =0, K= 0, 2 = 0 at the surface S. Finally,
we determine the functions W, L, I" due to the action of an instantaneous con-
centrated electric charge y' at a point & ¢ B, assuming that W, =0, L=0,1'= 0
at the surface S. With Green’s functions constructed in this way, Eqs (27)-(29)
become

31) i,(6.0) = | Ki(x,p) GO (x£.0)dV (x)— [ RO(x,£,p) Ui (x,p)dS(x)
’ B s
1 r— - 1 - -
+— [ W, p)CO@E,p)AV (x) — - — [ KO(x,6,p)D(x,p)dS()
P B Top's
+ [ 76,p) POCx £ p)AV (x) — [ d(x,E,p)p(x,p)dS(),
8 5
(32) 0:p) =p[ Ri(x.0) Vi, &,p)AV (x)—p [ ROV(x,,p) Ui(%.0)dS()
B S
+ f W (x,p)K(x,& p)dV (x)— % J‘E(‘")(.\‘,E,p)a(x, P)dS(x)
B 0s
2 2060) 20 PAV () —p [ A, E)P,P)ASR),
iy S
(33) D(&,p) = [ Xi(x.p) Wi(x,£.0)AV () — [ RD(x,6.0) U(x.p)dS(x)
B S
[ DL ) dV () ——— [ KO0 D(5p) S0
P n

o s

+ [ 70e0) Tx,£p)aV(0)— [P £, p)p(x,p)dS ().
B S
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From these equations, the quantities ;, @, @ can be determined inside the body
for values of the displacements U;, temperature ¥, and potential ¢ prescribed at
the boundary. Equations (31)-(33) constitute a generalization of the known Green’s
theorem of electrostatics. Let us observe that the relations (30) remain valid
in the present case also.

Let us select now the set with,,primes” in such a way that the quantities becoming
zero at the surface S are the load, the heat flow and the surface electric load. Let
the quantities acting by turns at the point& e B be an instantaneous concentrated
force, an instantaneous concentrated source of heat, and instantaneous concentrated
charge. In this way, new Green’s functions are obtained. On substituting these in
Egs. (27) to (29), we obtain the relations

34 @Ep) = [ Xiep)GOEDAV () + [ R(x.p)GEP(x,E,p)dS(x)
n 5

L B0 a9 4
P B %

n

Sf k(x,p) CO(x,£,0)dS(x)
+ Bf 7 (6.p) PO(x,£,p)dV (%) + :! d(x,p) P(x.£,p)dS(x),

35  0¢Ep)=p f X(x.p)Vi(x.£.)dV(X) +p J R(x,p)V(x,£,p)dS(x)
+ e, )f(x,e,p}chx)JrTig EERLCERIES
+p j[ 1203, E.0)dV(x) +p Sf d(x,p)2(%,£.p)dS(),

(G6)  B(Ep) = f Xi(x.p) Wi, £,0)dV () + f Ri(x,p) Wi(x,&,p)dS(x)

Tip [ ECs.0as)

+:)_ WP L pddv () +
B

+ [1ep) T.ép)av (x) + [dex,p)T(x &.p)dS().
B 5

It is seen that Eqgs. (34) to (36) may be used to find the functions #;, 0, @ at the
point & € B for prescribed load R;, heat flow k and electric surface load d. Equations
(30) also remain valid. In the particular elasto-kinetic case, where the coupling with
the electric and temperature field is not taken into consideration, there remains
only the first Eq. (34) with the first two terms on the right-hand side.
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We have described only three particular cases of determining Green’s functions.
If, for instance, the Green’s functions are constructed in such a way that the func-
tions becoming zero at S are the temperature, the electric potential and the load,
we chall obtain from Egs. (27) to (29) the solution of the problem of determining
the functions u;, 0, @ at & ¢ B for assigned values of load R;, temperature ¢, and
potential ¢ at the surface S.

The Somigliano and Green’s equations described here may be transformed to
the case of loads harmonically variable in time. Then, in place of the parameter
p of the Laplace transformation, we should substitute iw, i=1/—1, where w is
the frequency of vibration and the transforms of the functions should be replaced
by their amplitudes.

The equations given here comprise a number of particular cases. For bodies
showing no piezoelectric effect we are concerned with a coupled thermoelastic
problem. If there are no heat sources and the surface is not heated — if the body
is in a thermally adiabatic state, there remains only the mechanical-electrical
coupling.

The stationary case deserves mentioning. In this case, the time-derivatives in
(12) to (14) vanish, and the heat Eq. (14) becomes independent of the remaining
equations. By performing the same transformations as before, we obtain the following
reciprocity equations

37 [ X — X{uav + [(RU; —R{UaS+ [ (4@~ 1 P)av
B h B
+ [(dp' —d'q)as+ [ 1E(Oely—0'ei)av -+ [ pi(0'D ,— 0@’ )dv =0,
5 B B

(38) f (WO’ —W'0)aV +—I-—J.(k15“ —k'9")dS =0,
B Ta S

The functions 6, 6’ in Eq. (37) are treated as functions obtained from the uncoupled
heat equation. In (38), we recognize the reciprocity theorem for the stationary
heat equation. Generalized equations of Somigliano and Green may also be given
in this stationary case, similarly to the dynamic case.
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Streszczenie

TWIERDZENIE O WZAJEMNOSCI DLA SPRZEZONYCH POL
MECHANO-TERMO-ELEKTRYCZNYCH WYSTEPUJACYCH W KRYSZTALACH
PIEZOELEKTRYCZNYCH

Przedmiotem pracy jest wyprowadzenie twierdzenia o wzajemnosci dla osrodka anizotropowego
piezoelektrycznego, przy uwzglgdnieniu sprzezen migdzy polem deformacji, temperatury i polem
elektrycznym. Twierdzenie to stuszne dla zagadnien dynamicznych zastosowane zostalo do wyzna-
czenia przemieszezen u;, temperatury 6 oraz potencjatu elektrycznego @ wewnatrz ciala, przy danych
warunkach brzegowych. W rezultacie otrzymano rozszerzone na osrodek anizotropowy piezoelek-
tryczny oraz na zagadnienia dynamiczne znane z elastostatyki twierdzenie Somigliana i Greena,
Podano wreszcie twierdzenie o wzajemnosci dla zagadnienia stacjonarnego.

Peawome

TEOPEMA O B3AMMHOCTH JJI CONPSKEHHBIX MEXAHO-
TEPMO-2JIEKTPHMUECKUX [TOJIEA, ITOSBIISIOIUXCS
B ITBE3O3NEKTPUYECKMX KPHMCTAJIIIAX

B paGore BriBoguTcA TEOpeMa 0 B3AMMHOCTH JUISA MEE308JIEKTPHYCSCKON AHH30TPOITHON cpejlkl,
npy YUETe CONPSDKEHHST MEXIY Tosem Aehopmaiin, TeMIEPATYPBI U 9JIeKTPUUeCKUMH TOJISIMH.
OTa Teopema, CIpaBeIMBAas [JIA JHHAMHUECKHX 38189 NPHUMEHSACTCS NIPH ONpEJe/IeHHH Iepeme-
nieHuit ¢, TeMoepaTypel 6 1 aNeKTpHUEcKOro noreHHaina 0 BHYTPH Tena, NpPH 33 JAHHBIX KPAEBhIX
ycrnoBuAxX. B pesyssrare mojiyueHo PACUIMPEHHYIO HA AHWSOTPOITHYIO Cpely M Ha JUHAMHUYECKHE
3am1auyM, H3BECTHYIO U3 yrpyrocraruky teopemy Comumbsaua u Tpuna, B sarinouenne npuBogures
TEOpeMa O BIaUMHOCTH JJ151 CTALMOHAPHON 3anaqn,
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