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1. Introduction

The aim of this paper is to derive integral formulae similar to those of Maysel
in the classical theory of thermoelasticity [1]. We shall also be concerned with
problems, the solutions of which are identical with those of classical thermoelasticity.

Under the effect of external loads and heating the body will suffer deformations.
Displacement u(x, t), rotation cp (x, t) and temperature 0(x, f) fields will form in
the body changing with the position of the point x and time t.

The state of deformation is described by two tensors: the asymmetric deforma-
tion tensor yji and the curvature-twist tensor «#. As known [2], there is

(1-1) yji = tH,} — eietj 9>*, *tt = <Pt, 1 •

The state of stress is characterized by two asymmetric tensors: the force stress
tensor <r# and couple-stress tensor /.in- The state of stress and that of deformation
are connected by the constitutive equations [3]:

Oji = {n +a) yn +(/* — a) yu+(Xyicic — v

where fx, X are Lame constants, while a, ft, y, e denote new material constants.

y — (3X-{-2fj) at is the coefficient of linear thermal dilatation.

Introducing Eqs. (1.2) into the equations of motion

(1.3) a}ii j -\-Xi — QiH = 0, ctjic aw +fijt, 3+Yi — I<pi = 0 .

and then making use of the relations (1.1), we obtain the following system of equa-
tions

•2 u +(^+/ t t — «) grad divu+2arottp-|-A'= v grad 0,
(1.4)

• + ( / H ~ y — e) grad divcp — 4atp+2arot u + F = 0,

273—[429]
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where

• 2 - (/*+ «) V2 - Qd], D 4 = (y+«) V2 - 4a - Id],

d d 52

dxi dxt ' dt2 '

These equations should be supplemented by the equation of heat conductivity

(1.5) 2 )0= , D = V2 dt.

In the above equations the symbols Xi and Yi denote the volume densities of
body forces and body couples, respectively, etjjc stands for the alternator used,
Q — for the density of the body and I — for the rotational inertia. 6 = T — TQ

is the difference between the absolute temperature T and the temperature of the
body TQ in natural state; x =-^O/QCS is a coefficient, wherein Ao denotes the heat
conductivity and c, the specific heat, the deformation being assumed constant.
Finally, Q = W/QCS, where W stands for the quantity of heat generated in a volume
unit of the body within a time unit.

In the sequel we shall make use of the theorem on the reciprocity of works.
Considering two systems of causes and effects (the second one will be marked with '
"primes"), we obtain for the problem of non-coupled thermoelasticity the following
equation [1], the initial conditions of the functions u, u',cp,<p' being assumed homo-
geneous

(1.6) J (Xi*u'i + Yi* (p'i) dV+ j (pi* u[ +mt* <ft) dA+v j 6*y'kk dV =
v A v

— j (X[ * Ui + Yl * (pi) dV+ j (p'i * Ui+m't * (pi) dA+v j 0' * ykk dV,
V A V

where
t t

Xi *ul = j Xi (x, t — T) • ̂  (x, T) dx = J Xi (X,T) MJ (X, t — x)dx,
0 0

and so on.

2. Generalized Maysel's formulae

Let us consider a micropolar elastic body subjected to heating. The displace-
ments u(x,/), rotations cp (x, i) and the temperature as well have to verify the
following system of differential equations

L(u)+M(<p)+N(6) = 0,

Q
D(0)+ — = 0.
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The following notations have been introduced in Eq. (2.1)

L(a) = (n+a) D2u+(A+ /u —ct)grad div u, M(a) = 2 a r o t u ,

= (Y+8) O4 <P +(P+T — B) grad div <p — 4atp,

N(Q) = —v grad 6, D(6) = IV2 8A 0.
\ K I

Let us assume that on the surface A, bounding the body, the following homogeneous,
mixed boundary conditions are prescribed:

u = 0, cp = O, 0,« = O, xsAu,
(2.2)

p = 0, m = 0, (3 = 0, xeAa, Au+Aa = A.

We assume the initial conditions to be homogeneous.

Now let us assume that an instantaneous concentrated unary force X = 8 (x — %}
6 (t) ey — directed in parallel to the .\'y-axis — is acting at the point Z,e V of the
body in isothermal state (6' — 0). The action of this force will induce in the body
displacements u' = U^)(x, J|, t) fnd rotations <p' — $0) (x, %, f). These functions-
have to verify the following differential equations

L(U«>) +M(*«>) +d (x - © 3 (0 e, = 0,

The boundary conditions are assumed to be homogeneous, i.e. there is

UW) = 0, *W) = 0, xeAa,
(2.4)

p«> = 0, my) = 0, x e A .

Here, pW> denotes the main stress vector, while m(-" stands for the main couple-
stress vector on the surface Aa.

We shall apply the theorem on the reciprocity of works, Eq. (1.6), to the two-
systems of causes and effects considered in this paper. As a result we obtain the
following formula

t
(2.5) u}(?, 0 = v f dV(x) f d(x, t - T) U(i]k (x, %, T> dx.

V 0

Consider now another system of loadings, that marked by "primes". An instantaneous,
concentrated unary body couple Y = 8 (x — %) 8 (t) ej is supposed to act in parallel
to the x;-axis at the point \ e V of the body in isothermal state (6' = 0). We denote
the displacements and rotations induced by this action by u' = Y&> (x, %, t) and
cp' = FW) (x, ^, t), respectively. These functions have to verify the differential equa-
tions of micropolar thermoelasticity

M (V«>) +K(TU))+<5 (x - %) 8 (t) ey = 0,

assuming the homogeneity of initial and boundary (on the surfaces Au and Aa)
conditions.
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Making use of the theorem on reciprocity, Eq. (1.6), we obtain

•(2.7) cp}(E, t) = v J dV(x) JO(x,t-x) Vfik(x, E, T) dx.
V 0

Formulae (2.5) and (2.7) represent the generalization of Maysel's formulae on the
problems of micropolar thermoelasticity.

We may rewrite the expressions (2.5) and (2.7) in a somewhat modified form
t

uj (E, t) = v ( dV(x) J 6 (x, t - T) WJ (5, x, r) dx,

<2.8) "

91% t) = v J dV(x) f fl(x, / - T) Q](%, x, T) dx.
v 6

The term Wj (x, £, /) stands here for the displacement, while Qj (x, %, t) for the
rotation induced at the point x owing to the action of the pressure center situated
at the point \. The relations

(2.9) Wi (IS, x, 0 = U ^ - (x, 5, 0 , Q, (%, x, i) = F«>, (x, §, 0 ,

are also a consequence of the theorem on reciprocity, (1.6). For the steady-state
problems of thermoelasticity the theorem on reciprocity takes the following form [3].

{2.10) J (Xiu't + Yi<p'i)dV+ J(pt4+Mtn)dA + v J Oy'klcdV~-=
V A V

= f (Xl tlt+Y't <pt) dV+ f (p't ut+m't <p{) dA+v fO1 yk!c dV.f f
V A

Proceeding similarly as in the dynamic problem, we get

(2.11)

The expressions (2.5) and (2.7) may be written in a particularly simple form in the
case of an infinite space. Solving the systems of Eqs. (2.3) and (2.6), we obtain

i,t-—)dV(x)

The latter result is due to the fact that V%]k = 0. For the steady-state problem there is

1 d /• 0(j

l+2(i) ~8^ J J

The above solutions are identical with those obtained in classical thermoelasticity.
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3. Problem of thermoelasticity with axial symmetry and symmetry with respect to the point

Let us consider the axi-symmetric problem, the temperature being assumed
to depend on the variables r, z and t. Within the system of cylindrical coordinates
(r, &, z) — under the assumption that all the causes of effects are independent
of the angle & — we obtain the following equations of thermoelasticity [5]:

/ 1 \ 8e dm 86

de 6 86
(3.1) (ft+a) V*Ut+(X+p-a)— + 2a —(rp#) = gMg+v — ,

I 1 \ ldur Buz

(y+8) \V* ] 4 + 2 ^
where

82 1 d 32 l a 3MZ , , , „
V2 = — - + — — + — - , e = — — ( r H r ) + /.==(A.2+A.2)l/2_

o;-2 r w 8z2 r or oz • *
The case of temperature 6 (r, i) distribution, where uz = 0 and cp& — 0, is of parti-
cular interest. Neglecting the derivatives with respect to z we obtain the following
form of Eq. (3.1)i

/ , 1 \ - M
(X+2fi) \VJ - —I Mr = QUr+V — ,

(3.2)
82 1 8

jrj2 ^ L.

dr2 r 8r '

The above equation is identical with that of classical thermoelasticity. Maysel's
formulae for this case may be presented in the form

6 t

(3.3) ur(r,t) = — j Qde J 6(e,t-r)e(Q,r, r) dt,
a 0

or else
b t

(3.4) ur(r, t)=— { Qdq f

Formulae (3.3) and (3.4) refer to an infinite hollow cylinder with inner radius a and
outer radius b. Here, the term Ur (Q, r, l) represents the displacement on the surface
of the cylinder Q = const, due to the action of instantaneous radial forces distri-

Ur dUr
buted uniformly on the surface of the cylinder r = const. The quantity e = 1—-—

is the dilatation due to the action of radial forces on the surface ;• = const. The
function Wr (r, Q, i) should be regarded as the displacement on the surface r = const,
induced by the action of instantaneous pressure centers distributed uniformly on
the surface of the cylinder Q = const.
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Formulae (3.3) and (3.4) are identical with those obtained in classical thermo-
elasticity [4].

We shall now consider the axi-symmetric thermoelastic problem. To begin with,
we shall rewrite Eq. (2.1) so as to fit the spherical coordinate system (R, •&, rj). Assu-
ming axial symmetry with respect to X3, we obtain the following system of equations
describing the displacements u = (UR, HQ, 0) and the rotations <p = (0,0, <pv).

sinsin $ d-d1

de 2a d 86

dR RsinV d& w"UJ V"K ' dR

1 de

2a d v dO

1 dux I d

In the above equations the following notations have been used

32 UR 2 8uR
V2 Utl =

* a M R2 dR

1 d I 8uR\

J?2 sm2 v dv \ dv I

In the case of symmetry with respect to the point, all the derivatives with respect
to & should be dropped and, moreover, u& — 0 and (pn = 0. Thus, what remains
from the system of Eqs. (3.5) is the equation (3.5)i which now reads as follows

,3.6)

* 8R2 R dR'

The above equation is identical with that of classical thermoelasticity. The displa-
cement UR(R, t) may be described by the formula

6 t
v f f

(3.7) uR(R,t) = -jr£ I Q2 dg I 6(Q, t — T) e(Q, R, T) <h, M» = 0 , 99, = 0

a 0
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or

(3.8) uR(R,t) = — f e2dg f d(Q,t-r)WR(R, g, i)d%, u& = 0, (p,, = 0.
a a

These formulae refer to a hollow sphere with inner radius a and outer radius b.
The quantity e represents the dilatation induced on the surface Q = const by the
action of instantaneous radial forces distributed uniformly on the surface i? = const.
The function WR (R, Q, T) expresses the radial displacement on the surface R = const,
due to the action of instantaneous unary pressure centers distributed uniformly
on the surface Q = const.

Our considerations presented in this note lead to a general conclusion: all prob-
blems — be they static, quasi-static or dynamic — characterized by the symmetry
with respect to the point and referring to a hollow sphere have identical solutions
for micropolar and Hooke's media [4]. The same holds true for a full sphere with
a -> 0, for an infinite space with a spherical cavity with b -> oo and for an infinite
space with a -»• 0, b -> oo.

Let us remark that we can argue quite similarly in unidimensional problems
(those of infinite space, half-space, elastic layer) where the temperature depends
solely on the variables x\ and t.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL PROB-
LEMS, POLISH ACADEMY OF SCIENCES
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B. HOBALJKHH, HEKOTOPblE IIPOEJIEMbl TEPMOynpyrOCTH B MHKPO-
ynpyrocTH

B HacToameil 3aMeTKe paccMaTpHBaioTCH flBe npo6neMW TepMoynpyrocTH. HTaic:
HHTerpanbHbie (JiopMyjibi npnroflnfaie flna onpeflejiemm nepeMemeiraft H O6OPOTOB,

BO3fleiiCTBneM nojiH TeivinepaTypbi B MHKpononHpHoK cpefle Koccepa. 3 T O »BJiaeTCfl
o6o6meHHeM (jiopMyji Mait3ej«i pjin cpeflw Fyxa Ha cpefly Koccepa.

paccMOTpeH KJiacc oce-CHMMeTpimecK«rx npo&neM. IloKa3aHO, HTO flna cjiyiaa oce-
npo6neMw He3aBHCnmeii OT nepeMemioii z, a TaKace HJIH npo6jieMW c CHMMeT-

no OTHomeHHio K TOMKe, peiueHHfl HfleHTHHHbi Tan fljia cpertbi Fyxa, KaK H fljia MHKpononap-
cpeaw Koccepa.


