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1. Introduction

The aim of this paper is to derive integral formulae similar to those of Maysel
in the classical theory of thermoelasticity [1]. We shall also be concerned with
problems, the solutions of which are identical with those of classical thermoelasticity.

Under the effect of external loads and heating the body will suffer deformations.
Displacement u (x, 1), rotation ¢ (x, f) and temperature 0 (x, ¢) fields will form in
the body changing with the position of the point x and time #.

The state of deformation is described by two tensors: the asymmetric deforma-
tion tensor yy; and the curvature-twist tensor ;. As known [2], there is

(1.1) Vit = Wi, ] —Ckij Pks  #j = i, -

The state of stress is characterized by two asymmetric tensors: the force stress
tensor oy and couple-stress tensor gy The state of stress and that of deformation

are connected by the constitutive equations [3]:
1.2) 0ji = (p+a) yji+(u — @ yis+Qyie — 0) by,
it = (y+8) #5i+(y — &) %5+Prrk 045,

where u, A are Lamé constants, while «, f,y, & denote new material constants.
y = (3A4-2u) «, is the coeflicient of linear thermal dilatation.

Introducing Egs. (1.2) into the equations of motion
(1.3) o, i +Xe—ou =0, €k Oir-tpg, g+ Ye—Ip = 0.
and then making use of the relations (1.1), we obtain the following system of equa-
tions
s u+(A+p — @) grad divu+2arotep+4X = » grad 0,
(s @ +(B+4y — €) grad divep — duep-2arot u+¥Y = 0,
273—[429]

(1.4)
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where
Op= (u+0) V2— 08}, [Os=(y+e) V2—4a— 10},

These equations should be supplemented by the equation of heat conductivity
1
(1.5 D= ——, D=V2—-?—‘~6;.

In the above equations the symbols X; and ¥; denote the volume densities of
body forces and body couples, respectively, eix stands for the alternator used,
p — for the density of the body and I — for the rotational inertia. = 7 — T
is the difference between the absolute temperature T and the temperature of the
body T, in natural state; » = .Agfocs is a coefficient, wherein Ay denotes the heat
conductivity and ¢, the specific heat, the deformation being assumed constant.
Finally, O = W/pc,, where W stands for the quantity of heat generated in a volume
unit of the body within a time unit.

In the sequel we shall make use of the theorem on the reciprocity of works.
Considering two systems of causes and effects (the second one will be marked with "
“primes”), we obtain for the problem of non-coupled thermoelasticity the following
equation [1], the initial conditions of the functions u, u’, ¢p,¢p" being assumed homo-
geneous

(1.6) f(x,w;-mw;)dw f(p;*u;-i-m;*rp;) dA+v» fa*y;m dv =
Vv A v

= f(X;#u;-i-Y; w ) dV 4 f(p;*m-i—m;up;) dA v fﬂ’*;vmdi/,
G A v

where

¢ ¢
Xi* u; = f Xi(x,t— r)-u;(x, ) dr = f Xi(x,7) u;(x, t—1)dr,
0 0
and so on.

2. Generalized Maysel’s formulae

Let us consider a micropolar elastic body subjected to heating. The displace-
ments u(x, 1), rotations < (x, t) and the temperature as well have to verify the
following system of differential equations

L(u)+M()+N(6) =0,

@2.1) M(u)+K(p) =0,

£
DO+~ =0.
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The following notations have been introduced in Eq. (2.1)

L(u) = (p+a) Oz u4-(A+p — a) grad diva, M(u) =2arotu,
K() = (y+¢) Os p+(f+y — ) grad div ¢p —4daep,

N(@O)= —wgrad 0, D(O)z(VE—%f),)G.

Let us assume that on the surface A4, bounding the body, the following homogeneous.
mixed boundary conditions are prescribed:

u=0, =0, 0,,=0, xcAdu,

2.2)
p=0, m=0, 0=0, xeds, Autdo=A.

We assume the initial conditions to be homogencous.

Now let us assume that an instantaneous concentrated unary force X = 6§ (x — E)
0 (#) e; — directed in parallel to the xj-axis — is acting at the point £€ V' of the
body in isothermal state (8’ = 0). The action of this force will induce in the body
displacements u" = U® (x, E, /) e¢nd rotations ¢’ = & (x, E, ). These functions
have to verify the following differential equations

L(UD)+M(®D)+4(x —E) d(H)e; =0,

2.3)
M U)K (D) =0.

The boundary conditions are assumed to be homogeneous, i.e. there is
U =0, PN=0, x€A,,

(2.4)
pN =0, mH=0, xe4d,.

Here, p denotes the main stress vector, while m® stands for the main couple-
stress vector on the surface A,.

We shall apply the theorem on the reciprocity of works, Eq. (1.6), to the two
systems of causes and effects considered in this paper. As a result we obtain the
following formula

t
(2.5) w0 =» [aVx) [0(xt—1) UDy(xE v dr.
v 0

Consider now another system of loadings, that marked by “primes”. An instantaneous.
concentrated unary body couple Y = 6 (x —E) & (#) e; is supposed to act in parallel
to the xj-axis at the point § e V of the body in isothermal state (0’ = 0). We denote
the displacements and rotations induced by this action by u’ = V& (x, &, 1) and
@' = I'O (x, E, 1), respectively. These functions have to verify the differential equa-
tions of micropolar thermoelasticity

L(VO)+4+M (TD) =0,
M (VO) 4K (T0)+5(x —E) 8 (1) ¢; =0,

assuming the homogeneity of initial and boundary (on the surfaces Ay and Ao)
conditions.

(2.6)
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Making use of the theorem on reciprocity, Eq. (1.6), we obtain

)
@.7) i) =» [dV(x) [0(x1—7) VPi(x,E 1) dr.
v 0

Formulae (2.5) and (2.7) represent the generalization of Maysel's formulae on the
problems of micropolar thermoelasticity.
We may rewrite the expressions (2.5) and (2.7) in a somewhat modified form

t
wj (. =n» f dV(x) f O(x, t —7) W; (&, x, 7) dr,
2.8) v 0 !
piE, ) =7 f dVv(x) J O(x,t —7) Q4(E, x, 1) dr.
v 0
The term W;j(x, &, f) stands here for the displacement, while 2; (x, E, 1) for the

rotation induced at the point x owing to the action of the pressure center situated
at the point €. The relations

(2.9) Wi x, 1) = U (x, 8.1, 2 x1)=VP(xE1,

are also a consequence of the theorem on reciprocity, (1.6). For the steady-state
problems of thermoelasticity the theorem on reciprocity takes the following form [3].

{2.10) J' (X; ug+ Y ) dV+ f(p-: ug+mi ) dA v J Oyp dV =
v A V
= [ Xiw+Y o) dV+ [ (i w-+m; i) dd -+ [0 yiav.
¥V A v

Proceeding similarly as in the dynamic problem, we get

u () = [ 0(x) UPx(x,8) v (x),

@.11) ¥
18 = [ 00V (x, ) dV (x).

Vv

The expressions (2.5) and (2.7) may be written in a particularly simple form in the
«case of an infinite space. Solving the systems of Eqs. (2.3) and (2.6), we obtain

(;_4_2“)1&
3 cl i P ’
e

0 =, —R~ dv
(x,r Cl) (x)
R(x, )

us(§, 1) = _MTMJ

9 (€, 1) = 0.
The latter result is due to the fact that ng:.- =0. For the steady-state problem there is
0 0(x) dV (x)

71(€) = 0.
‘The above solutions are identical with those obtained in classical thermoelasticity.

2.12)

u; (§) =
(2.13)
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3. Problem of thermoelasticity with axial symmetry and symmetry with respect to the point

Let us consider the axi-symmetric problem, the temperature being assumed
to depend on the variables r, z and 1. Within the system of cylindrical coordinates
(r, ¥, z) — under the assumption that all the causes of effects are independent
of the angle ¥ — we obtain the following equations of thermoelasticity [5]:

1 de gy - a0
(p+w) (V2 - ,-_2) ur+(A4pu — a) e 2'3_6; = om-—I-r*a—z,
de d . a0
(3.1 (u+a) V2 up+(A+p — ﬂ)g +2a e (rgo) = otz =
1 duy ou, =
(y-+e) (V2 - ';—2') o — dagp —I—Za( 2 == ar ) = Ipy,
where
S N S U U P
ar2 r or @ 0z2° roor Y7 gz A

The case of temperature 0 (r, f) distribution, where u, = 0 and @g = 0, is of parti-

cular interest. Neglecting the derivatives with respect to z we obtain the following
form of Eq. (3.1);

. B . a0
A+2m)\Vr — | ur = eurtr 5,
(3.2)

The above equation is identical with that of classical thermoelasticity. Maysel’s
formulae for this case may be presented in the form

b t
»
(3.3) u,-(r,r)=TdegfB(g,r—'r)e(g.r, Ndr, ¢s=0, u,=0,
a 0

or else
, b t
3.4 u(r, r)=7fgdgfﬂ(g,r—r) We(r,o,t)dr, @o=0, u,=0.
a 0

Formulae (3.3) and (3.4) refer to an infinite hollow cylinder with inner radius a and
outer radius b. Here, the term Uy (p, r, f) represents the displacement on the surface
of the cylinder p = const, due to the action of instantaneous radial forces distri-

Uj' 3U
buted uniformly on the surface of the cylinder r = const. The quantity e = -G—-I- d

do
is the dilatation due to the action of radial forces on the surface r = const. The
function Wy (r, p, 1) should be regarded as the displacement on the surface r = const,
induced by the action of instantaneous pressure centers distributed uniformly on
the surface of the cylinder p = const.
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Formulae (3.3) and (3.4) are identical with those obtained in classical thermo-
elasticity [4].

We shall now consider the axi-symmetric thermoelastic problem. To begin with,
we shall rewrite Eq. (2.1) so as to fit the spherical coordinate system (R, 7, 7). Assu-
ming axial symmetry with respect to x3, we obtain the following system of equations
describing the displacements u = (ug, ug, 0) and the rotations ¢ = (0, 0, ¢y).

2 1 @
(u+a)=V-’*un Rz[ Ry é,15,,(uwn'f?)]}

e 2a d . - a0
HA+te— A 7p + Reme 26 Posind)—eur=rog,
2 [ ou iy 1 de
(3.5) =2 _?[_R___} L
W+ \ V=225 ~ 2smzall TATE— DR TR
2a @ v a0

~ R 2R Red— e =g o5

@
(y-+e) {Vz P — 'EET;F} — dagy —

ad ..
—2a (*E—é:a——'ﬁ‘ R (Rus)) —Ip, = 0.

In the above equations the following notations have been used

i 02 ug 2 dug i 1 ) ( 6ug)
=R TR R T Resnzd a9 "M%
d
= — - 2 1j2
= (uRR)—I- R p 5 (uasml?), R = (x}-4+x3+x3)'2.

In the case of symmetry with respect to the point, all the derivatives with respect
to ¢ should be dropped and, moreover, up = 0 and @y = 0. Thus, what remains
from the system of Egs. (3.5) is the equation (3.5); which now reads as follows

, 1 . a0
(A+2p) | V3 TR |UR—eurR =vop,
(3.6)
o 220
k™ 0rR " R R’

The above equation is identical with that of classical thermoelasticity. The displa-
cement ur(R, ) may be described by the formula

b
v
(3.7) ur(R, 1) = = fez dofﬂ(e,t—r)e(e,ﬂ,r)dr, up=0, @,=0
a 0
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or
b ]

v
(38) HR(Rs ’)=ﬁf92d9f9(9!’_T)WR(R: Q,T)d'l-', uﬂ:o’ tp‘l'zo'

[

These formulae refer to a hollow sphere with inner radius ¢ and outer radius b.
The quantity e represents the dilatation induced on the surface p = const by the
action of instantaneous radial forces distributed uniformly on the surface R = const.
The function Wk (R, p, 7) expresses the radial displacement on the surface R = const,
due to the action of instantaneous unary pressure centers distributed uniformly
on the surface p = const.

Our considerations presented in this note lead to a general conclusion: all prob-
blems — be they static, quasi-static or dynamic — characterized by the symmetry
with respect to the point and referring to a hollow sphere have identical solutions
for micropolar and Hooke’s media [4]. The same holds true for a full sphere with
a — 0, for an infinite space with a spherical cavity with & — oo and for an infinite
space with a — 0, b — oo.

Let us remark that we can argue quite similarly in unidimensional problems
(those of infinite space, half-space, elastic layer) where the temperature depends
solely on the variables x; and .
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B. HOBALIKWI, HEKOTOPBIE ITPOBJIEMbl TEPMOYIIPYTOCTU B MMKPO-
TNOJISIPHOM YIIPYI'OCTH

B HacTosulelf 3ameTke paccMATPHBAIOTCA ABe npobnembl TepmoynpyrocTd. Mrak:

BuiBesicHbl METErpabHble GOPMy bl NPHTOAHELIE AN ONpeNeNeHNs nepeMericnuit # 06opoToB,
BLI3BAHHLIX BO3ACHCTBHEM OIS TeMMepaTypbl B MHKpononsapHoii cpene Koccepa. 9to apnserca
o6obenuem opmyn Maiizens nna cpenwst I'yka na cpeny Koccepa.

Janee paccMOTpEH Kiace oce-CHMMeTpudeckux mnpobnem. IMokalzamo, 4To ans ciayyas oce-
-CHMMeTpHYecKkoi npobnemsl He3aBHCALIEH OT nepeMeHHON z, a Takxke nia npobnemMsl ¢ CHMMET-
pHell m0 OTHOLIEHWIO K TOYKE, PEIIEHHA HUSHTHYHBI Tak s cpelsl I'yka, KaK M Juis MAKPOMNOJAp-
Holi cpenel Koccepa.,



