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1. Introduction

The aim of this paper is to give basic solutions of wave equations in an unlimited
medium for micropolar elasticity and, in particular, to present in a closed form wave
functions as well as the displacement and rotation field formed in such a medium
under the action of a concentrated force or a couple changing harmonically in time.

Let us consider first the system of linearized equations for micropolar elasticity
[1]—[4]:
(1.1) (u-+a) V2 u+(A+p — a) grad div u+2a rot w+X = gii,
(1.2 (y-+e) V2w -(B+y — &) grad divw — daw+-2a rot u+Y = Jo.
The following notations are adopted throughout the present paper: u denotes the
displacement vector, w — the rotation vector, X — the vector of body-forces,
Y — the vector of body-couples, the symbols u, 4, a, f,y, ¢ stand for material

constants, p — for density and J — for rotational inertia. The quantities u,w, X, Y
are functions of the position x and time f.

Egs. (1.1) and (1.2) are coupled.
Decomposing the displacements and rotation vectors into their potential and
solenoidal parts, we get

(1.3) u=grad ®4rot¥, div¥ =0,
(1.4) w = grad Z+4rotH, divH=0,

and, similarly, decomposing the body-force and body-couple vectors into two terms
each we obtain

(1.5) X = p (grad 9+-rot ),
(1.6) Y = J (grad oot ),
555—([909]



556 W.Nowacki [910]

Thus we may transform the system of Egs. (1.1) and (1.2) into the system of the
following four equations

(1.7 0y @+ =0,
(1.8) O3 24-Jo = 0,
(1.9) (02 O4+4a2 V2) ¥ = 2a] rotn — o4 X,
(1.10) (O O4+402 V2) H = 2ap rot y — J[a 7M.
with the following notations
O = (A+2p) V2 — 007, 02 = (u-+-a) V2 — oo,

O3 = (B+2y) V2 — 4a — JO}, U4 = (y+e&) V2 — du — Jo},
V2=0;0;, Of = 02012.

Eq. (1.7) describes the longitudinal, while Eq. (1.8) the rotational wave. Let us remark
that in an infinite elastic space the body-force X' = p grad # generates only the
longitudinal, whereas the body-couple Y’ = Jgrad ¢ only the rotational waves.

Egs. (1.9) and (1.10) represent the modified transverse waves. We assume that
the body-forces and-body couples responsible for the wave disturbances change
harmonically in time. This may be noted in the form

(1.11) X(x,)=X*¥(xe™, Y(X1)=Y*xe ",

Consequently, the displacements u, the rotations w and also the functions @, 2, ¥, H
change harmonically in time, too.

Marking with an asterisk the amplitudes of these functions, we reduce Egs.
(1.7)—(1.10) to the forms

(1.12) (V2-t o) % = — ;1%_,9,..-,
(1.13) (v2+0§)2s=_%6«,
(1.14) (V24 K2) (V2--42) W = 'c%”’”’* _ clgsz*’
(1.15) (PR (VR S = D rotgs = 5 Do

wherein the following notations have been introduced

w A."|"2i.& 1/2 (02—&)3 1/2 B_J’_zy /2
gi=" = T o (| T2 B i Dt S

c] 0 6 J
, 4o _ 2a o (.“-Hi)”z 2a
Wy = J 3 =z -Q_E;i_s F5= ¢ 3 €2 = 0 :] pm}a"
12
o) y+e
r.r4=?;’ C4=( J ) ’ D1=V2+J§! DZ:VZ""C&'“?‘P‘
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The quantities k7, k3 stand for the roots of the following biquadratic equation

(1.16) k4 — k2 (03+04+p (r — 2))+03 (03 — 2p) = 0.

Thus we have

1
(1L17) K, = (o3 +oi+p (= 2) &V [0f — o3+p (r — 2)P+4praj).

The discriminant appearing in (1.17) is, obviously, positive. Let us now consider
the homogeneous Eq. (1.14). The solution of this equation may be presented —
according to a theorem due to Boggio [5] — in the form of a sum of two partial
solutions W'* anc W''#%:

(]18) WE ‘F"H—I—‘P”*‘

satisfying the Helmholtz vector equations

(1.19) (V2HEHW'¥ =0, (V24i)W'"*=0.
etikaR

The singular integrals of Egs. (1.19) are the functions , @ =1, 2. However,

R

1
only the solutioni e®aR have a physical meaning as only the expressions

1 1 R 0
Re [e"“'*; ”‘“R] =gcoso (I— —w--), V=7, G= 1,2

represent the divergent waves propagating from the point of disturbance towards
infinity. Thus, the solution of the homogeneous Eq. (1.14) will take the ferm

e”&!l R e‘kg R

- <
(1.20) WE = A——+B —

Similarly, the solution of the homogeneous Eq. (1.15) will be given in the form of
the following function
oik1 R ik R

- -
(1.21) H*=C——+D—

Only real phase velocities may appeat in terms representing the functions ¥ and H.
Thus, we should have k7 >0, k% > 0. The first condition is already satisfied. The

da .
second one will be satisfied if o4 > 2p or w2 > E what results from the relation:
k* k% = o% (62 —2p) >0. In expressions (1.20) and (1.21) two waves appear
undergoing dispersion (since k; and k, are the functions of frequency w).

2. Effect of the concentrated force

Let us first consider the action of body forces. Since ¥ = 0, there is also ¢ = 0
and n = 0. In an infinite elastic space rotation waves will not appear (Z* = 0).
Thus we have to solve the system of equations
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1
@.1) (Vo)) §* = — — 9%,
1
1
(2.2) (V2+k) (V24K > = — —sz ;
2.3) (V2+K}) (V2+-k3) H* = %rotx*.
2

In a general approach, we determine the function #* and y* for an arbitrary vector
of body forces from the following formulae [6]

@4 W=y f X @5 ( v @,

R (€, x)

- 1 w0 ( 1 )
5) 3 =—-— — i, g k= :
@) 70 =—" f o X; © 3 -\ g | VO bik=123

Now, introducing info Egs. (2.4) and (2.5) the expression
Xj(x)=6(‘x1)6(x2)6(x3)6”1 j: 132!3!

which describes the action of the concentrated force starting with the origin of
the coorainate system and acting along the x;-axis we obtain successively

- _ 1 d(l) koG . 1 6(1)
o O="dm om R 10 2T 0n\R®)
- 1 0 (1

L= et , = 212
B alg) =Wt
Thus, we have to solve the following equations
2.7 24 o) % = — - (l)
@) (V2+a1) _4::9::?:);;}?’
(VAR Fy = — s (Pl —2p) oo ( )

238

1
(vz+kmvz+k§)srf;—4 St - (), w0,

p
= 4:::9(:2 7 (V2 al)( )

0 o (1
(29) (V) (V2R B = g — — (—)

(V24-k}) (V2-+K3) HY =

G e E(—)'
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The solution of Eq. (2.7) is known from classical elastokinetics [6]. it reads as follows

1 0 [eR—1
@10 == e e R

We shall solve Eqs. (2.8) and (2.9) applying the exponential Fourier integral
transformation. Thus, the solution for %3, e.g., will have the form

. 1 ¥ = (a2 — 034-2p) €' ™ da, daz dasy

o2 = a+a2+a.

Taking into consideration that

“ g gy 1 day dag et
1) T =,
a2 —k; : R
we obtain from (2.11)
1 9 eik;R eik,R 1
*= - ] )
(2.12) "2 dmea? o, (A1 = +4, 7 +4, R)
where
0-2___}(2 U%-—k?
Al :=7é1—;2, A2= '{2 kﬁs A3:_'1‘

Solving the equation for 7, we get

1 0 eik,R eikg R 1
1 R +A2 R "l"Aj-;E -

Bl o g
(2.13) by - dmpw? dxyp

The application of the exponential Fourier integral transformation to the system
of Egs. (2.9) affords

P EiR _ ik R o1 R otz R 1
2 ¥ — ————— 0} By —— e
(2.14) H| o { R =1 + 0?2 (31 = +B——— +Bs R)
P ok R otk R 1
(2]5) H; =Iﬁ;@c_fal 02 (Bl R "i‘Bp R "’FB_:,E)s
P R ok R 1
s = e d] 1)
(2.16) H =g 01 0 (31 = tB— +B R)
where -
1 1 1

TRE-s PTEE-8 PTEe
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We obtain the displacements u and the rotations w from the formulae (1.3) and
(1.4). Since n* = 0, there is

H.r = di @*“l‘fh !P; = ()3 !p;s H; =t 02 o* — ‘)l i—p;’ H; == 93 (D*-{—()l q!;‘

2.17
( )wl =0, Hy —0y Hy, 3=03Hf—0 Hy, f=20,H,—0 H.

In this way, we arrive at the following formulae for the displacement u* and
rotation w* amplitudes

iky R ik R
2.18) u;=U;N = PRy (eSO b
2.18)  uy =Uj Toan VR R 23— 3y
( Sk R ke R . Go1 R )
amgn 101 \ i~ — T —p— T —
2,19 o) = PE14k i( PR - eik; R )
(2.19) w; = £ dmpc? (> — k3) ox R

Thus we get three components of the displacement vector U; ) and three components
of the rotation vector 2@ as well. Let us now shift the concentrated force to the
point § and direct it parallelly to the x;-axis. The following formulae may serve as
an example:

iky R iky R
PELik 9 (e il )

* — *(D — —_— E]
(2.20) wy = & dmocs (ki —k3) Oxp R

where
R = [(xi — &) (xi — &2,

By this method we obtain the rotation tensor 2§ (x, E), j, I = 1,2, 3 and, :imilarly,
the displacement tensor Uf” (x,E), j,/=1,2,3.

Putting into Egs. (2.18) and (2.19) « = 0 we pass to the classical elastokinetics.
We obtain thus [6]

A 5‘13 eirR 1 d 0 eiuR_ eftR
(2.21) U;(”=———————————,
dzp R 4mow? Ox; Oxi R
Q-(DZO: .j’le’z,ﬂ’
where

=2 o (e e (2T
Cg, 2 s a 5 4] .

We return now once more to the formulae (2.18) and (2.19). Observe that the
concentrated force acting along the x;-axis effectuates the rotation w{ = Qf @ = 0.
Thus it results that the components z; j= 1,2, 3 of the curvature-twist tensor
#ji = g, 7 are equal to zero. The components of the strain tensor yju = ui,j —
— &k Wy are less than zero. In (2.18) and (2.19) three kinds of waves appear. Those
connected with the quantities ky, k, undergo dispersion.
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3. Effect of the body couples

Let us now consider the effect of body couples. Since X = 0, ¢ and ¥ are also
equal to zero. In an infinite space the longitudinal wave will not occur (®* = 0).
Thus, we have to solve only the following system of equations

1
(3.1) (V2K Z* = — = o*,

3 .

l (V24k}) (V2-413) B * = %rotn*,
(3.2) .

1
l (V2+k}) (V2+k) H* = — 2Dm*

Let us now assume that at the origin of the coordinate system the concentrated

ceuple ¥} = 8 (x;) 6 (x) 6(x3) 815, j=1,2,3, is acting. The components o*
and n* will be obtained from formulae resembling (2.4) and (2.5), namely

o 1:}(1) . ._1‘)(1)
(3.3) o* (x) = 4nJ Oxg Ay ??2:_47!:.[ ox3 \R ’

1 0 (l)
SR e | (G g
T Al 0xy \ R
Applying a procedure similar to that used in the preceding section, we get the
following solutions of Egs. (3.1) and (3.2)

(3.4 N . (eﬂ'stl)

dnJcl k3 dx R
g e ” ( iky R _ ks R )(5
G T = R n+
otk R e R 1
e JzaIaJ(B, — B — +33§)

. 1 0 ik eiﬁ'_ R 1 .
(3'6) H} 1.'”& l.ﬁ‘ Cl +C” +C3E 3 .}:132')3!

43ch R R
k3 — o2 k3 — o3 03
Q=G 2\ s G =732 3\ 3 CG=—733

The displacements and rotations will be obtained from the formulae below
u =0, W =03, u=03¥'—0,%, u =0 ¥ —0¥,
(37 o =0,2%+0, Hy —03 Hy, wy=02*—0Hj,
wy = 03 Z*+40; H;.
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Introducing Egs. (3.4)—(3.6) into Egs. (3.7) we have

tky R __ ika R
LT R mki(e__e_‘_),
' ) 4rlci (k3 —K3)’ Oxp R
tky R ok R

) 2 2 ;

0105 oF R o R gika R
] k, j = l, PR
+4ch§( TR TaTRr TGTR ) i hds

Transferring the concentrated moment to point § and directing the moment vector
parallelly to the x;-axis we obtain Green’s displacement tensor V; @ (x, ) and the
rotation tensor W;® (x,E). To quote an example, we cbtain

reigk p) ( eﬂ:l R eﬂcg R

AnJc2 (I — K2) oxi R

* where R = [(x; — &) (xs — &)]'2.

Returning to Egs. (3.8) and (3.9) let us remark that the action of the concentrated
moment ¥Y* = § (x;) 6 (x3) 4 (x3) 4,7 leads to the zero-value of the displacement
along the xj-axis (4; = 0). Thus, also p;; = 0. Since ki, ky, k3 are functions of the
frequency w, all kinds of waves appearing in (3.8) and (3.9) undergo dispersion.

Let us consider a particular case. Assume the concentrated force X, ;' =0d0(x —E) d;r
acting at point § and oriented parallelly to the xy-axis. This force will induce
a displacement field U{" (x, €) and a rotation field 2{” (x, €). Now, let the concentrat-
ed moment Y; = 0 (x —¥) 65 oriented parallelly to the x;-axis act at point ¥.
It will induce the displacement V{” (x,%) and the rotations W (x,1). We apply
the theorem on reciprocity [7] to the causes and effects mentioned above

(3.10) V;®(x,¥) = ) Lik=1,2,3.

(3.11) [ w*+7 o) dv = [ (X uf+¥{* o}) dV.
v ’ v

Eq. (3.11) affords ’
f 8 (x—8) 85 VP (x,m) dV (x) = f 8 (x—n) 85 Q4 (x, E) AV (%)
whence ’ ’
(3.12) VP Em) = QP (1,8).
Making use of Egs. (2.20) and (3.10), we arrive at

2 r P eﬂkl R eikg R
Vel = sz ot | 3o\ R
P& = re e o @xk( R (x,n) ) x=i
p 0 LR __ ik R )
Q(r) e e T e (_-_—_
' (0,8) dmoc? (k2 — k2) €k X R (x, ¥) x=1
2a 2a ;
As r = —zand p = — the relation (3.12) is obviously, verified.

gcs Jei
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Eq. (3.12) may be considered as an expansion of the J. C. Maxwell theoiem on the
reciprocity of works known from classical elastokinetics.

A more ample discussion of the problem of solutions of basic equations (1.1)
and (1.2) will appear in a separate paper to be published in Proc. of
Vibrations Problems.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL
PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKEAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW
TECHNIKI, PAN)
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B. HOBALIKMI, ®YHKIHMU I'PUHA IS MUKPOIIOJISIPHOM YIIPYTOCTH

B mactosmeit pabore maercs ocHoBHOE permenue AudibepeAnHanbHBIX YPaBHEHHH 115 MUKPO=
nonspHo#t ympyroct. Ilpusonstces ¢ynkuua Iprna (TeH30p mepemerenus W Texiop obopora)
OIS COCPeNOTOYEHHOM CHMBI M [/ COCPEJOTOMEHHOTO MOMEHTA, ACHCTBYIOIMX B OeckoHeqyHOH
ynpyroii cpene,



