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1. Introduction

The aim of this paper is to give basic solutions of wave equations in an unlimited
medium for micropolar elasticity and, in particular, to present in a closed form wave
functions as well as the displacement and rotation field formed in such a medium
under the action of a concentrated force or a couple changing harmonically in time.

Let us consider first the system of linearized equations for micropolar elasticity

(1.1) (l*+a) V2 U+(A+,M — a) grad div u+2a rot w+X = gu,

(1.2) (y+s) W w+(p+y — s) grad div to — 4ato+2cc rot u+Y = /<o.

The following notations are adopted throughout the present paper: u denotes the
displacement vector, to — the rotation vector, X — the vector of body-forces,
Y — the vector of body-couples, the symbols /x, X, a, /S, y, s stand for material
constants, Q — for density and / — for rotational inertia. The quantities u, to, X, Y
are functions of the position x and time t.

Eqs. (1.1) and (1.2) are coupled.
Decomposing the displacements and rotation vectors into their potential and

solenoidal parts, we get

(1.3) u = grad <Z>+rot ¥ , div V = 0,

(1.4) to = grad 17+rot H, div H = 0,

and, similarly, decomposing the body-force and body-couple vectors into two terms
each we obtain

(1.5) X =

(1.6) Y = J (grad cr+rot TQ),
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Thus we may transform the system of Eqs. (1.1) and (1.2) into the system of the
following four equations

(1.7) • i # + e # = o,

(1.8) D3 2+Jo = 0,

(1.9) (D 2 D4+4a2 V2)¥ = 2a/rotY] -QUAX,

(1.10) (D 2 D4+4a2 V2) H = 2a;? rot X - / D 2 r ) .

with the following notations

• l

•3

= (X-\-2(JI) V2

= (|8+2y) V2

V2 =

- 4 a -

didi,

D 2 = (M-

- Jdj, D4 = OH

d\ = a2/3^2.

ha) V2 -

-8) V2 - -Jdl

Eq. (1.7) describes the longitudinal, while Eq. (1.8) the rotational wave. Let us remark
that in an infinite elastic space the body-force X' = Q grad & generates only the
longitudinal, whereas the body-couple F ' = /grado ' only the rotational waves.

Eqs. (1.9) and (1.10) represent the modified transverse waves. We assume that
the body-forces and-body couples responsible for the wave disturbances change
harmonically in time. This may be noted in the form

(1.11) X (x, 0 = X* (x) e-imt, Y (x, t) = Y* (x) e~imt.

Consequently, the displacements u, the rotations ta and also the functions 0, S, *F, H
change harmonically in time, too.

Marking with an asterisk the amplitudes of these functions, we reduce Eqs.
(1.7)—(1.10) to the forms

(1.12) (V2+a?)0*=--^-#*,

(1.13) ( V 2 + c r i ) 2 7 * = - - r c r * )

(1.14) ( V H * | ) ( V 2 + A f ) ¥ « = 4 ^

(1.15) ( V 2 + ? ^ 4
C2 v

wherein the following notations have been introduced

co _ / A + 2 / M \ 1 / 2 [OO2-CO2
0\

112

ffl — — , ci —
Q

4a 2a
=

4a 2a co /w+a\r/2 2a

C2 ' \ g . / / C |

co I y+s \1/2
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The quantities k\, k\ stand for the roots of the following biquadratic equation

(1.16) fc* - /c2 (a2
2+al+p (r-2))+of (a\-2p) = Q.

Thus we have

1 , .
(1.17) k\ 2

 = =^rl>2+04+.P( ' ' — 2)±> [ô  — ff2+P('' — 2)]2+4/7w£].

The discriminant appearing in (1.17) is, obviously, positive. Let us now consider
the homogeneous Eq. (1.14). The solution of this equation may be presented —
according to a theorem due to Boggio [5] — in the form of a sum of two partial
solutions ¥ ' * and W " :

(1.18) «F* = ¥ ' * + ¥ " * ,

satisfying the Helmholtz vector equations

(1.19) (V2+/ci) W* = 0, (VS+A^W* = 0.

e±ttos
The singular integrals of Eqs. (1.19) are the functions—-—, a = 1, 2. However,.

iv

only the solution — eikaR have a physical meaning as only the expressions

CO

va=T~, a = 1 , 2 ,
represent the divergent waves propagating from the point of disturbance towards.
infinity. Thus, the solution of the homogeneous Eq. (1.14) will take the form

•Sit* 1? iTf 1?

.20) Y = A - ^+ B - ^ - -

Similarly, the solution of the homogeneous Eq. (1.15) will be given in the form of
the following function

(1.21) H* = C—+D — .

Only real phase velocities may appeal in terms representing the functions *P and H.
Thus, we should have k\ > 0, k\ > 0. The first condition is already satisfied. The

4a
second one will be satisfied if 04 > 2p or to2 > — , what results from the relation:

k\ k\ = of (04 — 2p) > 0. In expressions (1.20) and (1.21) two waves appear
undergoing dispersion (since k\ and k% are the functions of frequency a>).

2. Effect of the concentrated force

Let us first consider the action of body forces. Since Y = 0, there is also a = 0>
and rj = 0. In an infinite elastic space rotation waves will not appear (S* = 0).
Thus we have to solve the system of equations



558 W, No w a c k i [912]

(2.1) (V2+ffi) 0* = 2$*,
ci

(2.2) (V2+*?) (W+kl)¥* = - -2 D2 X*,
c2

(2.3) (V2+A:?) (V2+A|) H* = 4 rot **.
C2

In a general approach, we determine the function #* and %* for an arbitrary vector
of body forces from the following formulae [6]

Now, introducing into Eqs. (2.4) and (2.5) the expression

Xj (x) . 6 (xi) 8 (x2) d (x3) dlit j= 1, 2, 3,

which describes the action of the concentrated force starting with the origin of
the coordinate system and acting along the xi-axis we obtain successively

* () \ °4 ^ dXl

•

Thus, we have to solve the following equations

(2.7) ^ ^

(2.8)

(2.9)
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The solution of Eq. (2.7) is known from classical elastokinetics [6]. it reads as follows

1 d / e t o l J ? - l \
(2.10) <P*(x) = - - r— T— •

4ngco2 dxi \ R I
We shall solve Eqs. (2.8) and (2.9) applying the exponential Fourier integral
transformation. Thus, the solution for W%, e.g., will have the form

(2.11) 12 (X) 8ec2 re3 ^ J J J

Taking into consideration that

°° etk>

we obtain from (2.11)

1 d I eiklR ei!c*R 1
4jtQco2 dx-i, \ R R R

where

A - «*-% A
 g 2 ~ ^ A _ 2

Solving the equation for W*, we get

1 A / JltiR J"2R

The application of the exponential Fourier integral transformation to the system
of Eqs. (2.9) affords

where

k\{k\-klY
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We obtain the displacements u and the rotations co from the formulae (1.3) and
(1.4). Since r\* = 0, there is

M* = di 0*+d2 w; - d, w;, u* = d2 $* - di wi ui = dl 0*+dx w*,
( 2 - 1 7 )

 w* = d2 H; - di #*, a)*2 = di H{ - di #3*. a>; = di ff2* - 3? H*.

In this way, We arrive at the following formulae for the displacement u* and
rotation to* amplitudes

1

(2.18) u) - 0 ; «

(2.19) (O, = iJ.; ' — 2775rpr I

Thus we get three components of the displacement vector U](i) and three components
of the rotation vector £>*(I) as well. Let us now shift the concentrated force to the
point % and direct it parallelly to the xj-axis. The following formulae may serve as
an example:

(220) co* ^
(2.20) co, -

where

• R - [ < * « - f t ) ( * -

By this method we obtain the rotation tensor 2̂yJ (,x, 5), 7, / == 1,2, 3 and, umilarly,
the displacement tensor Ujl) (x, %), j , 1—1,2, 3.

Putting into Eqs. (2.18) and (2.19) a = 0 we pass to the classical elastokinetics.
We obtain thus [6]

dx] dxi \ R

= 0, . ; , / = 1,2,3,

where

We return now once more to the formulae (2.18) and (2.19). Observe that the
concentrated force acting along the xi-axis effectuates the rotation co* = Q*(1) = 0.
Thus it results that the components XJI j — 1,2, 3 of the curvature-twist tensor
Hji = Mj, j are equal to zero. The components of the strain tensor y^ — m, j —
-1- Skjt (Ok are less than zero. In (2.18) and (2.19) three kinds of waves appear. Those
connected with the quantities k\, k2 undergo dispersion.
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3. Effect of the body couples

Let us now consider the effect of body couples. Since X = 0, § and x are also
equal to zero. In an infinite space the longitudinal wave will not occur («£»* = 0).
Thus, We have to solve only the following system of equations

1
(3.1) ("""F^i) ^ ~ 2 & >

C3

(3.2)

Let us now assume that at the origin of the coordinate system the concentrated
ccuple Y* = <5 (x\) 8 {x2) 8 (X3) 8yi, j = 1, 2, 3, is acting. The components a*
and vj* will be obtained from formulae resembling (2.4) and (2.5), namely

(3.3)
AnJ dxi \RI " ' • 4m J

1 d / I
13 AnJ dx2 \R

Applying a procedure similar to that used in the preceding section, we get the
following solutions of Eqs. (3.1) and (3.2)

1 d ! < ? * * * - \

R

Hx R

Cl kUkl-kl)' Cl k\{k\-k\)> C 3 ~ k\k\

The displacements and rotations will be obtained from the formulae below

«; = d2 w; - d, wi u*2 = d3 w: - dl w;, u; = d{ w* - d? v;,

(3.7) m* = di H*+d2 H* - di H*, co*2 =d22*- 1̂ H*,

a** = d3 Z*+di H*.



562 W. Nowacki J916]

Introducing Eqs. (3.4)-(3.6) into Eqs. (3.7) we have

(3.8)

0.9)

iut-ki)'

a / ei*.R_ei**R

dxA R
i

4-nJc}

r +c2

g**«

c, ; = 1 ,2 ,3 .

Transferring the concentrated moment to point %, and directing the moment vector
parallelly to the xj-axis We obtain Green's displacement tensor V* w (x, %) and the
rotation tensor W*(0 (x, ^). To quote an example, we obtain

where ,R = [(« - &) (x4 - &)]1/2 •
Returning to Eqs. (3.8) and (3.9) let us remark that the action of the concentrated

moment Y* = d (;q) <5 (x2) <5 (x^) d\j leads to the zero-value of the displacement
along the Xi-axis («* = 0). Thus, also yn = 0. Since k\, k2, ^3 are functions of the
frequency co, all kinds of waves appearing in (3.8) and (3.9) undergo dispersion.

Let us consider a particular case. Assume the concentrated force X* = d (x — %) 8jr

acting at point \ and oriented parallelly to the xr-axis. This force will induce
a displacement field C/}r) (x, %) and a rotation field Of* (x, £)• Now, let the concentrat-
ed moment Y* = 6 (x — v\) dji oriented parallelly to the xz-axis act at point *),
It will induce the displacement FJ° (x, T)) and the rotations Wf* (x, TQ). We apply
the theorem on reciprocity [7] to the causes and effects mentioned above

(3.11) / (z; uT+ Yt* col*) dV='J (X;* ut+Yl* «)J) dV.
v , y

Eq. (3.11) affords

J <3 (x - 1 ) djr Vf (x, KJ) dV(x) = / 6 (x -YI ) 3,, flf rx, © rfF(x)
v v

whence

(3.12)

AkzR

Making use of Eqs. (2.20) and (3.10), we arrive at

d
.li) =

AnJcl{k\-kl)

e""1" —,

2a 2a
As r — —2-and p = —y the relation (3.12) is obviously, verified.
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Eq. (3.12) may be considered as an expansion of the J. C. Maxwell theoiem on the

reciprocity of works known from classical elastokinetics.

A more ample discussion of the problem of solutions of basic equations (1.1)

and (1.2) will appear in a separate paper to be published in Proc. of

Vibrations Problems.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL
PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PR0BLEM6W
TECHNIKI, PAN)
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B. HOBALJKHfl, 4>yHKIJHH TPHHA flJIH MHKPOIIOJIflPHOM

B HacTCHimeft paSoxe flaeica ocHOBHoe pememie flHijiiJiepeHUHanbHbix ypaBHeHHft fljra MHKPO-
nojiapHoft ynpyrocTH. IIpHBOflflTCH <J'yHKu;nH FpHHa (TeH3op nepeMemeHHH H TeH3op o6opoTa)
fljra cocpeflOTOHenHoK CHJIM H fljifl cocpeflOTOieHHoro MOMeHTa, fleBcTByioinHX B 6ecKOHeiHoft
ynpyroft cpe^e.


