B ULLETIN DE
 L'ACADÉMIE POLONAISE DES SCIENCES

SERIE DES SCIENCES TECHNIQUES

Volume XVI, Numéro 11-12

Green Functions for Micropolar Elasticity

by
W. NOWACKI
Presented on October 15, 1968

1. Introduction

The aim of this paper is to give basic solutions of wave equations in an unlimited medium for micropolar elasticity and, in particular, to present in a closed form wave functions as well as the displacement and rotation field formed in such a medium under the action of a concentrated force or a couple changing harmonically in time.

Let us consider first the system of linearizec equations for micropolar elasticity [1]-[4]:

$$
\begin{gather*}
(\mu+\alpha) \nabla^{2} \mathbf{u}+(\lambda+\mu-\alpha) \operatorname{grad} \operatorname{div} \mathbf{u}+2 \alpha \operatorname{rot} \boldsymbol{\omega}+\mathbf{X}=\varrho \ddot{\mathbf{i}} \tag{1.1}\\
(\gamma+\varepsilon) \nabla^{2} \omega+(\beta+\gamma-\varepsilon) \operatorname{grad} \operatorname{div} \omega-4 \alpha \omega+2 \alpha \operatorname{rot} \mathbf{u}+\mathbf{Y}=J \ddot{\omega} . \tag{1.2}
\end{gather*}
$$

The following notations are adopted throughout the present paper: \mathbf{u} denotes the displacement vector, ω - the rotation vector, \mathbf{X} - the vector of body-forces, \mathbf{Y} - the vector of body-couples, the symbols $\mu, \lambda, \alpha, \beta, \gamma, \varepsilon$ stand for material constants, ϱ - for density and J - for rotational inertia. The quantities $\mathbf{u}, \omega, \mathbf{X}, \mathbf{Y}$ are functions of the position \mathbf{x} and time t.

Eqs. (1.1) and (1.2) are coupled.
Decomposing the displacements and rotation vectors into their potential and solenoidal parts, we get

$$
\begin{array}{ll}
\mathbf{u}=\operatorname{grad} \Phi+\operatorname{rot} \Psi, & \operatorname{div} \Psi=0 \\
\omega=\operatorname{grad} \Sigma+\operatorname{rot} \mathbf{H}, & \operatorname{div} \mathbf{H}=0 \tag{1.4}
\end{array}
$$

and, similarly, decomposing the body-force and body-couple vectors into two terms each we obtain

$$
\begin{gather*}
\mathbf{X}=\varrho(\operatorname{grad} \vartheta+\operatorname{rot} \chi), \tag{1.5}\\
\mathbf{Y}=J(\operatorname{grad} \sigma+\operatorname{rot} \eta), \tag{1.6}\\
555-[909]
\end{gather*}
$$

Thus we may transform the system of Eqs. (1.1) and (1.2) into the system of the following four equations

$$
\begin{gather*}
\square_{1} \Phi+\varrho \vartheta=0, \tag{1.7}\\
\square_{3} \Sigma+J \sigma=0, \tag{1.8}\\
\left(\square_{2} \square_{4}+4 \alpha^{2} \nabla^{2}\right) \Psi=2 \alpha J \operatorname{rot} \eta-\varrho \square_{4} \chi, \tag{1.9}\\
\left(\square_{2} \square_{4}+4 \alpha^{2} \nabla^{2}\right) \mathbf{H}=2 \alpha \varrho \operatorname{rot} \chi-J \square_{2} \eta . \tag{1.10}
\end{gather*}
$$

with the following notations

$$
\begin{gathered}
\square_{1}=(\lambda+2 \mu) \nabla^{2}-\varrho \partial_{t}^{2}, \quad \square_{2}=(\mu+\alpha) \nabla^{2}-\varrho \partial_{t}^{2}, \\
\square_{3}=(\beta+2 \gamma) \nabla^{2}-4 \alpha-J \partial_{t}^{2}, \quad \square_{4}=(\gamma+\varepsilon) \nabla^{2}-4 \Omega-J \partial_{t}^{2}, \\
\nabla^{2}=\partial_{i} \partial_{i}, \quad \partial_{t}^{2}=\partial^{2} / \partial t^{2} .
\end{gathered}
$$

Eq. (1.7) describes the longitudinal, while Eq. (1.8) the rotational wave. Let us remark that in an infinite elastic space the body-force $\mathbf{X}^{\prime}=\varrho \operatorname{grad} \vartheta$ generates only the longitudinal, whereas the body-couple $Y^{\prime}=J$ grad σ only the rotational waves.

Eqs. (1.9) and (1.10) represent the modified transverse waves. We assume that the body-forces and-body couples responsible for the wave disturbances change harmonically in time. This may be noted in the form

$$
\begin{equation*}
\mathbf{X}(\mathbf{x}, t)=\mathbf{X}^{*}(\mathbf{x}) e^{-i \omega t}, \quad \mathbf{Y}(\mathbf{x}, t)=\mathbf{Y}^{*}(\mathbf{x}) e^{-i \omega t} \tag{1.11}
\end{equation*}
$$

Consequently, the displacements \mathbf{u}, the rotations ω and also the functions $\Phi, \Sigma, \Psi, \mathbf{H}$ change harmonically in time, too.

Marking with an asterisk the amplitudes of these functions, we reduce Eqs. (1.7) -(1.10) to the forms

$$
\begin{gather*}
\left(\nabla^{2}+\sigma_{1}^{2}\right) \Phi^{*}=-\frac{1}{c_{1}^{2}} \vartheta^{*}, \tag{1.12}\\
\left(\nabla^{2}+\sigma_{3}^{2}\right) \Sigma^{*}=-\frac{1}{c_{3}^{2}} \sigma^{*}, \tag{1.13}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \Psi^{*}=\frac{r}{c_{4}^{2}} \operatorname{rot} \eta^{*}-\frac{1}{c_{2}^{2}} D_{2} \chi^{*}, \tag{1.14}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \mathbf{H}^{*}=\frac{p}{c_{2}^{2}} \operatorname{rot} \chi^{*}-\frac{1}{c_{4}^{2}} D_{1} \eta^{*} . \tag{1.15}
\end{gather*}
$$

wherein the following notations have been introduced

$$
\begin{array}{ll}
\sigma_{1}=\frac{\omega}{c_{1}}, \quad c_{1}=\left(\frac{\lambda+2 \mu}{\varrho}\right)^{1 / 2}, \quad \sigma_{3}=\left(\frac{\omega^{2}-\omega_{0}^{2}}{c_{3}}\right)^{1 / 2}, \quad c_{3}=\left(\frac{\beta+2 \gamma}{J}\right)^{1 / 2}, \\
\omega_{0}^{2}=\frac{4 \alpha}{J}, \quad r=\frac{2 \alpha}{\varrho c_{2}^{2}}, \quad \sigma_{2}=\frac{\omega}{c_{2}}, \quad c_{2}=\left(\frac{\mu+\alpha}{\varrho}\right)^{1 / 2}, \quad p=\frac{2 \alpha}{J c_{4}^{2}} \\
\sigma_{4}=\frac{\omega}{c_{4}}, \quad c_{4}=\left(\frac{\gamma+\varepsilon}{J}\right)^{1 / 2}, \quad D_{1}=\nabla^{2}+\sigma_{2}^{2}, \quad D_{2}=\nabla^{2}+\sigma_{4}^{2}-2 p
\end{array}
$$

The quantities k_{1}^{2}, k_{2}^{2} stand for the roots of the following biquadratic equation

$$
\begin{equation*}
k^{4}-k^{2}\left(\sigma_{2}^{2}+\sigma_{4}^{2}+p(r-2)\right)+\sigma_{2}^{2}\left(\sigma_{4}^{2}-2 p\right)=0 . \tag{1.16}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
k_{1,2}^{2}=\frac{1}{2}\left[\sigma_{2}^{2}+\sigma_{4}^{2}+p(r-2) \pm \sqrt{\left[\sigma_{4}^{2}-\sigma_{2}^{2}+p(r-2)\right]^{2}+4 p r \sigma_{2}^{2}}\right] \tag{1.17}
\end{equation*}
$$

The discriminant appearing in (1.17) is, obviously, positive. Let us now consider the homogeneous Eq. (1.14). The solution of this equation may be presented according to a theorem due to Boggio [5] - in the form of a sum of two partial solutions $\Psi^{\prime *}$ anc $\Psi^{\prime \prime *}$:

$$
\begin{equation*}
\Psi^{*}=\Psi^{\prime *}+\Psi^{\prime \prime *}, \tag{1.18}
\end{equation*}
$$

satisfying the Helmholtz vector equations

$$
\begin{equation*}
\left(\nabla^{2}+k_{1}^{2}\right) \Psi^{\prime *}=0, \quad\left(\nabla^{2}+k_{2}^{2}\right) \Psi^{\prime \prime *}=0 . \tag{1.19}
\end{equation*}
$$

The singular integrals of Eqs. (1.19) are the functions $\frac{e^{ \pm i k_{a} R}}{R}, \alpha=1,2$. However, only the solution $\frac{1}{R} e^{i k_{\alpha} R}$ have a physical meaning as only the expressions

$$
\operatorname{Re}\left[e^{-i \omega t} \frac{1}{R} e^{i k_{a} R}\right]=\frac{1}{R} \cos \omega\left(t-\frac{R}{v_{a}}\right), \quad v_{a}=\frac{\omega}{k_{a}}, \quad \alpha=1,2,
$$

represent the divergent waves propagating from the point of disturbance towards infinity. Thus, the solution of the homogeneous Eq. (1.14) will take the form

$$
\begin{equation*}
\Psi^{*}=\mathbf{A} \frac{e^{i k_{1} R}}{R}+\mathbf{B} \frac{e^{i k_{2} R}}{R} . \tag{1.20}
\end{equation*}
$$

Similarly, the solution of the homogeneous Eq. (1.15) will be given in the form of the following function

$$
\begin{equation*}
\mathbf{H}^{*}=\mathbf{C} \frac{e^{i k_{1} R}}{R}+\mathbf{D} \frac{e^{i k_{\mathrm{I}} R}}{R} \tag{1.21}
\end{equation*}
$$

Only real phase velocities may appeat in terms representing the functions Ψ and \mathbf{H}. Thus, we should have $k_{1}^{2}>0, k_{2}^{2}>0$. The first condition is already satisfied. The second one will be satisfied if $\sigma_{4}>2 p$ or $\omega^{2}>\frac{4 \alpha}{J}$, what results from the relation: $k_{1}^{2} k_{2}^{2}=\sigma_{2}^{2}\left(\sigma_{4}^{2}-2 p\right)>0$. In expressions (1.20) and (1.21) two waves appear undergoing dispersion (since k_{1} and k_{2} are the functions of frequency ω).

2. Effect of the concentrated force

Let us first consider the action of body forces. Since $\mathbf{Y}=0$, there is also $\sigma=0$ and $\eta=0$. In an infinite elastic space rotation waves will not appear ($\Sigma^{*}=0$). Thus we have to solve the system of equations

$$
\begin{gather*}
\left(\nabla^{2}+\sigma_{1}^{2}\right) \Phi^{*}=-\frac{1}{c_{1}^{2}} \vartheta^{*}, \tag{2.1}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \Psi^{*}=-\frac{1}{c_{2}^{2}} D_{2} \chi^{*}, \tag{2.2}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \mathbf{H}^{*}=\frac{p}{c_{2}^{2}} \operatorname{rot} \chi^{*} . \tag{2.3}
\end{gather*}
$$

In a general approach, we determine the function ϑ^{*} and χ^{*} for an arbitrary vector of body forces from the following formulae [6]

$$
\begin{gather*}
\vartheta^{*}(\mathbf{x})=-\frac{1}{4 \pi \varrho} \int_{V} X_{j}^{*}(\xi) \frac{\partial}{\partial x_{j}}\left(\frac{1}{R(\xi, \mathbf{x})}\right) d V(\xi) \tag{2.4}\\
\chi_{i}^{*}(\mathbf{x})=-\frac{1}{4 \pi \varrho} \int_{V} \varepsilon_{i j k} X_{j}^{*}(\xi) \frac{\partial}{\partial x_{k}}\left(\frac{1}{R(\xi, \mathbf{x})}\right) d V(\xi), \quad i, j, k=1,2,3 . \tag{2.5}
\end{gather*}
$$

Now, introducing into Eqs. (2.4) and (2.5) the expression

$$
X_{j}(\mathbf{x})=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \delta\left(x_{3}\right) \delta_{1 j}, \quad j=1,2,3,
$$

which describes the action of the concentrated force starting with the origin of the coorainate system and acting along the x_{1}-axis we obtain successively

$$
\begin{array}{rlrl}
\vartheta^{*}(\mathbf{x}) & =-\frac{1}{4 \pi \varrho} \frac{\partial}{\partial x_{1}}\left(\frac{1}{R}\right), & \chi_{1}^{*}=0, \quad \chi_{2}^{*}=\frac{1}{4 \pi \varrho} \frac{\partial}{\partial x_{3}}\left(\frac{1}{R}\right), \tag{2.6}\\
\chi_{3}^{*} & =-\frac{1}{4 \pi \varrho} \frac{\partial}{\partial x_{2}}\left(\frac{1}{R}\right), & R & =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2} .
\end{array}
$$

Thus, we have to solve the following equations

$$
\begin{gather*}
\left(\nabla^{2}+\sigma_{1}^{2}\right) \Phi^{*}=\frac{1}{4 \pi \varrho c_{1}^{2}} \frac{\partial}{\partial x_{1}}\left(\frac{1}{R}\right), \tag{2.7}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \Psi_{2}^{*}=-\frac{1}{4 \pi \varrho c_{2}^{2}}\left(\nabla^{2}+\sigma_{4}^{2}-2 p\right) \frac{\partial}{\partial x_{3}}\left(\frac{1}{R}\right), \tag{2.8}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \Psi_{3}^{*}=\frac{1}{4 \pi \varrho c_{2}^{2}}\left(\nabla^{2}+\sigma_{4}^{2}-2 p\right) \frac{\partial}{\partial x_{2}}\left(\frac{1}{R}\right), \quad \Psi_{1}^{*}=0, \\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) H_{1}^{*}=-\frac{p}{4 \pi \varrho c_{2}^{2}}\left(\nabla^{2}-\partial_{1}^{2}\right)\left(\frac{1}{R}\right), \\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) H_{2}^{*}=\frac{p}{4 \pi \varrho c_{2}^{2}} \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{2}}\left(\frac{1}{R}\right), \tag{2.9}\\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) H_{3}^{*}=\frac{p}{4 \pi \varrho c_{2}^{2}} \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial x_{3}}\left(\frac{1}{R}\right) .
\end{gather*}
$$

The solution of Eq. (2.7) is known from classical elastokinetics [6]. It reads as follows

$$
\begin{equation*}
\Phi^{*}(\mathbf{x})=-\frac{1}{4 \pi \varrho \omega^{2}} \frac{\partial}{\partial x_{1}}\left(\frac{e^{i \sigma_{1} R}-1}{R}\right) . \tag{2.10}
\end{equation*}
$$

We shall solve Eqs. (2.8) and (2.9) applying the exponential Fourier integral transformation. Thus, the solution for Ψ_{2}^{*}, e.g., will have the form

$$
\begin{gather*}
\Psi_{2}^{*}(\mathbf{x})=\frac{1}{8 \varrho c_{2}^{2} \pi^{3}} \frac{\partial}{\partial x_{3}} \frac{\iiint}{\frac{\infty}{-\infty}} \frac{\left(\alpha^{2}-\sigma_{4}^{2}+2 p\right) e^{i \alpha_{k} x_{k}} d \alpha_{1} d \alpha_{2} d \alpha_{3}}{\alpha^{2}\left(\boldsymbol{\alpha}^{2}-k_{1}^{2}\right)\left(\alpha^{2}-k_{2}^{2}\right)}, \tag{2.11}\\
\alpha^{2}=a_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2} .
\end{gather*}
$$

Taking into consideration that

$$
\frac{\iint_{-\infty}^{\infty} \int}{\infty} \frac{e^{i a_{k} x_{k}} d \alpha_{1} d \alpha_{2} d \alpha_{3}}{\alpha^{2}-k_{\alpha}^{2}}=2 \pi^{2} \frac{e^{i k_{j}}}{R},
$$

we obtain from (2.11)

$$
\begin{equation*}
\Psi_{2}^{*}=\frac{1}{4 \pi \varrho \omega^{2}} \frac{\partial}{\partial x_{3}}\left(A_{1} \frac{e^{i k_{1} R}}{R}+A_{2} \frac{e^{i k_{2} R}}{R}+A_{3} \frac{1}{R}\right) \tag{2.12}
\end{equation*}
$$

where

$$
A_{1}=\frac{\sigma_{2}^{2}-k_{2}^{2}}{k_{1}^{2}-k_{2}^{2}}, \quad A_{2}=\frac{\sigma_{2}^{2}-k_{1}^{2}}{k_{2}^{2}-k_{1}^{2}}, \quad A_{3}=-1
$$

Solving the equation for Ψ_{2}^{*}, we get

$$
\begin{equation*}
\Psi_{3}^{*}=-\frac{1}{4 \pi \varrho \omega^{2}} \frac{\partial}{\partial x_{2}}\left(A_{1} \frac{e^{i k_{1} R}}{R}+A_{2} \frac{e^{i k_{2} R}}{R}+A_{3} \frac{1}{R}\right) . \tag{2.13}
\end{equation*}
$$

The application of the exponential Fourier integral transformation to the system of Eqs. (2.9) affords

$$
\begin{gather*}
H_{1}^{*}=\frac{p}{4 \pi \varrho c_{2}^{2}}\left\{\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R\left(k_{1}^{2}-k_{2}^{2}\right)}+\partial_{1}^{2}\left(B_{1} \frac{e^{i k_{1} R}}{R}+B_{2} \frac{e^{i k_{2} R}}{R}+B_{3} \frac{1}{R}\right),\right. \tag{2.14}\\
H_{2}^{*}=\frac{p}{4 \pi \varrho c_{L}^{2}} \partial_{1} \partial_{2}\left(B_{1} \frac{e^{i k_{1} R}}{R}+B_{2} \frac{e^{i k_{2} R}}{R}+B_{3} \frac{1}{R}\right), \\
H_{3}^{*}=\frac{p}{4 \pi \varrho c_{2}^{2}} \partial_{1} \partial_{3}\left(B_{1} \frac{e^{i k_{1} R}}{R}+B_{2} \frac{e^{i k_{2} R}}{R}+B_{3} \frac{1}{R}\right),
\end{gather*}
$$

where

$$
B_{1}=\frac{1}{k_{1}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)}, \quad B_{2}=\frac{1}{k_{2}^{2}\left(k_{2}^{2}-k_{1}^{2}\right)}, \quad B_{3}=\frac{1}{k_{1}^{2} k_{2}^{2}} .
$$

We obtain the displacements \mathbf{u} and the rotations $\boldsymbol{\omega}$ from the formulae (1.3) and (1.4). Since $\eta^{*}=0$, there is

$$
\begin{align*}
& u_{1}^{*}=\partial_{1} \Phi^{*}+\partial_{2} \Psi_{3}^{*}-\partial_{3} \Psi_{2}^{*}, \quad u_{2}^{*}=\partial_{2} \Phi^{*}-\partial_{1} \Psi_{3}^{*}, \quad u_{3}^{*}=\partial_{3} \Phi^{*}+\partial_{1} \Psi_{2}^{*}, \tag{2.17}\\
& \omega_{1}^{*}=\partial_{2} H_{3}^{*}-\partial_{3} H_{2}^{*}, \quad \omega_{2}^{*}=\partial_{3} H_{1}^{*}-\partial_{1} H_{3}^{*}, \quad \omega_{3}^{*}=\partial_{1} H_{2}^{*}-\partial_{7} H_{1}^{*}
\end{align*}
$$

In this way, we arrive at the following formulae for the displacement \mathbf{u}^{*} and rotation ω^{*} amplitudes

$$
\begin{align*}
& u_{j}^{*}=U_{j}^{*(1)}= \frac{1}{4 \pi \varrho \omega^{2}}\left(A_{1} k_{1}^{2} \frac{e^{i k_{1} R}}{R}+A_{2} k_{2}^{2} \frac{e^{i k_{2} R}}{R}\right) \delta_{1 j}+ \tag{2.18}\\
&+\frac{1}{4 \pi \varrho \omega^{2}} \partial_{1} \partial_{j}\left(A_{1} \frac{e^{i k_{1} R}}{R}+A_{2} \frac{e^{i k_{2} R}}{R}+A_{3} \frac{e^{i \sigma_{1} R}}{R}\right) . \\
& \omega_{j}^{*}=\Omega_{j}^{*(1)}=\frac{p \epsilon_{1 j k}^{4 \pi \varrho c_{2}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)} \frac{\partial}{\partial x_{k}}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R}\right)}{} . \tag{2.19}
\end{align*}
$$

Thus we get three components of the displacement vector $U_{j}^{*(1)}$ and three components of the rotation vector $\Omega_{j}^{*(1)}$ as well. Let us now shift the concentrated force to the point ξ and direct it parallelly to the x_{l}-axis. The following formulae may serve as an example:

$$
\begin{equation*}
\omega_{j}^{*}=\Omega_{j}^{*(l)}=\frac{p \epsilon_{l j k}}{4 \pi \varrho c_{2}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)} \frac{\partial}{\partial x_{k}}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R}\right) \tag{2.20}
\end{equation*}
$$

where

$$
R=\left[\left(x_{i}-\xi_{i}\right)\left(x_{i}-\xi_{i}\right)\right]^{1 / 2} .
$$

By this method we obtain the rotation tensor $\Omega_{j}^{(l)}(\mathbf{x}, \xi), j, l=1,2,3$ and, imilarly, the displacement tensor $U_{j}^{(l)}(\mathbf{x}, \xi), j, l=1,2,3$.

Putting into Eqs. (2.18) and (2.19) $\alpha=0$ we pass to the classical elastokinetics. We obtain thus [6]

$$
\begin{gather*}
U_{j}^{*(l)}=\frac{\delta_{j l}}{4 \pi \mu} \frac{e^{i \tau R}}{R}-\frac{1}{4 \pi \varrho \omega^{2}} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{l}}\left(\frac{e^{i \sigma R}-e^{i \tau R}}{R}\right), \tag{2.21}\\
\Omega^{*(l)}=0, \quad j, l=1,2,3
\end{gather*}
$$

where

$$
\tau=\frac{\omega}{c_{2}^{0}}, \quad c_{2}^{0}=\left(\frac{\mu}{\varrho}\right)^{1 / 2}, \quad \sigma=\frac{\omega}{c_{1}}, \quad c_{1}=\left(\frac{\lambda+2 \mu}{\varrho}\right)^{1 / 2} .
$$

We return now once more to the formulae (2.18) and (2.19). Observe that the concentrated force acting along the x_{1}-axis effectuates the rotation $\omega_{1}^{*}=\Omega_{1}^{*(1)}=0$. Thus it results that the components $\varkappa_{j_{1}} j=1,2,3$ of the curvature-twist tensor $x_{j i}=u_{i, j}$ are equal to zero. The components of the strain tensor $\gamma_{j i}=u_{i, j}-$ $-\varepsilon_{k j l} \omega_{k}$ are less than zero. In (2.18) and (2.19) three kinds of waves appear. Those connected with the quantities k_{1}, k_{2} undergo dispersion.

3. Effect of the body couples

Let us now consider the effect of body couples. Since $\mathbf{X}=0, \vartheta$ and χ are also equal to zero. In an infinite space the longitudinal wave will not occur ($\boldsymbol{\Phi}^{*}=0$). Thus, we have to solve only the following system of equations

$$
\begin{align*}
& \left(\nabla^{2}+k_{3}^{2}\right) \Sigma^{*}=-\frac{1}{c_{3}^{2}} \sigma^{*}, \tag{3.1}\\
& \left\{\begin{array}{l}
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \Psi^{*}=\frac{r}{c_{4}^{2}} \operatorname{rot} \eta^{*}, \\
\left(\nabla^{2}+k_{1}^{2}\right)\left(\nabla^{2}+k_{2}^{2}\right) \mathbf{H}^{*}=-\frac{1}{c_{4}^{2}} D_{1} \eta^{*} .
\end{array}\right.
\end{align*}
$$

Let us now assume that at the origin of the coordinate system the concentrated ccuple $Y_{j}^{*}=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \delta\left(x_{3}\right) \delta_{1 j}, j=1,2,3$, is acting. The components σ^{*} and η^{*} will be obtained from formulae resembling (2.4) and (2.5), namely

$$
\begin{gather*}
\sigma^{*}(\mathbf{x})=-\frac{1}{4 \pi J} \frac{\partial}{\partial x_{1}}\left(\frac{1}{R}\right), \quad \eta_{1}^{*}=0, \quad \eta_{2}^{*}=\frac{1}{4 \pi J} \frac{\partial}{\partial x_{3}}\left(\frac{1}{R}\right) \tag{3.3}\\
\eta_{3}^{*}=\frac{1}{4 \pi J} \frac{\partial}{\partial x_{2}}\left(\frac{1}{R}\right) .
\end{gather*}
$$

Applying a procedure similar to that used in the preceding section, we get the following solutions of Eqs. (3.1) and (3.2)

$$
\begin{equation*}
\Sigma *=-\frac{1}{4 \pi J c_{3}^{2} k_{3}^{2}} \frac{\partial}{\partial x_{1}}\left(\frac{e^{i k_{3} R}-1}{R}\right) \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& \Psi_{j}^{*}=\frac{r}{4 \pi J c_{4}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R}\right) \delta_{j 1}+ \tag{3.5}\\
& \quad+\frac{r}{4 \pi J c_{4}^{2}} \partial_{1} \partial_{j}\left(B_{1} \frac{e^{i k_{1} R}}{R}+B_{2} \frac{e^{i k_{2} R}}{R}+B_{3} \frac{1}{R}\right)
\end{align*}
$$

$$
\begin{align*}
H_{j}^{*} & =\frac{1}{4 \pi J c_{4}^{2}} \epsilon_{1 j k} \frac{\partial}{\partial x_{k}}\left(C_{1} \frac{e^{i k_{1} R}}{R}+C_{2} \frac{e^{i k_{2} R}}{R}+C_{3} \frac{1}{R}\right), \quad j=1,2,3, \tag{3.6}\\
C_{1} & =\frac{k_{1}^{2}-\sigma_{2}^{2}}{k_{1}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)}, \quad C_{2}=\frac{k_{2}^{2}-\sigma_{2}^{2}}{k_{1}^{2}\left(k_{2}^{2}-k_{1}^{2}\right)}, \quad C_{3}=-\frac{\sigma_{2}^{2}}{k_{1}^{2} k_{2}^{2}} .
\end{align*}
$$

The displacements and rotations will be obtained from the formulae below

$$
\begin{align*}
& u_{i}^{*}=\partial_{2} \Psi_{3}^{*}-\partial_{3} \Psi_{2}^{*}, \quad u_{2}^{*}=\partial_{3} \Psi_{1}^{*}-\partial_{1} \Psi_{3}^{*}, \quad u_{3}^{*}=\partial_{1} \Psi_{2}^{*}-\partial_{2} \Psi_{1}^{*} \\
& \omega_{1}^{*}=\partial_{1} \Sigma^{*}+\partial_{2} H_{3}^{*}-\partial_{3} H_{2}^{*}, \quad \omega_{2}^{*}=\partial_{2} \Sigma^{*}-\partial_{1} H_{3}^{*}, \tag{3.7}\\
& \omega_{3}^{*}=\partial_{3} \Sigma^{*}+\partial_{1} H_{2}^{*}
\end{align*}
$$

Introducing Eqs. (3.4)-(3.6) into Eqs. (3.7) we have

$$
\begin{align*}
u_{j}^{*}=V_{j}^{*(1)} & =\frac{r}{4 \pi J c_{4}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)}, \quad \varepsilon_{1 j k} \frac{\partial}{\partial x_{k}}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R}\right), \tag{3.8}\\
\omega_{j}^{*}=W_{j}^{*(1)} & =-\frac{1}{4 \pi J c_{4}^{?}}\left(k_{1}^{2} C_{1} \frac{e^{i k_{1} R}}{R}+k_{2}^{2} C_{2} \frac{e^{i k_{2} R}}{R}\right) \partial_{1 j}+ \tag{3.9}\\
+ & \frac{\partial_{1} \partial_{j}}{4 \pi J c_{4}^{2}}\left(C_{1} \frac{e^{i k_{1} R}}{R}+C_{2} \frac{e^{i k_{2} R}}{R}+C_{3} \frac{e^{i k_{3} R}}{R}\right), \quad k, j=1,2,3 .
\end{align*}
$$

Transferring the concentrated moment to point ξ and directing the moment vector parallelly to the x_{l}-axis we obtain Green's displacement tensor $V_{j}^{*(l)}(\mathbf{x}, \xi)$ and the rotation tensor $W_{j}^{*(l)}(\mathbf{x}, \xi)$. To quote an example, we cbtain

$$
\begin{equation*}
V_{j}^{*(l)}(\mathbf{x}, \xi)=\frac{r \epsilon_{l j k}}{4 \pi J c_{4}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)} \frac{\partial}{\partial x_{k}}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R}\right), \quad l, j, k=1,2,3 . \tag{3.10}
\end{equation*}
$$

where $R=\left[\left(x_{i}-\xi_{i}\right)\left(x_{i}-\xi_{i}\right)\right]^{1 / 2}$.
Returning to Eqs. (3.8) and (3.9) let us remark that the action of the concentrated moment $Y^{*}=\delta\left(x_{1}\right) \delta\left(x_{2}\right) \delta\left(x_{3}\right) \delta_{1 j}$ leads to the zero-value of the displacement along the x_{1}-axis $\left(u_{1}^{*}=0\right)$. Thus, also $\gamma_{11}=0$. Since k_{1}, k_{2}, k_{3} are functions of the frequency ω, all kinds of waves appearing in (3.8) and (3.9) undergo dispersion.

Let us consider a particular case. Assume the concentrated force $X_{j}^{*}=\delta(\mathbf{x}-\xi) \delta_{j r}$ acting at point ξ and oriented parallelly to the x_{r}-axis. This force will induce a displacement field $U_{j}^{(r)}(\mathbf{x}, \xi)$ and a rotation field $\Omega_{j}^{(r)}(\mathbf{x}, \xi)$. Now, let the concentrated moment $Y_{j}^{*}=\delta(\mathbf{x}-\eta) \delta_{j l}$ oriented parallelly to the x_{l}-axis act at point η. It will induce the displacement $V_{j}^{(l)}(\mathbf{x}, \eta)$ and the rotations $W_{j}^{(l)}(\mathbf{x}, \eta)$. We apply the theorem on reciprocity [7] to the causes and effects mentioned above

$$
\begin{equation*}
\int_{V}\left(X_{i}^{*} u_{i}^{\prime *}+Y_{i}^{*} \omega_{i}^{\prime *}\right) d V=\int_{V}\left(X_{i}^{\prime *} u_{i}^{*}+Y_{i}^{\prime *} \omega_{i}^{*}\right) d V \tag{3.11}
\end{equation*}
$$

Eq. (3.11) affords

$$
\int_{V} \delta(\mathbf{x}-\xi) \delta_{j r} V_{j}^{(l)}(\mathbf{x}, \eta) d V(\mathbf{x})=\int_{V} \delta(\mathbf{x}-\eta) \delta_{j l} \Omega_{j}^{(r)}(\mathbf{x}, \xi) d V(\mathbf{x})
$$

whence

$$
\begin{equation*}
V_{r}^{(l)}(\xi, \eta)=\Omega_{l}^{(r)}(\eta, \xi) \tag{3.12}
\end{equation*}
$$

Making use of Eqs. (2.20) and (3.10), we arrive at

$$
\begin{aligned}
& V_{r}^{(l)}(\xi, \eta)=\frac{r}{4 \pi J c_{4}^{2}\left(k_{1}^{2}-k_{2}^{3}\right)} \epsilon_{l r k}\left|\frac{\partial}{\partial x_{k}}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R(\mathbf{x}, \eta)}\right)\right|_{\mathrm{x}=\boldsymbol{i}}, \\
& \Omega_{l}^{(r)}(\eta, \xi)=\frac{p}{4 \pi \varrho c_{2}^{2}\left(k_{1}^{2}-k_{2}^{2}\right)} \epsilon_{r l k}\left|\frac{\partial}{\partial x_{k}}\left(\frac{e^{i k_{1} R}-e^{i k_{2} R}}{R(\mathbf{x}, \xi)}\right)\right|_{\mathbf{x}=\eta}
\end{aligned}
$$

As $r=\frac{2 \alpha}{\varrho c_{2}^{2}}$ and $p=\frac{2 \alpha}{J c_{4}^{2}}$ the relation (3.12) is obviously, verified.

Eq. (3.12) may be considered as an expansion of the J. C. Maxwell theorem on the reciprocity of works known from classical elastokinetics.

A more ample discussion of the problem of solutions of basic equations (1.1) and (1.2) will appear in a separate paper to be published in Proc. of Vibrations Problems.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC TECHNICAL PROBLEMS, POLISH ACADEMY OF SCIENCES
(ZAKEAD MECHANIKI OŚRODKÓW CIAG£YCH, INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI, PAN)

REFERENCES

[1] A. C. Eringen, E. S. Suhubi, Int. J. Engin. 2 (1964), 189.
[2] - , ibid., 2 (1964), 339.
[3] V. A. Palmov, Prikl. Mat. Mekh., 28 (1964), 401.
[4] W. Nowacki, Bull. Acad. Polon. Sci., Sér. sci. techn., 14 (1966), 505 [801].
[5] T. Boggio, Ann. Mat., Ser. III, 8 (1903), 181.
[6] V.D. Kupradze, Dynamical problems in elasticity, Progr. in Solid. Mech., 3 (1963).
[7] N. Sandru, Int. J. Engin., 4 (1964), 80.

в. НОВАЦКИЙ, ФУНКЦИИ ГРИНА ДЛЯ МИКРОПОЛЯРНОЙ УПРУГОСТИ

В настоящей работе дается основное рещение дифференциальных уравнений для микрополярной упругости. Приводятся функции Грина (тензор перемещения и тензор оборота) для сосредоточенной силы и для сосредоточенного момента, действующих в бесконечной упругой среде.

