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Let an instantaneous source of heat act in an infinite visco-elastic
space with initial temperature T = 0. The action of this source will result
in a temperature and stress field. Let us assume that our visco-elastic
medium, of linear characteristic, is isotropic and homogeneous. Let us
assume also that the deformations are small and that the physical con-
stants are independent of temperature.

The action of the instantaneous heat source will cause dynamic effects.
The inertia forces in the equations of equilibrium will be taken into
account.

We shall consider visco-elastic bodies, where the relations between
the state of stress and strain and the temperature field are given by the
following equations [1], [2]:

(1.1) o$ (xr, t) - 2 | ,i (t - T) £ eJ<> (xr,r) dz +

(1.2) P, (D) P, (D) of/ (x,., t) = P.,(D) P,(D) eg! (xrl t) +

The relations (1.1) were obtained by M. A. Biot [1] and generalized by
D. S. Berry [3] to three-dimensional visco-elastic problems. To these rela-
tions temperature terms are added. X{t), f.i,(t) are relaxation functions which,
in the case of a perfectly elastic body, reduce to the Lame constants. The
operators Pi (D) ( i = 1, 2, 3, 4) in the Eqs. (1.2) are:

Nf

(1-3) P,. (D) = J £ a<»> D", aft -/ 0 ,

[257]



258 w - N ° w a c k i

where Dn=d"/dt" denotes the n-th derivative with respect to time t. In
the Eqs. (1.1) and (1.2), at denotes the coefficient of thermal dilatation
and <5,y Kronnecker's delta. Let us substitute (1.1), (1.2) in the equations
of equilibrium

do,., d"u.

Expressing the strains in terms of displacement by means of the
relation

(15) e = -1 idUi+duj

we obtain the following displacement equations

(1.6) • \ \
o c

= at | 13 A (t - T) + 2 ix(t — T)I -d- ^ , - dr..
b

(1.7) P, (D) P8 (D) P2 uf) + y [2 P4 (D) P, (D) + P2 (D) P, (D) | ^ ' - -

a2u<2i
- 2 P, (D) PB (D) (? - ^ - = 2 P., (D) P, (D)

In order to determine the particular integral of the Eqs. (1.6), (1.7) let
us introduce the potential of thermoelastic strain 0, where

(1.8) Ui=dx- l = = 1 > 2 ' 3 -

Substituting (1.8) into (1.6) and (1,7), we obtain

(1.9)
<i t

= a, | [3A(t — r) + 2/i(t — r)]j-Tdr,

(1.10) J [2 PJD) P,(D) + P, (D) P, (D)] [72 *(«i - P, (D) P8(D)
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Expressing also the relations (1.1) and (1.2) by means of (p and using the
Eqs. (1.9) and (1.10), we obtain

(1.11)

0

d-
dxi

o

(1.12)

du V" 1 dr + (5,-y o

Let us apply Laplace's transformation to the relations (1.9), (1.10) and
(1.11), (1.12), where

T(x,-,p) = f e-"T(x,,t)dt, ®(xrip)= ( e-<"(P(xr,t)dt,
6 6

a/j(xr,p)— ) e~t" Gij{xr,t)dt;
6

we have

(1.13) F- 0 {xr, p) — a2 (p) • pa 0 = f) (p) T (x,, p),

(1.14) cry ( in p) — 2 G (p) ^ ^ - — <5,y F2 j * (x f | p) + tty (?p'J (P («„ p),

where

for a visco-elastic body for which the relation between the state of stress
and that of strain is given by the Eqs. (1.1); and

3P,(p)P:!(p)y 3P1(p)P4(p)af
ff W " 2P9(p)P,(p)+"P,(p)'P4(p)1 [p> 2P,(p)P,(p)+P1(p)P4(pj'

r w P-(p)
G(p) = -rf7CPT

for a visco-elastic body for which the Eqs. (1.2) are valid.
We assume in addition that, for a visco-elastic body for which the

relations (1.2) hold, we have

0|£7ol = 0 f o r P = 1> 2> - max |(JV2 + JV,,), (JV1 +2V4), (W, + N8 + 2)],

TIC<>I = 0 f o r y " 1 . 2 , . » ( N i + N4).

The initial conditions for <Z> are, at the same time, initial conditions for
the displacements and the stress aij.
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Introducing the function W(x,-,p) = G (p) &(xr,p), we can represent the
function (1.14) in the form

(1.15) ay = 2 fc^g" — *</17'2

and the Eq. (1.13) as

(1.16) P^CXr, p) — f (p) P" «P(aCr, P) = h (P) T (xn p) ,

where

= G(p)0(p).

Therefore, we should solve the Eqs. (1.13) and (1.16) and then determine
the stress from the Eqs. (1.15). After performing the inverse Laplace trans-
formation, we obtain the stresses at] (xr! t). In the case of a concentrated
instantaneous source of heat in an infinite elastic space we are concerned
with spherical symmetry of the temperature field and the state of stress
and strain. The temperature field is given by the equation

(1.17) ^ '

where H = X'JCQ and A is the coefficient of heat conduction, Q —• density and
c — specific heat. Next, Q = W/QC, where W is the quantity of heat
generated by the source of heat per unit of time and volume.

Performing Laplace's transformation in the Eq. (1.17), we obtain

(1.18) f(R,>p)=T%e-«v'p.*.

In a system of cylindrical co-ordinates we can express the function
T (R, p) in the form of the following Hankel-Fourier integral

(1.19) T(r,Z;p)= <5 • f f a ^ ° 0 S f dady•
o o

The solution of the Eq. (1.13) may be represented in the form [4]:

(1201 0(r z-n) — — Qliv) f f aja(ar)cosyz
(1.20) *(r,*jp)- 2l?Vj J WW + pMl?+? +j
or

(1.21)
a2(p)— \R
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Let us consider a visco-elastic body, where the relations (1.1) hold.
Let us also assume that the functions X{t), /<(t) are expressed by the
following simple exponential function and have the same relaxation
time e"1

In the general case considered we have

* (P) - 1 ^ 2 ^ " «-«o-court. , <

therefore

P/jo
P+e'

= A ( 1

p p p

Performing the inverse Laplace transformation, we obtain

(1.22) <&(R,t) = A[Erf( .R \ —F(Rlt;/S) —

where the following notations are introduced

iRV'y
r)[t —

, t; /5) = ~

where

Erfc ^

> = h(R,t — •

o

g(t; £,??) =
1/

(
— T)\]/JIT

« Erfc / ]//St

2 } '

l/'(e + |S)T Ur,

0 for t < R | ' y

1 for t>Rj/y-
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In order to determine the stresses we shall use the function

(1.23) W(R,p) AJ O

\P — ^ P +
where

A
1

Performing the inverse Laplace transformation, we obtain

(1.24) y(R, t) = A, \F(R, t) — e) - F(R,t;f3) + K(R,t; e, — e) — K(R, t; e, /S)],

•where

F(R,t; — e) = — e~*' | e~//?l f x" Erfc ( R - - i \ st
1 I. \]/4xt

+ e^vV« Erfc/
\

g (t; e, — s) = —==.--^=i.
J n yr{t—T)
o

A knowledge of the functions W (R, t) and (P (R, t) enables us to de-
termine the stresses 07/(R, t) by means of the Eqs. (1.15).

If the intensity of the heat source is given by the function Qo(t), t >• 0,
then, using the function W, we obtain for an instantaneous source the
function Wo (R, t) from the equation

t

(1.25) !F0(fl,t)— i I QoW^R.t —T)dt.
(I

The corresponding stress will be found from the Eqs. (1.15) by replacing
'-^by Wo.

Let us consider now the state of stress due to a point source of heat
varying in a harmonic manner: Qn(t) — Qo e'"'1, where Q()== const. The
displacements and stresses will also vary in a harmonic manner. The re-
lations (1.1), (1.2) take the form

(1.26) ag>(zr,i) — e ' - ' c $ * ( a r ) —

= hoeiai{2 jt (to) £W* (xr) + 6tJ [X (to) 0I1'* — (3 A (to) + 2 /.< (ico)) at T*(asr)]},

(1.27) Pt (ico) P,(ico) <r<f (xr) = P 2 (ico) P 3 (to) sij) * (asr) +

+ 6u \~ (P1 (ico) P4 (to) - P2 (,-w) P8 (ico)) 0I2) * {Xr) — P, (to) P4 (ico) a, T* (x r)l ,
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where
BtJ (xr, t) = e<"" e* (x,.), T (x,., t) - e'«' T* (z r),

A (iw) = ) e ''<"' A (t) dt, /'< (ico) == f e^'1"' /((t) dt.
6 6

The Eqs. (1.9) or (1.10) will be reduced to the form

(1.28) p s (P*(xr) — a"(im) (on)- $*{xr)

where the functions a, d will be assumed as in the Eq. (1.13), and p will be
replaced by ico.

For the stress amplitudes a*/{xr) we obtain

(1.29)

In the particular case of a visco-elastic body, where the relations (1.1)
are valid for the functions X, /«with the same relaxation time e~l, we have

i' ( ) Jp: 0 (i(0) = 0 == const.
e + IOJ e + uo

„,. . e + im

The functions &* and '/^will be obtained directly from the Eqs. (1.21) and
(1.22) by replacing p by ico. Thus,

(1.30) &*(R)=.
I an

o — p let) -+•

Knowing the functions fJ5* and W*, we can determine o*jelai=*crtj(Xrlt)
from the Eqs. (1.29).
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