
OSL is a descriptive specification language aimed at improving
documentation and communication by providing simple formal
description of any object in terms of structure and behaviour. A
vocabulary of this language is a small set of simple English
words. The precise compact „dictionary” of words and statements
is the base upon which one can compare objects independently of
country, time, profession, type of business. Author presents the
kernel and subsets of OSL covering such different areas as
business, human-being and computer program. 1

Categories and Subject Descriptors: • System description
languages • Specification languages

I. INTRODUCTION

The specification languages are focused usually on the following
domains:
a. the collection of entities, their relationships and attributes
 (ERA - e.g. PSL–Problem Statement Language in ISDOS)
b. the collection of objects, their structure, behaviour,
 unlimited relations (not restricted to dbms)
c. documenting programs written in a given language (e.g.
 ANNA – ANNotated Ada)
d. an overall program description (e.g. PSL – Program
 Specification Library)
e. modelling programs in terms of data types and functions
 performed upon them (e.g. VDM-SL)
f. a real time process control (e.g. SDL from TUI).
 The OSL belongs to the b category. Almost all languages are
oriented toward information systems and relations embedded in
data bases while scope of OSL includes any object (real world,
information, program etc.) and innovative data structures (free-
space, swarm, network, hierachy, line,
triangle, tunnel, curve).
OSL is a descriptive language, so it should not be compared with
algebraic languages such as CASL, ASM, ACM. It also has no
features (at least in the current version) for mathematical
modelling of simulations e.g. calculating time dependent
variables such as net income for each month of a year.
It differs from the SDL (Specification and Description
Language), which focuses on process control and real-time
applications with asynchronous communication between
components.
 It is not as extended as UML (Unified Modeling Language),
VDM-SL (Vienna Development Method – Specification
Language) and not equipped with diagram technology.
OSL is a tool for a simple but formal description of any object
in terms of structure and behaviour. The vocabulary of this

1 This work was not supported by any organization

language is a small set of simple English words. The precise
compact „dictionary” of words and statements is the base from
which one can compare objects independently of country, time,
profession, type of business etc.2
The kernel of OSL contains common (standard) phrases and
keywords, dedicated to any object. An extension of the language
for selected areas is defined in subsets called here OSL-B
(business), OSL-H (human-being), and OSL-S (systems). This
collection of subsets presents possibilities (and limitations) and
is extendable for new areas. A subset is similar to a shell in an
operating system for a group of users allowing each group to use
its own commands and keywords.
The „engine” (to be developed) of the OSL language should be
capable to process the contents of the specification at all possible
analytical levels, trace relations between objects, and present them
in tables and graphs, verify (if possible) and make the final
global presentation of a given area. Concerning graphs, it may
be desirable to present some features such as a repetition as a
simple iteration, single spiral or multiband spiral; the structure
(herein called layout) as free-space, swarm, network, hierarchy,
line, triangle, tunnel. The precise definition of these figures is
beyond the scope of this publication. The spiral provides
inspiration for representing the learning processes and learning
curve. Others, although new, are intuitively understandble.
Objects may be concrete or abstract (existent or
conceptual,virtual) independent or dependent, etc. An object has
at least its own name, identifier, properties, structure, interface,
behaviour and "history". An important feature of the object is its
ability to collaborate with other objects using visible relations
and interface. External (outside of the area or subject) links may
be specified using definitions in the ENVIRONMENT section.
The “subject” is the main class of an object within area, e.g.
„bank” in area of „banking”. The subject list may consist of a
set of types (e.g. „bank” may be universal, retail, wholesale,
short term cash loans etc). The specification and definitions may
be common for all banks and private for each type or even for a
given bank. The definitions in the kernel are common to any
area.
The documentation of an OSL application should contain a
kernel (global definitions), area subset definitions and
(optionally) a detailed specification worked out for objects which
belong to the area. A definition section deals with “abstract
objects“, while specification contains descriptions of physical
objects (instances of abstract objects) using phrases and
keywords located in definitions. Definitions written in the
specification are local (like local variables in computer
programs).

2 My profession is in the field of information system analysis and
design. During the course of many years of interaction with business
and IT professionals, I concluded that there is "a must" for a precise
specification of subject matter.

OSL Object Specification Language (proposal)
Zygmunt Ryznar
 Cracow, Poland

 Zygmunt Ryznar OSL Object Specification Language 2

One vital question concerning the implementation of OSL is a
computer-aided support to input, correcting the specification
(after validation) and outputting readable results. In further
development one can imagine an „Application Software Factory”,
that generates ready to use application software from definitions,
specifications and skeletal building blocks.

 II. OSL NOTATION

<!...> comment
< > container
=> link to something external (outside area)
<def ></def> start-end of language/subset definition
<spec </spec> start-end of a given object specification
iiiiiiiii keywords: by,from,to,when
::= type assignment
:= list items
= value assignment
: name assignment
@ mark of attibute,feature,property
:: belongs to
(x,y,..) list
[name] executive/operational object
xxxxXxxx special or complex names
XXXX basic object
UUUU.XXXX qualified name of object
xxxxxxxx some complex or important keywords
KKKKKK OSL keywords ((capital letter)
xxxxxxxx operational keywords: event,action
<xxxxxxxx> tags: id,def,spec
& / conjunctions: and or

Writing of specification should be supported by a specialized
editor, that automatically (based on the OSL notation) converts
words into bold, inverted font and capital/small letters. Otherwise
all the text (excluding object names) may be written in lower case.
Another useful facility would be virtual keyboard with such keys
as <def <spec ::= := :: etc.
 Generally, OSL needs a software engineering support like IDE,
SDK, graphic tools, object standards (like DCOM, Corba etc.) and
database technology.

III. OSL KERNEL DEFINITIONS

<def OSL>
<def ENVIRONMENT: ENV >
 ENV:=(REGULATIONS, INFRASTRUCTURE)
 ENV.INFRASTRUCTURE:INFR
 ENV.REGULATIONS:=(LegalActs, Resolutions,
 Decisions)
 INFR:=(IT,ORG,HR)
 INFR.IT:= (Servers,OperSystems,Applications,
 TransDataBases,Users, prLanguages)
 INFR.ORG:=(OrgStructureOfCompany)
 INFR.HR:=(HumanResources)
</def>
<def globalMapping><!made automatically by OSLpackage>
 defLang:=(BSL,HSL,SSL)<! defined subsets of OSL>)
 defList:=(<list of defined objects>)

 specList:=(<list of specifications>)
</def>

 <def subject:<NAME><!main object name>
 <def <name><!other object name>
 object.id<!object identifier>
 class<!class tree>
 object.type::=(eobject<!elementary atomic object >,
 dobject<!dynamic object >,
 iobject<!informational object >,
 vobject <!virtual object >,
 sobject <!smartobject)>,
 oobject<!open object>)
@sobject:=(noiceReduction,selfTeach,selfRepair,selfKill,
 selfRestore,selfRestart)
@oobject:=(input(parameters,data),output(info,messages),
 structure(addComponent,addRelations))
dynamics::=(event,operation/transaction,action,process)
dynamics::=(ev,op/tr,ac,pr)<!short notation>
dynamics.scenario::= (scevt,scop,scac,scpr)
event:ev<!-elementary atomic fact >
trans<!transaction in terms of operating system monitor>
ftrans<!financial transaction>
operation:op
action:ac<!sequence of operations or events,long transaction>
process:pr<!sequence of actions and events>
reverseMode::=(rev,rac,rop,rtr)<!back to the previous state>
pr::=(trigger,action(<events>),endEvent)
scenario:sc<!predicted sequence of actions and events>
scenario.rank:=(best,worst)
object.Info<!information visible at the moment of access>
keywords:kwords<!additional keywords in def>
olh<!object life history>:=(timeline,events,aging-curve)
object .role:=(interface, trigger,generator,agent,integrator,
 component,monitor,commander,
 executor/performer,initiator,terminator,
 destructor,participator,owner, stockholder,
 customer,supplier;partner,employee)
relations::=(activatedby,activates, assisted by,
 appearence depends on , belongs to
 /is owned by , built from ,
 calls <obiekt> (<interface>),
 consists of <parts>,contained in/contains,
 controlled by/controls,derived from,
 existence depends on,exists when/in/for,
 included in,linked to ...by/links,
 refers to, relates to, related by affinity,
 represented by/represents,involved in,
 shared by/shares, used by/uses)
 state:=(active,inactive,dormant,suspended,aborted,
 idle/waiting,lost,expected,deleted,homeless)
 status:=(generic,real,virtual,undefined)
 role:=(driver,trigger,reactor,agent,executor,generator)
 reactor::=(acceptance, rejection,constructor)
rank:=(critical,necessary,most wanted,optional,worst,best)
 rule:=(decision-table,logical-when-if,formula).
{control-flow
 ac::=(ev1,ev2,ev3, ..)
 pr::=(ac1,ac2,ac3,...)
 s(ev1,ev2,ev3, ..)<!sequential flow of events>

 Zygmunt Ryznar OSL Object Specification Language 3

 p(ev1,ev2,ev3, ..)<!parallel flow of events>
 pr::=s(ac1,s(ev1,ev2,ev3),ac2(p(ev4,ev5,ev6),(ev7,ev8,..))
 <!example of mixed flow>
 repetition:=(iteration,single spiral,multiband spiral)
 <!spiral pattern may be used as a pattern of learning -
 each scroll of spiral can be different>
 activated by <..> with <initial-value> at <time-point>
 when <condition>
 finished at < > with <...> when .<..>}

 <def body>
 {body::=(Contents,Script,Metadata)
 contents<!e.g. document contents, program code >
 script<!operation script generated upon the pattern
 of behaviour >
 metadata<!body structure description >}
 layout:=(free-space,swarm/hive,network,hierachy,line,
 triangle,tunnel,curve)
 <\def>

</def>

IV. OSL-B OSL FOR BUSINESS

OSL-B named BSL (Business Specification Language) is a
subset of OSL (Object Specification Language) dedicated to
business objects. The simple banking simple example presented
below is for illustration purposes only. The full specification
should contain also such objects as headoffice, branch, channel of
product delivery, customer, deposit account, loan accout, loan
credit line and executive operational objects, like account
manager, teller, dealer and IT infrastructure objects.

<def OSL-B:BSL>
BUSINESS:=(BANKING,MANUFACTURING, SERVICES)
ENV.business id:=BIC<!Business/Bank Identification Code>
 <def subject:BANKING >
BANKING:=(RETAIL,WHOSALE,UNIVERSAL,MONEY-
MARKET,DERIVATES,SHARES)
ENV:=(bank.id:=BIC,account.id:=IBAN<!International
 Bank Account Number>,dadaTables)
dataTables:= (LIBOR,OperatingCurrences,ExchangeRates)
 kwords:=(customer.id,accountCurrency,creationDate,
 ftransLimit,infoSet,Resources,
 operation<!e.g. monthly charge>
 action<!complex activity e.g. defining provision for
 doubtful loans >
 driven/sorted by (ftrans,product, customer, date,
 schedule,frequency)
 matched/matches<!e.g. confirmation>)

<def BANKING.RETAIL>
 retail.product:=(CURR-ACCOUNT,DEPOSIT,LOAN)
 <def subject:BANK>
object.Info:=(BIC,country, bCurrency<!base currency>,
 FinancialYear, number of branches>)
dataTables:=(CorrespondentBanks,Branches,
 calendarWorkingDays,bkAccountChart,
 productList,interestRateTable)
kwords:=(branchNr,customerId,accountNr,rate,
 balance,balanceSheet)

OperationalObjects:=[teller,accountMgr,customerMgr,
 productMgr,trader]
Bank.objects:=(product,currency,limit,account)
limit:=(country,industry,customer,currency)
iobject:=(customerPosition,monthlyBalancesheet)
bank.type:=(dmBank<!domestic bank>,
 frBank<!foreign bank>,
 corrBank<!correspondent >)
 bkAccount:=(bsAccount<!balance-sheet>
 nbsAccount<!nonbalance-sheetAccount >
batch-operations:=(eodoperation<!at end of day >,
 eomoperation<!at end of month>,
 eoyoperation<!at end of year>,
 eoppoperation<!at end of product>)
 <def Account><!customer Account>
 objectInfo:=(Account id,owner,co-owner)
 minBalance,actualBalance,historyStatement)
 Relates to Customerid
 rttrans:=(Open,Quit,Cash-in,Cash-out,
 transfer)<!real time transaction>
 eomoperation:=(printMonthlyStatement)
 </def>
 </def subject>
 </def Banking.RETAIL>
</def BSL>
 <spec Banking.RETAIL(IndustryBank)
 BIC=ALBPXLPW
 customer.id=XXXXXXX
 current.account.id=PL 99 9999 9999 9999 9999
 owner=John Stale
 co-owner=Jane Stale
 baseAccount.currency =USD
 creation.date=.<...>
 transaction-limit=<...>
 info.set :=(ftrans.incoming,
 ftrans.outcoming,balance)
 @sorted by date
 @:=(deposit,loan,multibranch,echannels)
 </spec>

 V. OSL-H OSL FOR HUMAN

OSL-H named HSL (Human Specification Language) is a
semiformal notation for a human being for anyone interested in
ontology and existential psychology. The topic "human being" is
not a simple one. Several psychologists and writers have stated
that the several major theories on personality are colored by
subjective factors and motivations affecting each theorist as an
individual. Some examples of the diversity of theories are
"Functional autonomy" (Allport), "Basic concepts for a psychology
of personality" (Murray' H.A),"Trait theory", "16 Personality
Factors", "9 Enneagram types" and "Myers-Briggs Type Indicator".
Further development of HSL could be achieved with
collaboration of psychologists and medical professionals.
 One possible usage of HSL language is creation of a
human resources database in a corporation or even on an
international scale for locating individuals which meet certain
psychological, intelectual and professional requirements.

 Zygmunt Ryznar OSL Object Specification Language 4

 Similarly to other subsets of OSL this one contains only
additional phrases and keywords that do not exist in kernel of the
base language.

 <def OSL-H:HSL>
 <def subject:HUMAN>
 class1:=(animals.mammalia.primates.homidae)
 class2:=(nation.ethnic-group.profession.person)
 kwords:=(life-space,behaviour,scope)
 scope::= (BIOPHYSICAL,GEOGR,CULTURAL,
 SOCIAL, LEGAL)
 <def ENV>
 ENV:=(WORLD,CONTINENT,COUNTRY,
 REGION,SITE)
 ENV.LEGAL:=<!Legal acts, resolutions, decisions>
 ENV.CULTURAL:=(tradition, history, education,
 religion, ideology, art, radio-tv)
 ENV.BIOPHYSICAL:= (animals.homosapiens)
 ENV.GEOGR:= (homeaddress,company,school)
</def>
 <def PERSON>
 object.Info:=(id,sex,birth-data)
 homeaddress::= (country,site,street,house,flat)
 sex=(male/female/x)
 family::=(gentree,parent,child,son,daughter,
 grandSon,grandDaughter,granMa,granPa)
 emotion:=(love,hate,satisfaction,frustration,
 agression,enjoyment,anger)
 psychComplex:=(fear of insupport,regression,
 inferiority,persecution)
 habit,hobby,profession,
 health:=(measures, physical-examinations, illness-
 history),
 role::=(advisor, spouse,
 manager,patron,partner,customer,
supervisor,participator,
 owner,supplier),

 appearence depends on ,
 assisted by,belongs to,
 matched/matches<!e.g. marriage >
 relates to <family-members>
 used by,uses,not used,misused,abused
 state:=(active,inactive,dormant,suspended,
 aborted,idle,lost,dead,homeless,retired,
 married/divorced/single,ignored)
 place:=(point, area,everywhere,nowhere>
 life-space:=(psychological,social,educational,
 financial)
 behaviour<!flow of processes of the object >
 behaviour.rational::=(selfrealization,need,
 satisfaction)
 behaviour:=(marriage,friendship,career,ilness,aging)
 genotype,fenotype,
 olh<!object-life-history:=[birth,aging-curve,
 social_events,health_illness-events, educ-events,
 job-events, critical_events, death]
cluster<!GlobalFactor- estimated on the base of several
 particular factors >

cluster:= (self, profile/type, attitude,leadership, ability,
 extraversion,anxiety,independence, healthState,
 lifeStyle,creativePotential,happiness,
 BipolarPersonality)
self:=(self-identity,self-assesment,self-sentiment,self-
 esteem,self-regard,self-reliance,self-control,
 self-image,self-extension,self-structure)
leadership:=(assertive,creative,facilitative,independent,
 stable,permissive,leadershipStyle,
 leadershipPotential)
ability:=(toughMinded/openMinded,creative,fast/slow,
 toleratesDisorder/perfectionistic,
 grounded/abstracted, improving own learning,
 problem solving, IQ,)
need:=(biological(food,medical,emergency,rescue,
 coping),cultural,psychological(love,esteem,
 selfrealization),financial-security)
BipolarPersonality:=(Warmth,Reasoning,EmotionalStability
 Concillation,Dominance,Liveliness,Openness,
 Tension,Rule-Consciousness,SocialBoldness,
 Sensitivity,Vigilance,Abstractedness,
 Privateness,Apprehension,OpennessToChange,
 Self-Reliance,Perfectionism)

Warmth=Reserved/Warm
Reasoning=Concrete/Abstract
EmotionalStability=emotional/stable
Concillation=concillatory/aggressive
Dominance =Deferential/Dominant
Liveliness =Serious/Lively
Openness=extraversive/introversive
Tension=Relaxed/Tense
Rule-Consciousness=Expedient/Rule-Conscious
SocialBoldness=Shy/Socially Bold
Sensitivity=Utilitarian/Sensitive
Vigilance=Trusting/Vigilant
Abstractedness=Grounded/Abstracted
Privateness=Forthright/Private
Apprehension=Self-Assured/Apprehensive
OpennessToChange=Traditional/Open to Change
Self-Reliance=Group-Oriented/Self-Reliant
Perfectionism=Tolerates Disorder/Perfectionistic

</def >
 </def HSL>

<spec HUMAN(John Example)>
 sex=male
 family=(married, parent of 3, grandfather of 4)
 state:=(retired, active)
 cluster.self=average
 ability=(openMinded,creative,fast,abstracted)
 need=psychological.self-actualization
 temperament=(emotional,sensitive,
 introversive,tense,reserved)
 cluster.happiness=good+
 IQ=> http://www.iq-test.com/
<\spec>

 Zygmunt Ryznar OSL Object Specification Language 5

VI. OSL-S FOR SYSTEMS, PROGRAMS AND
APPLICATIONS

Subset OSL-S named SSL (System Specification Language) may
help the structured design methodology dealing not only with
“well” (usually it means hierarchically) structured problems and
systems built under a long-term schedule of integration. A real
cause for computerization should be an actual business need
(there must be a manager who wants information for decisions).
 The basis for such a structured design is an understanding the
business of company and afterwards the creation of initial state of
the system, called the pre-system, containing fundamental
technological elements built according to the rules that enable
their use in many applications and in changeable environment.
There is a need to develop a specific technique to help
programmers design skeletal programs that have standardized (but
sometimes multifunctional) control flow and are equipped with
many “modifiers” that require processing by a tuner. The tuner
may perform operations such as inserting data names and
parameter values, choosing entry points, generating CALL
statements, generating empty modules (driver or stub type),
inserting expressions into macrostatements and invoking database
schema.

<def OSL-S:SSL>
INFR.IT:= (servers,operSystems,applications,
 transDataBases,dataWarehouses,
 networkMgtSystem,users,prLanguages)
<NAME>::=(SYSTEM.SUBSYSTEM.MODULE.
 PROGRAM.PR-BLOCK)<!structured name>
 PR-BLOCK<!building block,generic program/subprogram>
 kwords:=(version,interface,run,runTime,integrated,
 standalone,inDevelopment,accepted,
 notAccepted,library,creatDate,updDate,tested,
 rejected,pcode,ecode,callValue,trace,errorCode,
 inItems,outItems,flow)
trace::=(path,callValue,outValue,errorCode)
process::=(trigger,action(<events>),endEvent)<!when process is
invoked simultaneously by many programs each instance is
recognized by pcode, event by ecode>

<def pr-name>
 object.Info:=(pr-name,version,author,creatDate,
 updDate,prLanguage,operSystem)
 { control-flow
 activated by <program/procedure-name> with
 <initial-value> at <time-point > when <condition>
 finished at < time-point /no-of-repetition> with
 <value/output> when <condition>}
<\def>

<def PR-BLOCK(name)<!reenterable ProcName)>
 objectInfo:=(name,version,author,updDate,codeSize,
 prLanguage,operSystem)
 resources:=(dataBuffer,eventTrace,stackHandler)
 <def flow>
 {trigger::=call
 ac(verif)
 ev(checkPassword,callVerif)
 when callVerif failed exit
 ac(initial) when first call

 ev(bufferDecl,stackDecl),
 act(tuning)
 ev(paramAnalysis,transform,generateExecutable)
 ac(activate)
 ev(paramAnalysis,tuner),
 ac(run)
 ev(load,perform,releaseResources,exit)
 }
 </def>
 <def interface>
 <!at run-time interface retains an actual state of
 resources for each call>
 call::=(<callingName>,<calledName>,<tunerName>
 <password><!optional>,<entryPoint>,
 (<parameters,modifiers>),inItems,outItems)
 <\def>
 <\def>
Structure of specification:
<spec SYSTEM:<name>
 SUBSYSTEMS:=(list of subsystems)
 <spec SUBSYSTEM:<name>
 <spec MODULE:<name>
 <spec PROGRAM:<name>

 </spec >
 <\spec>
 <\spec>
<\spec>

VII. CONCLUSION

OSL is a conceptual schema of the „world” centered on the
structure, behaviour and relations of objects. This language is
oriented on communication between people and in case of the IT
documenting core features of „system” before, during or/and
after design.
In reality any business is highly complex and dynamic. The key
to meet this challenge is improving a communication between
busines and IT people, modernization of design approach to
create systems with variable structure and undefined borders using
a library of tunable predefined generalized blocks. Future IT
systems should function as a collection of many incarnations based
on the same generalized set of blocks, which can be located
anywhere in the system, tuned and properly interfaced. It would be
a good “hybrid” solution both for the specification as well as for
execution.
The OSL language equipped with computer-aided tools would
seem be a useful initiative to facilitate the documentation of
structured design centered on objects, events, processes and
structure.

REFERENCES

[1] Zygmunt Ryznar.1978.A conceptual model of an
interfunctional data base system. Information and Management
2/1978
[2] Zygmunt Ryznar.1981.S&DL – Structured Design Language.
[3] 526-533. Angewandte Informatik-Applied
Informatics.12/1981

