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The latter formula implies that for a given value of k/b the essential influence is exerted
on the power transmitted from the coil to the membrane by the parameter (4.254). Thus,
the properties of the loudspeaker can be improved through: (1) increase of <j)c, i.e. growth
of magnetic induction of the permanent magnet, (2) increase of the damping coefficient
b, and (3) decrease of resistance R of the coil.

4.4 MODELLING OF NONHOLONOMIC SYSTEMS

4.4.1 Introductory remarks
We introduced in section 2.2.2, after Hertz, the notion of a nonholonomic system. The
theory of nonholonomic systems started to develop at the end of the nineteenth century,
when it unexpectedly turned out that the wonderful and apparently universal formalism of
Lagrange is useless even for simple questions of rolling without slipping of a rigid disc
on a plane. As improbable as it may seem, Joseph Louis Lagrange (1736-1813) himself
did not suspect that such constraints might exist. He set out his belief in his famous
Mecanique Analytiquc (1788), in which he states that it is possible, for every mechani-
cal system, to select independent coordinates having independent variations. No excep-
tions were noticed for many years, until the problem of the rolling rigid bodies without
slippage was studied. Recall that Hertz introduced his classification into holonomic and
nonholonomic constraints as late as 1894. The development of the theory took a circuit
course, with numerous mistakes and errors committed by known exponents of mechanics
and mathematics. The series of mishaps lasted until the second half of the 1960s, when
the monograph of Neimark and Fufaev (1967) was published, resolving many existing
doubts. The present section of this book owes much to that book and in general to the
Russian school of mechanics. It is, simultaneously, worth emphasizing that many ques-
tions are still subjects of studies. We present here only a well-established apparatus for
modelling mechanical systems on which imposed constraints that are linear with respect
to velocities. Such constraints have, in generalized coordinates, the form (see also (2.24))

YjBpa{t,qa)q(J + Bp=Q, p'l,...,b, (4.258)
(7=1

where b denotes the number of nonholonomic constraints.
We will see later that the practical modelling of nonholonomic systems reduces mainly

to obtaining equation (4.258) and to the determination of the coefficients of this equation.
In order to develop certain skills which would then facilitate understanding of analytical
mechanics, we will comment on two well-known examples of nonholonomic constraints
and we will transform them to the form (4.258). The best-known example is probably
that of a billiard ball rolling without slipping on a rough table surface (Fig. 4.17). The
location of the ball will be posed by the coordinates X£ and yc of its centre and the three
Euler angles y, 0 and (p.

The fact that the ball rolls without slipping may be expressed through the statement
that vs = 0, where \ s is the velocity of the point of the ball in contact with the surface.
Since
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Fig. 4.17.

vs = yc+a>xrcs

we have that

vc+coxrC5=0,

(4.259)

(4.260)

where at is the instantaneous angular velocity of the ball and rcs is the radius vector of
the point of the ball with the table.

Condition (4.260) could be written as

xc - rcoy = 0

yc - rcox = 0 (4.261)

whence, having accounted for the kinematic equations of Euler and integrating the third
equation of the system (4.261), we obtain

(4.262)

i :c-r(sin y)9 + r(sin9cos y/)<p= 0

yc + r(cos y) d + r(sin 0 sin y) ip - 0

Hence the motion of the ball is subject to two nonholonomic constraints, expressed by the
two first equations of the system (4.262). The third equation represents a holonomic
constraints which means that the ball neither jumps during motion nor sinks into the
table, so that its centre is always located at a constant distance r from the table.
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We determine now the values necessary for presenting equations (4.262) in general
notation: s = 5,b = 2. With this, we have

X ^ p P»1,2, (4.263)

(7=1

or, having broken down the summation

Bl4q4 + Bl5q5 + Bi=0,Bi=0,

#2=0-

When we take account of the fact that q\=xc, q2
 =y& "73 = V> $4 = 6 an(^ <75 = <P»

compare with (4.262), we get

#11=1, Bn=0, Bi3=0, fi14 = - r s i n i//\ B15 = rsin 0cos \j/, Bx=0,

^21=0, B22=h B2j=0, B24 = rcosy/, B25 = rsinds'my, B2=0-

(4.265)

The second nonholonomic system which is popular in theoretical mechanics is the so-
called Caratheodory-Chaplygin sledge. This name refers to a rigid body, mounted on
three support points, of which two are ideally smooth and the third is constituted by a
sharp straight-line runner directed perpendicularly to the line joining the other two sup-
port points (see Fig. 4.18). The existence of this runner is such that the sledge cannot
move perpendicularly to it, implying that the velocity of the mass centre CQKQ, y^) of the
sledge is always directed perpendicularly to the runner.

Location of the sledge is determined by three generalized coordinates: xc, yc, and the
angle <p between the runner and an a priori selected direction. The manner of motion of
the sledge can be expressed by

•I2- = tan q>, (4.266)

whence we have the standard form of the constraint equation, i.e.

(tan (p)xc -yc = 0. (4.267)

Hence, the sledge has two degrees of freedom (/ = s - b = 3 - 1 = 2). Equation (4.258)
therefore takes the form (j3 = 1)

0 (4.268)

which, after equalization of q\ = XQ, q2 = vc, q-$ m <p, yields

Bn = tan (p, Bn = - 1 , #13 =0, B{ = 0. (4.269)

4.4.2 Lagrange equations of the first kind with multipliers
We believe that the best and clearest method of deriving these equations is based upon
the d'Alembert principle in the Lagrangian form, i.e.
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Fig. 4.18.

dT
(4.270)

In this case, in which only holonomic constraints apply, the variations 8qa(o= l,...,s)
are independent and we have obtained the Lagrange equations of the second kind. Now
these variations are mutually dependent because of relations (4.258). With the help of the
mnemonic rule (see section 4.2.2.2) these relations yield additional equations

(4.271)
< T = 1

which are fulfilled by variations 5qa. The situation is as follows: we have s variations
dq^ which are bound by two relations, (4.270) and (4.271); we know that the number of
independent variations is equal to the number of degrees of freedom of the mechanical
system, i.e. l = s-b. A popular method of choice of independent variations is the method
of indeterminate Lagrange multipliers. Thus, we multiply relations (4.271) by
h = 1,..., i»)and sum from 1 to b, yielding

(4.272)
a=\

Next, subtracting (4.272) from the sum (4.270) gives the equation
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(7=1

dT
~Qa~

0=1
Sqa = O. (4.273)

Making use of the arbitrariness of the multipliers Xp, we choose them in such a manner as
to make the contents of the square brackets (multiplying the variations 5qp (/? = 1,..., &))
equal to zero. Since the other variations, i.e. Sq^y,..., 5qs may be regarded as independ-
ent, the remaining square brackets corresponding to these variations are also brought to
zero. We thus obtain equations for the nonholonomic system in generalized coordinates:

<\\dqa) dq

dT
(4.274)

p=\

which are called the Lagrange equations of the first kind with multipliers or simply
the Lagrange equations with multipliers.

In order to use equations (4.274) in modelling, one must therefore calculate kinetic
energy in terms of generalized coordinates, determine generalized forces Q^, and identify
coefficients Bpa of the nonholonomic constraints. An example of such an identification
was provided in section 4.4.1. The unknowns in equations (4.274) are values of the
generalized coordinates qg whose number is s and Lagrange multipliers, Xp, whose
number is b. Thus altogether we have s + b unknowns. They can be determined through s
equations (4.274) and b constraint relations (4.258). If we recall first that the unknown
multipliers Xp are related to the unknown reactions of nonholonomic constraints, and then
we realize that these reactions are not always required, we conclude that the model
obtained is not yet the minimal one necessary for describing the motion of a material
system, and so we will be looking for a better model.

4.4.3 Maggi equations
The Maggi equations originate also from the d'Alembert principle in Lagrangian form,
but they rely upon a different manner of eliminating the dependent variations. Gian
Antonio Maggi (1856-1937) introduced independent parameters eit...,ef, whose number
equals the number of degrees of freedom of the nonholonomic system, and with the help
of these parameters he expressed all the generalized velocities, that is

(7=1,..., s, (4.275)
A=l

where C^ff and Ca are usually functions of variables t and qa(a=l,...,k). Magnitudes
e^ (A = l,..., I) are called kinematic characteristic or kinematic parameters.

Note that relations (4.275) can be always written down if relations (4.258) are valid
for quantities <7CTand qa, which would mean that nonholonomic constraints exist in this
case. In order to illustrate this statement consider the motion of the Caratheodory—
Chaplygin sledge, introduced in section 4.4.1. We define as kinematic parameters

kx=kc, e2 = q>, (4.276)
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and the constraint equations (4.267) can be presented in the form

yc = xc tan <p = ex tan (p.

Thus equations (4.275) take the form (s = 3, b = 1, / = s - b = 2):

2
?1 = *C = S C ^ A + C\ = C\ 1

2

«A + C 3 =

[Ch. 4

(4.277)

(4.278)
A = l

2

Having used (4.276) and (2.77) and compared coefficients standing at e\ and e2
 w e

obtain the following values for the coefficients in expression (4.275):

Cn=l, C2i=0, d=0,

C12 = tan cp, C22 = 0 , C2 = 0,

C13 = 0, C23 = 1, C3 = 0.

On the basis of (4.275) we have

(4.279)

and, using the mnemonic rule (see section 4.2.2.2), we get

/

A = l

which, considering (4.280), yields

(4.280)

(4.281)

(4.282)

Once we introduce relations (4.282) to equation (4.275) and group expressions corre-
sponding to respective variations Se%, we obtain

A=l (7=1

d dT dT
(4.283)

A=lW=l ;

whence, on the basis of independence of Se^ we finally get the Maggi equations
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where

xoQ*- (4-285)
o=l

These linear combinations of generalized forces Qa will be called modified generalized
forces.

We see, therefore, that the Maggi method provides us with the possibility of eliminat-
ing the indeterminate Lagrange multipliers Xp(/i= 1,..., b), due to which the number of
unknowns decreased by b, that is, by the number of nonholonomic constraints. But, while
we are dealing with / Maggi equations, the number of unknowns is s, and this is the
number of generalized coordinates. Hence, we must add s relations (4.275) to the Maggi
equations, and these additional relations introduce / unknowns e^. Together, there are
thus s +1 equations for determining s + /unknowns q\,,,,, q^and elt...,e[.

Making use of equations (4.284) requires only determination of the coefficients Cxa

standing at the kinematic parameters, which is easy (see example), as well as standard
calculation of kinetic energy and generalized forces.

4.4.4 The Gibbs-Appell equations
The question arises of whether it is possible to further reduce the number of equations
below the s+ I attained in the Maggi method. This turns out to be impossible. We shall,
however, give yet another set of equations because of its rare advantage: it provides the
most concise form of equations of motion in all mechanics. There are various methods of
deriving the Gibbs-Appell equations. The shortest, and simultaneously the clearest,
method is based upon Gauss's principle (see section 4.2.3.6).

Recall that the constraint has, by definition, the form

After squaring and introducing the notation

S = \Yimvtl, (4.287)
v=l

formula (4.286) can be transformed into

Z = S-YJY/V¥V+\YJ~ F?. (4.288)

The magnitude defined by formula (4.287) is called the acceleration energy (or the
Appell function) and it plays a key role in the Gibbs-Appell equations.
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To conform with the essence of the Gauss principle, we will consider only terms
containing acceleration and we will therefore take into consideration the second term in
formula (4.288). Transforming this in such a way as to introduce generalized coordinates
and following the requirement (2.21)

gives

la-

Differentiating (4.290) with respect to time gives

dv.
dt

which can be transformed into

w -
S

= v

(4.289)

(4.290)

(4.291)

(4.292)

where g denotes an expression independent of qa, i.e.

d

Finally the announced transformation of the term

v=l

together with the definition of generalized force (4.110) results in

n s n

V = l CT=1

(4.293)

(4.294)

(4.295)

The subsequent step to be taken on the way to obtaining the final equations consists of
the fact that nonholonomic constraints are still in for the form (4.258). An expression of
this is relation (4.275), from which, after differentiation with regard to time, we get

(4.296)
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where h denotes the magnitude independent of e^.
Having introduced (4.296) into (4.295), we get

n s ( l \ n
I>VFv = Z k l ^ + A + £g-Fv (4-297)
V=l CT=1V X=\ ) V=l

and, taking account of notation (4.285), we obtain

5 > v - F v = 5> ; i* ; i+5>+5>F v . (4.298)
v=l X=\ cr=l V=l

Now we are already able to present the constraint (4.298) in a form which is convenient
for application of Gauss's principle. After introduction of (4.298) to (4.288) we obtain

Z | ] (4.299)
a=\ \lm J

from which one can easily see that of all terms, only the first two depend upon
accelerations (because S depends upon rv). If these quantities are treated as the ones
which can be subject to variation then, by virtue of Gauss's principle (<5Z = 0) and
through application of the heuristic principle, we get

(4.300)SzJ(p

which, in view of the independence of variations S'e^, immediately gives

^ 0 , , A = l,...,/. (4.301)

These are the Gibbs-Appell equations. They contain s + I (or 2s - b, since l = s — b)
unknowns: q\,..., qs and e1;...,£/. Insofar as the number of Gibbs-Appell equations is /,
we must complement them with s relations (4.275), which together gives the complete
system of first-order differential equations.

To use equations (4.301), one would need the Appell function S. We shall therefore
provide a useful formula, being an analogue of the known formula for kinetic energy (see
(3.79)). Since the method of derivation is the same, we will not quote it here for the sake
of brevity. The formula in question has the form

S = \Mwl+St, (4.302)

where

^ v w 2
v (4.303)

v=l

is the acceleration energy in relative rotational motion.



204 Modelling using variational principles [Ch.4

Note that the application of equation (4.301) requires expression of the acceleration
energy through kinematic parameters e^ (A = 1,...,/). This can be done with the help of
relation (4.296).

4.4.5 Case studies

4.4.5.1 Constant speed drive
In order to show the manner in which these three kinds of equations function we shall
apply them, consecutively, to modelling of a mechanism which was first analysed by
V. S. Novoselov (see Novoselov (1957)). This mechanism is shown in Fig. 4.19. Its
purpose is to transmit the rotation of a driving shaft 1 (motor) to a drive shaft 2 (machine)
by means of a disc mounted on the roller 3 so that it is free to rotate, and to have the
speed of the driven shaft remain sensibly constant even though that of the driving shaft is
not. The principle of functioning is as follows:

The vertical driving shaft has a rigidly attached horizontal disc. A intermediate hori-
zontal shaft 3 has a thin disc of radius a. The disc can translate along its axis of rotation
in both directions: to the left (towards the centre of the horizontal disc) owing to a
centrifugal governor, and to the right owing to the spring with the stiffness ky The disc

Fig. 4.19.


