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whose only positive root is e = 2. This means that the functional S[x(t)] reaches extremum
for e = 2, and the extremal becomes the function

-)[ (4.35)

Having substituted (4.29) into (4.35) we get

x = xo-±-gt2, (4.36)

i.e. the well-known low of free fall in the uniform gravitational field.

4.2 BASIC VARIATIONAL PRINCIPLES

4.2.1 Types of principles
Variational principles are conventionally divided into two groups, namely differential
and integral principles. Here they will be classified into extremal and non-extremal
ones, but these divisions are not mutually exclusive. The principle which, it seems, is best
known to engineers, the principle of virtual work, is differential and extremal. Another
quite popular principle, that of d'Alembert, is differential and non-extremal. A typical
example of an integral principle is provided by Hamilton's principle, which has a station-
ary, that is generally non-extremal, nature. Fermat's principle, known to us from the
preceding section, is integral and extremal.

Let us now consider what features dictate the placing of a principle in one group or
another, and perhaps even more important; whether and how this influences the manner
in which variational principles are applied in modelling?

Let us first note that the distinction into differential and integral principles is not
generally accepted by all. There are many authors who consider that only integral princi-
ples are variational principles, which is why we deem it proper to present the arguments
for acceptance of differentia] principles as variational. A principle can be considered
variational if it contains the requirement of selection from admissible variations. That is,
a variational principle considers not just one state (configuration) of the system, but a set
of various states (configurations) resulting from carrying out variations that are feasible
in terms of constraints (e.g. virtual displacement). Hence the inclusion of d'Alembert's
principle and the virtual work principle as differential variational principles is justified.
There are of course other principles, but those mentioned here are those which will
concern us in detail.'

Those, including ourselves, who do in general accept the division into differential and
integral principles, quote somewhat different arguments: if a principle relates position,
velocity of acceleration of particles of the system in an arbitrary given instant of time,
then this principle has a differential nature. If, however, a principle characterizes the
motion of the system in a global way, that is, over a certain period of time or space, then
this principle has an integral nature. These principles usually require certain functionals,
defined on a class of movements given by the boundary conditions to take extremal
values. Since the methods of finding the extrema of functionals are provided by the
variational calculus, integral principles can also be called variational. In fact, the main
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point is simply that such differences in viewpoint exist, since belonging to this or another
group has no influence upon modelling. If, though, we are organizing knowledge, and we
believe that all modellers should do this, we need to go further along the terminological
track.

First let us remove the conception that only principles of mechanics that are differen-
tial lead to differential equations. It is sufficient to note that Hamilton's principle, an
integral principle, yields Lagrange's equations, which are obviously differential (for de-
tails see section 4.3.1). There are no fundamental differences between integral and differ-
ential principles, but there are some differences in detail; differential variational principles
establish the distinction between the real motion and the variational motions at a given
instant of time, whereas integral variational principles, on the other hand, establish the
distinction between the actual motion and the variational motions over a certain time
period.

4.2.2 Fundamental concepts

4.2.2.1 Virtual displacement and admissible variations
It seems to be no exaggeration to say that from all the important concepts in mechanics,
that of virtual displacement causes the most problems to a beginner in mechanics. One
encounters unfortunate phrases such as virtual displacement takes place in no time or it
occurs infinitely quickly. Alternatively, if sufficiently stubborn, he would find a refined
definition of the virtual displacement, as an element of the space Tg(M), that is, the
tangent space to the manifold M at point q. This kind of definition, expressed in the
language of modern mathematics, can be encountered, though more by students of phys-
ics than by students of engineering. The latter are condemned to deal with notions
originating at the turn of the eighteenth century, when statics was just undergoing trans-
formation from the science of simple machines into a branch of mechanics. It is in this
period that discussions conducted with Pierre de Varignon (1654-1722) led Johann
Bernoulli (1667-1748) to formulate in 1717, the Principle of Virtual Work, in which
virtual displacement plays the key role. Thus in the problems of statics, the configuration
of a mechanical system does not change with time and that is why virtual displacements
do not involve time and this motion has a purely geometrical meaning. However, in
dynamics, the science of motion, the configuration changes in time. Nevertheless, virtual
displacement does not involve time in dynamics, either. It is very important that from the
concept of a displacement not involving time one can still obtain useful and fruitful
information for dynamics.

Our suggestion consists in taking the middle way, i.e. in showing that virtual displace-
ment is connected with the notion of variation of a function, the latter being a term well
founded in the branch of mathematics called variational calculus, whose origins are due
to Johann Bernoulli himself.

Consider therefore a function y(x) of variable x. Let y(x) be a certain another function
of the some argument differing from y(x) by an arbitrary quantity in every point of the
interval (x,, x2). The difference y(x) -y(x) brought about by the change of function form
(see Fig. 4.7) is called the variation of the function and is denoted by <5y. Thus, we have
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Fig. 4.7.

y(x)-y(x). (4.37)

Let us emphasize an important fact, namely that the variation Sy differs from the differen-
tial dy in that dy is the increment along the curve y due to an elementary small increment
dx, whereas dy is the difference in y between two curves for any given value x. Since
argument x does not undergo change in formation of <5y, which means that

5x = 0, (4.38)

we refer to variation (4.37) as variation of a function without variation of the argument.
This information is important here, but later we will encounter variations where we will
have to forgo the condition (4.38).

Note now that if we assign the meaning of time to the independent variable x, it
becomes clear how one should understand those unfortunate phrases of motion in no time,
i.e. simply as denoting the condition of

St = 0. (4.39)

Variation of a function in which condition (4.39) is preserved will be defined as synchro-
nous variation.

Once this is accepted, we can make a subsequently important step in clarifying the
concept of virtual displacement. This step consists in introducing the notion of admissi-
ble variations. Namely, the traditional definition of virtual displacement tells us that it is
any imagined small displacement, consistent with any constraints of the system. All,
however, becomes understandable when the notion is treated literally, not with verbal
expressions, but with mathematical operations. Since this is the most important moment,
at least in this section, we shall start with an introductory example.

Imagine a particle constrained to move on the surface determined by the equation

f(x,y,z,t) = (4.40)

If we assume that a particle is always located on such a surface then equation (4.40) is a
constraint equation. In order to express the fact that the particle moves we must introduce
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its velocity. We-shall calculate, for this purpose, the total time derivative of function
(4.40):

£ . | l i + £ j + ££ + £.O, (4.41)
At ax ay dz at

which, after introduction of the notation

can be expressed in the form

v g r a d / 4 - ^ = 0. (4.43)
at

Note that equation (4.43) describes this essential fact that velocity of a particle is not just
arbitrary—the degree of arbitrariness depends to some extent upon the nature of the
constraints through quantities grad/and df/dt. Dependence upon grad/is always valid,
while the second term is only for rheonomic constraints.

Now let us consider the notion of variation of a function. Since we are dealing with a
motion in space of a particle, we have to deal with three functions of one variable, time,
i.e. x(t), y(t), z(t). In connection with this one should also take into account three varia-
tions, 8x(t), 8y(t), 8z(t). For a vector out of them:

8r = (8x,8y,8z). (4.44)

Can these variations be arbitrary? They can be partly so, but the particle must follow the
constraints constituted by the surface (4.40). The question remains as to the condition
which should be fulfilled by vector (4.44) in order for it to describe this fact. The
condition can be obtained in the following way: rewrite equation (4.43) in the form

<5rgrad/ + - ^ d/ = 0. (4.45)
at

Equation (4.45) defines the differential dr of the real displacement r. Now, any vector 5r
satisfying the equation

<5r-grad/ = 0 (4.46)

will be called a virtual displacement.
Note that the fact that the expression (df/dt) At is not preserved between (4.45) and

(4.46) means that in the general case (that is in the case of rheonomic constraints)
<5r * dr. The absence in the definition (4.46) of a term analogous to (df/dt)8t means that
virtual displacement is a synchronous variation which, in verbal descriptions, is ex-
pressed through the unfortunate phrases mentioned at the beginning of this section. Vari-
ations (4.44) that satisfy the condition (4.46) are called admissible variations, since only
such variations are admitted by constraints. Thus, in this perspective, virtual
displacements are simply admissible variations.
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It remains now only to broaden the relation (4.46) to encompass the general case of
holonomic constraints, which are described by the equation

fa(t,rv) = 0, a = \,...,a, v = l,...,n. (4.47)

We can presently say that virtual displacement is any vector 5rv = (5xv, Syv, Sz v) which
satisfies the equation

£ a = 0 , (4.48)
v=l

where

f^|^,f^f4 (4.49)
The relations (4.46) or (4.48) can be interpreted in various ways, which are not neces-

sary for modelling and which can be found in most of the handbooks of analytical
mechanics. Here two questions remain to be discussed.

(1) What happens to definition (4.48) when generalized coordinates are introduced into
the description of motion? The description using position vectors is not used in
modelling of technical systems.

(2) What are the limitations on virtual displacements imposed by nonholonomic con-
straints? These may act alongside holonomic constraints.

Answering the first of these questions is elementary. It is sufficient to recall the
discussion of generalized coordinates in section 2.2.3, where any holonomic constraints
(4.47) were eliminated. This means that equation (4.48) applies only to the remaining
nonholonomic constraints and, consequently, variations of the generalized coordinates
can be arbitrary—which is a very significant fact, as we shall see in the modelling of
holonomic systems.

The second question becomes simple, too, if we accept the reasoning presented for
holonomic constraints. Take, therefore, linear nonholonomic constraints expressed with
the help of generalized coordinates in differential form, that is:

^ p a l}dt = 0, 0 - 1 , . . . , * (4.50)

and thus

XBpA + V ' ^ . (4-5D
< T = 1

which, having accepted (4.39), results in

fjBpa8qa=0, P = \,...,b. (4.51)
C T = 1
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Thus, variations of generalized coordinates in the case of nonholonomic constraints of the
type (4.50) are no longer arbitrary and the term 'admissible variations' means those that
satisfy condition (4.52).

Before finishing this section, we should present an explanation of the number of
degrees of freedom, previously introduced in section 2.2.3. This number should be con-
sidered, undoubtedly, to be the number of independent variations of generalized coordi-
nates. In the case of holonomie systems the number of degrees of freedom is equal to the
number of independent generalized coordinates. If, therefore, we have s such coordinates,
then, on the grounds of constraint conditions (4.52) there are b fewer independent varia-
tions. Thus, the number of degrees of freedom of a nonholonomic system is / = s - b (see
(2.41)).

4.2.2.2 The mnemonic rule for calculating variations
We shall give now a very useful method for calculating variations of various quantities
and this will be used in many transformations. We call this method the mnemonic rule for
it reduces to the performance of certain formal operations, whose bases are constituted by
the following sequence of manipulations:

(1) consider a certain function

F-F(/,JC! *„), (4.53)

written more simply as

F = F(t,Xi), i = l,...,n; (4.54)

(2) form the total differential of this function:

^ i f d * / - , (4.55)

(3) replace the symbol of differentiation 'd' by the symbol of variation S

^fc,, (4-56)

where the superscript 'a' denotes asynchronous variation;
(4) assume that variation is synchronous (see (4.39)), thus we obtain

PF-Zjl&c,, (4.57)

where the superscript 's' denotes synchronous variation.

The superscripts are omitted in further considerations, for we shall mainly make use of
synchronous variation.

To illustrate the validity of this method of calculating variation we shall present
several examples.
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Example 4.2. The equation of holonomic rheonomic constraints has the form

/ a (MV) = 0. (4.58)

We are looking for conditions satisfied by variations 5vv.
By applying, step by step, the rule proposed before, we obtain

(4.59)

This yields the formal definition of virtual displacements (see (4.48)).

Example 4.3. In section 2.2.3 we quoted the condition (2.21) to be satisfied by general-
ized coordinates. This condition has the form:

rv=rv(t,qa), v = l,...,n, a=l,...,s.

We are now looking for a relation between variations of the radius vector and those of the
generalized coordinates.

On the basis of the rule proposed we have, consecutively,

K^t-^-Sq^ v = l,...,n, (4.60)

yielding ultimately a relation which is quite popular in transformations.

Example 4.4. A relation between quasi-velocities and generalized velocities may appear
in the form

s

$o = ^Bop4P> <T-1,...,S. (4.61)
pml

We are now looking for a relation between variations of quasi-coordinates and general-
ized coordinates.
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Here, before applying the mnemonic rule, we shall first multiply both sides of (4.61)
by At to get

d#ff = I X p d V (4'62)

Hence, it is sufficient to only carry out step (3):

S^a = ^BapSqp, o=l,...,s (4.63)
p=l

in order to obtain a relation important for deriving equations of motion in quasi-
coordinates.

4.2.2.3 Forces of reaction of constraints
The existence of constraints leads to the notion of forces of reaction of constraints. We
already know from section 2.2.2 that all constraints limit the freedom of motion of
particles of a mechanical system. We shall consider in the present section the manner in
which geometric functioning of constraints is expressed in dynamics.

If we require a priori that the particle will not leave the surface:

f(x,y,z,t) = 0, (4.64)

thus th emotion of this particle cannot be determined solely on the basis of the equations
of motion for a free particle. It could be that the general solution will not contain the
curve which lies on the surface/= 0.

In general, we would say that adherence to the condition that a body does not violate
constraints (for instance, does not leave a surface) requires a certain action which would
oppose the motion of a body directed away from the constraints. Thus, e.g. a railway
carriage on a bend pushes on the rails, causing reaction forces in the opposite direction.
We may therefore generally assume that the fulfilment of constraint equations is the
effect of reaction forces exerted by the devices used for this purpose. Thus, one should
distinguish those forces causing motion (which can therefore be called active or given)
from those additional forces originated by constraints which will be called reactions of
constraints.

In order to confirm that the introduction of such forces is necessary, let us note that in
the simplest case of a mass particle subject to constraint of the form (4.64), acceleration a
of this particle has to satisfy the condition

a • grad/ = -^-4— v • grad •%-, (4.65)
dt1 At

where velocity v of the particle is subject to the constraint

v grad/ + -^- = 0. (4.66)
at
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(Both these conditions are obtained through differentiation with respect to time of the
constraint equation (4.64).) As can be seen from condition (4.65) the component normal
to the surface of constraints,

is determined entirely by the form of the function / appearing in constraint equation
(4.64). On the other hand, though, this component has to equal the normal component of
acceleration, determined from the equation of motion ma = F, where F is the active force
(given directly). Hence can be concluded that if the force F is not given in an implicit
way, the equality of the accelerations (an and a) is out of the question. There is therefore
a need for a modification consisting of the introduction of a certain additional force R
known as reaction of the constraints. Thus, the equation of motion for an individual
constrained particle, i.e. when the reaction of the constraints is considered, can be pre-
sented in the form

ma = F + R. (4.68)

This equation shows that from the point of view of dynamics, a non-free particle can be
treated as a free one, taking place under the influence of given forces and reactions of
constraints. The very same statement is the essence of the so-called postulate of freeing
from constraints (known also as the postulate of reaction), which is very popular in
statics. Our knowledge of constraints then clarifies the meaning of the postulate of reac-
tion. Let us emphasize that this postulate also concerns nonholonomic constraints.

However, in making use of equation (4.68) we encounter a problem, since at this point
the reaction of constraints is not known. Only the component of forces of reaction is
known through the analytical form of the equation of constraints, and is

R n = m a n - F n , (4.69)

where an is given by formula (4.67), and Fn is the normal component of force F. We say
that constraints are perfect if the total force of reaction of constraints reduces to the form
(4.69).

As we have seen, the existence of constraints introduces difficulties in modelling. If
we are interested only in the motion of a mechanical system, then reaction forces are only
'hindering' quantities, and so we attempt to eliminate as far as possible.

The most popular method of elimination is based upon the assumption that forces of
reaction must be selected in such a way as to make the motion of a system conform with
constraints. Since one way of expressing conformation with constraints is as admissible
variations, we introduce first the quantity called the virtual work of forces of reaction of
constraints

SW=]TRv-<5rv, (4.70)
v=l

where n denotes the number of mass particles of the system considered; then we require
that
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0. (4.71)

Constraints satisfying condition (4.71) are called ideal. Note that this approach is differ-
ent from the one shown before.

4.2.2.4 Commutability of the variational (8) and differential (d) operators
Discussing the variation of a function in section 4.2.2.1 we considered the fact that the
operations of calculation of variation and differentiation do not always commute. Let us
now have a closer look at this issue. For holonomic systems the property of commutabil-
ity is valid, since all the trajectories lying in the vicinity of the actual trajectory are
kinematically admissible from the point of view of constraint equations. In the case of
nonholonomic constraints this is not guaranteed, since not all curves located in the neigh-
bourhood of the actual trajectory are kinematically admissible as comparative trajecto-
ries, because they are subject to the nonholonomic constraints. This is due to the fact that
variations of generalized coordinates are subject to constraints (4.52). In this situation it
is not clear what is the meaning of d(&a)/d/, since after leaving the trajectory the
derivative along time can no longer be calculated.

In mechanics the operation d denotes differentiation with respect to time. In this
connection, it is defined only by points lying on the curve qa = qj^t) on which motion
takes place. On the other hand the virtual variation operator 5 denotes in mechanics any
of infinitely many operations which conform with condition (4.52). This is why the
operation <5 is defined in every point of the space configurations. Thus of the two opera-
tions Sd and d<5, only the operation dS is defined at every point lying on an arbitrary
(actual or kinematically admissible) trajectory. These considerations can be interpreted
geometrically using position vectors (Fig. 4.8, where for the sake of clarity, only one

mass particle is considered). Vector BN presented in the figure defines the operations
5(r + dr) which, until now, in accordance with previous considerations, is undefined.
This definition means that point N may be attained either via the trajectory ABN or via
AMN. Then AN - dr + <5(r + dr) = <5r + d(r + <5r) and we obtain

d5r - <5dr = 0. (4.72)

If instead of one point we are dealing with a set of n points, equation (4.72) takes the
form

d<5rv - <5drv = 0, v = l n. (4.73)

In order to present the equation (4.73) using generalized coordinates, we shall (i)
differentiate with respect to time formula (4.60) and (ii) calculate in a formal way the
variation of the velocity vector

— ^rv _ V1 ^V • <^v
(4.74)

The difference of the two expressions mentioned is
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B

S(t + dr)

Fig. 4.8.

^ \ (4.75)
dr v dr ^dqaUt Ha dr

and in the differential form is

d(8rv)-8(drv)~Yj^{d8qa-8dqa), v=l n. (4.76)
cr=l °™

On the basis of (4.75) or (4.76), the difference (4.73) can be presented in the form

dSqa-8dga = 0, (4.77)

or

± 8 q a - 6 ^ = 0, a = l...,s. (4.78)

Equations of the type of (4.77) or (4.78) defining the difference d<5- Sd are called
relations of commutability of operations d and 8. Relations obtained are often noted
symbolically as 'd8= 8d'.

We wish to emphasize the very important fact that operations d and 5 can be arbitrary
away from the trajectory qa = qa(t) (a= I,..., s), but they have to be precisely. We should
say, though, that various solutions of this problem shall lead to different forms of rela-
tions of commutability, and consequently to various forms of variational principles and
resulting equations (for details see Neimark and Fufaev (1972)).

4.2.2.5 Euler-Lagrange equation
Numerous problems appearing in integrated mechanics can be formulated in terms of
extremum (minimum or maximum) of integrated quantities. We have already encoun-
tered such notions in sections 4.1.2 and 4.1.3: the optical path expressed via the integral
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(4.9), the mass of the rod expressed by the integral (4.21), the time for the sliding down
of a particle, integral (4.27). These quantities are called functionals. We shall discuss in
the present section, as briefly as possible, the essentials of the variational approach as
encountered for such problems. Our main task is to show how to extract the curve for
which the given functional takes its extremal values. We will show that this reduces to
calculating the variation of a function.

For the sake of simplicity, consider only the one-dimensional case. Let us find a curve
y = y(x) which corresponds to the extremum over the segment x E (X], x2) of the curvilin-
ear integral of the given function f(x, y, y'), where y' = dy/dx. In other words for the
function sought y(x) the integral

P\X2f(x,y,y')dx = I[y(x)] (4.79)
Jx,

should take on extremum (minimum or maximum) value. In order to focus our attention
later we shall refer uniquely to the minimum. The search for a maximum can be reduced
to the search for minimum, since

max I[y(x)] = min{-/[y(x)]}. (4.80)

Note that the use of square brackets at (4.79) implies that / depends functionally upon y,
and is not just simply a function of points located on this curve. Curves y(x) belong to a
certain set Y. Which set of curves is admitted, depends upon the nature of the problem.
Thus, for instance, in the problem of the brachistochrone we assumed that the curves
have to be smooth. Quite often, though, mainly in the problem of control, it is assumed
only that curves are piecewise-smooth. In further considerations, we assume that y(/) is
continuous together with its first derivative, and/(x, y, / ) is a function having continu-
ous partial derivatives up to the second order inclusively with respect to all the variables.

The type of variational problem is influenced by the form of the integrated function
and by the conditions concerning the values of curves at the extremes of the interval, or,
as one might say, at their ends. These ends may be free or fixed. If beginnings and ends
of all curves y are common (see Fig. 4.9) then we say that we are dealing with the
problem with fixed ends. In the present considerations we shall assume that ends are
settled, which means that we shall be interested only in such curves y(*) for which

y(A:1) = y1 and y(x2) = y2- (4.81)

The problem composed of the functional (4.79) and conditions (4.81) will be called
the simplest variational problem. The problem of the brachistochrone, formulated in
section 4.1.3, is of this type.

Thus, the genera] statement of the simplest type of variational problem is as follows:
given function f(x, y, y') we try to find that y = (x) which renders (4.79) minimum, and
satisfies the boundary conditions (4.81).

The search for the minimum of the functional /[y] means finding a curve y* for which

i[y*]<i[y], yer. (4.82)
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Fig. 4.9.

The question remains: for which curves y does condition (4.82) have to be satisfied?
Depending upon the answer to this question we distinguish various types of extrema (for
details see Gelfand and Fomin (1963)).

We can now consider another important notion in the framework of the variational
approach, namely the notion of variation of a functional, and for this purpose we need the
notion of variation of a function, as discussed in section 4.2.2.1. By the variation dy(x) of
a function y(x) we mean, in general, any difference between a given function y(x) and a
function y(x), 'close' to the previous one, thus:

8y(x) = y(x) - y(x). (4.83)

In the case here considered—and recall that we are dealing with fixed ends—variation
(4.83) must fulfil yet an additional condition, namely vanishing at the ends of the inter-
val, i.e.

Sy(X]) = 0, 5y(x2) — 0, (4.84)

Frequently, especially in elementary courses, in the place of function 5y(x) some other
function T)(x) is taken, which is quite arbitrary except that it vanishes at x = x\ and x = x2.
Then, if e is an infinitesimal parameter, the curve defined by y(x) + £T](x) will be close to
y(x) as shown in Fig. 4.10. The function E7](x), which represents a small change in the
overall shape of the original function, is called the variation in y; and therefore according
to (4.83) we have

Sy(x) = eti(x).

We can also define the difference in the slopes of the y curves at any x to be

(4.85)

(4.86)
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y(x) + er?(x)
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y(x)

8y(x) =

Fig. 4.10.

In order to emphasize the universality of definition (4.86) we have left the second end
loose (see Fig. 4.11). However, we could equally well leave both ends loose of fixed.

Now we express the function / in the integral (4.79) along the varied curve y by
expanding it about the original curve y. Using the Taylor series we can write

(4.87)

.y

1
1
1

\ ^ —

j yjx)

S 1

,

y

Fig. 4.11.
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The quantity

dy dy

is called the first variation of function/(*, y, y'); this quantity is obtained from (4.87)
due to preservation of only its linear components.

Finally if one already gets through the obstacles of variation of a function, the first
variation of integral functional / is simply

SIM = T2 Sfdx. (4.89)

In order to formalize this crucial notion, for the variational principles for the integral,
we shall consider yet another approach using a more natural definition (4.85). For the
functional (4.79) we then have

/[v + er\] = \*2 f(x,y + £T), y' + £77') dx, (4.90)

so that

A/ = /[y + £77]-/[y]= p[/( je ,y+ « » , / + « ? ' ) - / ( * , * / ) ] d*. (4.91)

If the right-hand side is expanded by the Taylor series we will obtain

](S
2I)e2+ . . . . (4.92)

Then, 5/ is called the first variation in /, 82I is called the second variation in /, etc. If we
refer to a variation in / without any qualification, we will mean the first variation.

The notion of variation is therefore in a sense analogous to the notion of differential
from the conventional differential calculus. The variation of a functional represents the
linear part of the increment of the functional when the function y(x) increases by dy (i.e.
in a similar manner to the differential of a function y(x) representing the linear part of the
increment of this function when independent variable A: increases by dx)

d*, (4.93)

where notation J(e) has been introduced, since for given y(x) and r\(x) the integral is now
simply a function of £. Then, the proposition that I[y] be extremal for y(x) = y(x)
implies that J(e) be extremal at £ = 0. For this latter condition we have

dy

e=0
= - r P [fix,y + £7], y' + en') dx\ e=0. (4.94)

rip Jji

In (4.92) we briefly introduced the 8 notation and we defined 81 as the first variation in
I[y]. In the present case, then, for extremal I[y]
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51 = £J'(0) m 0, (4.95)

so that the extremal character of / and the vanishing of its first variation mean exactly the
same thing. It is this manner of proceeding that was made use of in section 4.1.2 in
deriving Snell's law from Fermat's principle.

Returning to equations (4.89) and (4.88), we have

^7Sy)dx. (4.96)
dy J

The task now consists in obtaining the form of (4.99) irrespective of the admissible
variation 8y. For this purpose the second term in (4.96) can be integrated by parts using
the relations

±5y=8%- (497)
Ax dx

and

SJydx = jdydx, (4.98)

yielding

p , (4.99)
x
 J*, cbc dy

so that the final expression for 5/ becomes

-u- x2

Ax. ( 4,00)

On the basis of equation (4.95) and assumptions (4.84) we obtain

Trlr
dx dy

Now it suffices to apply the so-called fundamental lemma of the variational calculus
(sometimes also called the lemma of Du Bois-Reymond) in order to complete the work.
The essence of the reasoning is as follows: if in equation

dx = 0, (4.102)

where TJ(X) is an arbitrary function, F(x) does not vanish over the whole interval (mean-
ing that the proof is not direct nor trivial) and is, for instance, positive over a portion of
this interval, then, by choosing i](x) e.g. as in Fig. 4.12, we would obtain F(x)t](x) dx> 0,
which is contrary to the assumption made. Thus, condition
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Fig. 4.12.

dy ax dy

must hold. This is the famous Euler-Lagrange equation and its solution is called the
extremal.

All our results till now may be generalized in a natural way for the multidimensional
case—that is, the case of a multidimensional functional space of functions that still
depend upon just one variable, x. If we then denote by {y} the set of functions y\,---,yn,
we will be analysing the extremum of the functional /[{y}]. After an adequate generaliza-
tion of the notions of proximity, variation of a functional etc., we can obtain the Euler-
Lagrange equations in the form

i = l n. (4.104)
dy-, Ax dy-

4.2.3 Differential variational principles

4.2.3.1 The common property of differential principles
Before we pass over to consideration of selected differential principles we would like to
turn attention to some questions which, in our opinion, are essential. First of all we recall
the remark from section 4.2.1 that variations should be understood in a broader sense and
must not necessarily mean extremalization. That is why there is no objection to including
differential non-extremal principles to variational ones. It is only essential that admissible
variations of certain functions appear; in classical mechanics they may be those of the
positions of mass particles (the d'Alembert principle), and in thermodynamics they are
the variations of the so-called local dissipative potentials (the Onsager principle).

The fact that in section 4.2.2.1 only virtual displacements were considered does not
imply that they are the 'construction material' of all the differential principles. True,
virtual displacements are the central concept and a difficult one, and that is why they
were taken up at the beginning of this section. This should not hinder the proper percep-
tion of the fact that other quantities could be equally 'good', for instance virtual velocity


