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d dL dL _ c
— 3 : -z— = QpC, P = l,...,r, (4.202)
tit dqp dqp

where

(4.203)

Equation (4.202) and function (4.203) will be called, respectively, the Lagrange-
Maxwell equation and function.

Since we have not presented a decent derivation of the Lagrange-Maxwell equations,
we present three assumptions whose fulfilment is necessary for application of these
equations:

(1) we assume that the behaviour of the mechanical part of an electromechanical sys-
tem can be described by means of a discrete model having s 'mechanical' degrees
of freedom;

(2) we assume that in every system electrical circuits are closed, meaning that conduc-
tors do not touch each other; the possibility of contact, for instance, via a commuta-
tor gives rise to nonholonomic constraints and would require separate treatment;

(3) a continuous electrical part of the electro-mechanical system can be described with
the help of a finite number of 'electrical' generalized coordinates, if the condition
of quasi-stationarity is satisfied; that is, changes over time in the intensity of an
electromagnetic field do not influence the value of magnetic induction.

4.3.4 Case studies

4.3.4.1 Does a bell always ring?
This problem has a certain historical interest due to experiments performed with the giant
bell Kaiserglocke of the famous Cologne Cathedral in Germany. In some situations a bell
does not ring owing to the failure of the clapper to strike the side of the bell; we will
establish the condition under which a bell fails to ring. A bell, together with its clapper, is
modelled as a mechanical system composed of two compound pendulums. The pendulum
which represents the shell rotates about the fixed, horizontal axis through O, called the
axis of suspension, while the pendulum representing the clapper rotates about the axis A,
connected to the first pendulum at the hinge axis (Fig. 4.14a). We assume that the bell
and its clapper move in one plane. Then, the system has two degrees of freedom. The
coordinates are the angular displacement a of the first pendulum, and the angular dis-
placement [5 of the second one relative to the vertical direction (4.14b). Both a and /? are
assumed to be small. We use the following notations:

mb, mc are the masses of the bell and the clapper, respectively;
/o is the moment of intertia of the bell about its axis of suspension;
/ c is the moment of intertia of the clapper with respect to its centre of gravity C;
a is the distance between the axis of suspension and the hinge axis;
b is the distance of the centre of gravity, B, of bell from the axis of suspension;
c is the distance of the centre of gravity, C, of clapper from the hinge axis.
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(a)

Fig. 4.14.

The kinetic energy of the entire system is

T = Th+Tc,

where

(4.204)

(4.205)

is the kinetic energy of the bell, and Tc, the kinetic energy of the clapper, is given as
follows:

Tc=±mcv*+IcP
2, (4.206)

where vc denotes the velocity of the centre C of gravity of the clapper. To find an
expression for vc we make use of Fig. 3.13b).

and then

i c = aacosa + cflcosll, yc = -ad sin a -cp sin p.

Thus

On the basis of (4.104)-(4.206) as well as (4.208), the expression for the total kinetic
energy is

71= 2"(/Q+"i c« )d +-w{lc + mcc )p +mcacd/3cos(/3 — Of). (4.209)
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Since the only forces acting on the system are gravitation forces, the potential of our
system is

V = Vb + Vc, (4.210)

where

^b = ~mbSyb ~ ~mbgb cos a,

Vc - -mcgyc = -mcg(a cos a+ ccosP). (4 211)

The Lagrange equations (4.169) are

d dT dT dV

Vfr" d£ +lv~ ' (4212)

~dt~dp~~dp+~dP~

First we will now obtain the equation for a. The derivatives in this case are

dT ,_ 2

•da-=il0+m*
— =(70+mca

z)d

r0 + mca
2 )d + mcacji cos(p -a)- mcacP(P - d) sin(/3 - a).

d dT ,T
dt dd

dT
— = mcacdp s\n(P - a),
act
dV
——= (mbb + mca)gsma.
da

The equation for a becomes

(70 + mca
2 )ix + mcacPcos (p - mcacp2 sin (p + (mbb + mca)gs\r\a =0 , (4.213)

where <p = p-a for the sake of simplification.
Similarly, for the coordinate j3 we have the derivatives

dT .. 2.x
—r= (7C + mcc )p + mcaca cos <p,
dp

-= (7C + mcc
2 )P + mcaca cos cp - mcacd(p sin (p,

dt dp
dT .x .
—-= -mcacaPsm(p,
dp

— =mcgc sin P
dp

and the equation for /j becomes therefore

(7C + mcc
2)P + mcacacos <p + mcacd2 sin (p + mcgcsin/J = 0. (4.214)
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It is perhaps now a good opportunity for turning attention to the physical sense of the
quantities obtained. Thus, if we make use of definition (4.159) we obtain the following:

Qa = (mbb + mca)g sin a and Qp =mcgc sin ft, (4.215)

i.e. the generalized forces are moments.
In order to be able to use equations (4.2130 and (4.214) to explain the curious phe-

nomenon that some church bells, when set in motion, do not ring, we shall take advantage
of the assumption of small angles a and j3, and additionally neglecting the higher-order
nonlinear terms, obtaining thereby

(/0 + mca
2 )a + mcacJ3 + (mbb + mca)ga = 0, (4.216)

(/c +mcc
2)P + mcaca + mcgcP= 0. (4.217)

The silence of a bell may occur when one of the principal oscillation modes is not
accompanied by the relative motion of the clapper with respect to the shell, i.e. when

a - 0 = 0. (4.218)

Let us investigate under what conditions the relation (4.218) can represent the principal
mode of oscillation.

Substituting

a = (i = \ir (4.219)

into equations (4.216) and (4.217), we obtain

(/0 + mca
2 + mcac) iff = -(mbb + mca)gy/,
, (4.220)

(/c + mcc + mcac) iff = -mcgcy/.
The two equations (4.220) are compatible if

/0 + mca
2 + mcac _ mbb + mca .

Ic + mcc + mcac mcc

Since the moment of inertia of the clapper is much smaller than that of the bell, i.e.
/ c ^ / 0 , we can simplify equation (4.221) assuming that

h = 0, (4.222)

which corresponds to a modification of the physical model. Now the clapper is assumed
to be a simple pendulum and not a compound pendulum as before. Thus, introducing
(4.222), we get from (4.221), after simple transformation, the relation

' - a +• c (4.223)

in which

The value given by (4.224) is the so-called length of the equivalent simple pendulum.
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There is still an important property of a compound pendulum: every centre of suspen-
sion O has a corresponding point O', called the centre of oscillation, such that if the
pendulum is suspended at this latter point, it will oscillate with the same period as when
suspended at point O.

Hence, equations (4.223) and (4.224) state that the bell may be silent if the centre of
gravity of the clapper coincides with the centre of oscillation of the bell. This conclusion
is the answer to the question why Kaiserglocke could not ring.

4.3.4.2 Longitudinal motion of an aircraft
Probably all readers are aware of the necessity of high lift for flying. However, this is not
sufficient for ensuring the safe flight of an aircraft or of some other type of airframe. An
airframe must be able in all circumstances to preserve equilibrium and it should return of
its own accord to a predetermined position when it is disturbed from this position by
some external agents, for example a violet gust of wind. Thus the airframe must be
stable, and this is necessary for the ability to fly.

The purpose of modelling could be the establishment of the conditions for stable
flight. For this, however, an adequate mathematical model must be built. To do this we
will apply the Boltzmann-Hamel equations. In order to avoid undue calculational compli-
cations caused by computing the Boltzmann symbols (4.187), we will not consider any
arbitrary motion, but will concentrate on plane (two-dimensional) motion.

This situation is shown in Fig. 4.15, in which two coordinate axes are shown: the
inertial axis Oxgygzg relative to the Earth and the non-inertial axis Cxyz, rigidly connected
with the aircraft and having its origin at the centre of mass of the aircraft. Within the
OXgygZg system we introduce the following generalized coordinates: xc, zc are the coor-
dinates of the mass centre and 6 is the rotation about the y-axis. On the other hand, in the
Cxyz system we introduce quasi-velocities: U in the direction of the axis Cx, W in the
direction of z-axis, and Q, the angular quasi-velocity about the axis Cy. The only quasi-
coordinate which in this case is identical with the usual generalized coordinate is the
rotation angle 9 (see Fig. 4.15). In order to simplify the algebra we introduce notations as

0

in the table below, remembering that qa = dqa/dt and -&a = dtf^/d/.

Table

Generalized coordinates

Generalized velocities

Quasi-coordinates

Quasi-velocities

4.1.

91
XC

*e

o

U

92

92

z
o

W

93

e

Q

e
o

1>3

Q
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Fig. 4.15.

For the establishment of the physical model we shall assume the following:

(1) the aircraft is a rigid body;
(2) the mass and the mass distribution of the airplane are constant;
(3) the xCz plane is a plane of symmetry;
(4) the rotor gyroscopic effects are considered negligible;
(5) control surfaces are locked;
(6) the Earth can be regarded as ideally flat and nonrotating;
(7) there is no wind (the flight takes place in calm atmosphere).

For notations from Table 4.1 the Boltzmann-Hamel equations, (4.185), take the form

dT* • „d ,

At

d
At

d

dT*
du

dT*
dw

dT*

dT*
d$v '

dT*

d$w

dT*

T,T=1

3

df

+

CT,T=1

dT*

dT*

(4.225)

where due to (4.180)
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3
Pp = yLt>paQa, p = 1,2,3. (4.226)

Thus, we should calculate: (1) kinetic energy and express it in quasi-coordinates, (2)
Boltzmann symbols (4.187) and (3) quasi-forces (4.226).

(1) On the basis of formula (3.79) we obtain kinetic energy expressed in generalized
velocities

T = ±m(il + zc) + jfyd
2. (4.227)

In order to replace generalized velocities by quasi-velocities we must find a relation
between them. On the basis of Fig. 4.15 we can write

xr =U cos 9+W sin0,c (4.228)
ZC =-UsmG+WcosQ.

Now, having introduced (4.228) to (4.227) and using the fact that

Q = 9, (4.229)

we obtain

(4.230)
T* = {2 ±2 2

and

dT* rl d dT*
—— = mu; = mil
dU d/ dU

^* 11/ d ^ * w w ^ ^= mW; = /nlV (4./J1)
<?W df (?W

— -IQ- —— = 10
dQ y ' d/ (9(2 y

— =0, illsO, —-0. (4.232)

(2) It can be seen from the structure of formula (4.187) that coefficients <%,- and bip

(cr= 1, 2; i, p— 1, 2, 3) will be needed and to get them we use the relation (4.175), which
takes the form (see the notation—Table 4.1)

= iC (4-233)

By comparing (4.232) with (4.228) and (4.229) we conclude that
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by i = cos 9, bi2 = sin 9, 613 = 0,

b2X = - sin 6, b22 = cos 9, 623 = 0, (4.234)

hi " °. fo32 = 0 &33 = L

Coefficients api can be calculated from the relation (4.174) since matrix B is
nonsingular and its inverse exists. The inversion of B gives

<Zjj=cos0, 0)2=—sin 0, <3j3 = 0,

<32i = sin 9, a22 - c o s >̂ fl23= 0. (4.235)

a 3 1 = 0 , 032=° . a&-h

Now, on the basis of formula (4.187) we have

V,(^-^f} W W (4.2,6,

Since the coefficients a^, a^ depend only upon the coordinate 93 = 9, then the only
derivatives in formula (4.236) which do not vanish are

= -sin0,sin0,
99 96

D ;> ( 4 - 2 3 7 )
' . / ' =cos0, — ^ - = -sin6.
99 90

After deploying the formula (4.236) we get

whence for cr= 1, using (4.237), we obtain

Yplx = -bipbir sin 9-b2pb3r cos9 + b3pb2r s'm 6 + b3pb2T sin 9, (4.239)

while for G = 2

7p2r - ~bipb3rcos 9 ~ hpb3r Sin 6 + b3pblr c o s ^ + hpb2r sm d- (4.240)

What remains to be done is an exercise in patience in writing down indices and
observation of formulae (4.234). The results are presented in Tables 4.2 and 4.3.

Knowledge of Boltzmann symbols makes it possible already now to write down the
terms with sums in equations (4.225):
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Table 4.2

T - l Yl\l=O

p=l T=2
T = 3

T=2
r=3

7211=0

T = l 7311=0
T=2 7312=1
^ = 3 7313 = 0
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Table 4.3

cr=2

T =

p = 1 r =
T =

r =
p = 2 T =

T =

p = 3 T =
T =

1
2
3

1
2

1

2
3

7i2i = 0
7122 = 0
7123 = 1

7221 = 0

7223 = 0

7321 = - 1
7322 = 0
7323 = 0

<T,T=1

3

CT,T=1

dT

dT % dT ̂
7l23-T-^3=—2

dT

(97 dY3

ff,T=l

(3) On the basis of (4.226), using (4.234) we obtain

Px = Qx cos 0 - 02 sin 9, P2 = Q\ sin 6 + Q2 cos 9

dT_

dU

dT

(4.241)

U + —— W.

and P 3 = Q 3 . (4.242)

If the derivatives (4.231) and (4.232) are taken into consideration as well as expressions
(4.241), equations (4.225) finally take the form

m(U + QW)=Pu

m(W-QU)=P2,

JcQ= Pl- (4.243)
After the specification of generalized forces Qa(<J= 1, 2, 3) acting on the aircraft one

can already investigate stability of the uncontrolled longitudinal motion of the aircraft. It
is a long and rather complicated procedure, so we will not do it.

4.3.4.3 When does a loudspeaker work well?
The loudspeaker (see Fig. 4.16) is composed of an iron body (1), with a core sticking out,
on which, quite loosely, a movable coil (2) of induction H can move. The body of this
coil is connected with a conical membrane (3), whose outside edge is attached to the
immobile support. An electromotive force E(t) is applied to the movable coil in
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Fig. 4.16.

accordance with a signal appearing at the input. For the conventional loudspeaker, the
signal comes, for example, from a radio tuner. By means of an amplifier (not shown in
the figure) the current varies over time in the coil, due to which a varying magnetic force
acts upon the coil. Under the influence of this force the movable coil vibrates, setting the
membrane into motion. Vibrations of the membrane then create in the air acoustic pres-
sure waves and in this way the loudspeaker generates sound. It may also act as a genera-
tor of an acoustic force. Such a force can be used to benefit people. An example of such a
use of a loudspeaker is provided by the famous experiment performed in Cambridge in
1985, in which a loudspeaker was used to generate the acoustic force. This force, in
'cooperation' with the aerodynamic force, causes flutter suppression.

The first goal of modelling of the loudspeaker is establishment of conditions of its
stable functioning. The second one is determination of which parameters to change to
improve the quality of the loudspeaker.

In order to derive equations of motion of the system described we shall first of all
model the membrane, which is a continuous object, as a harmonical oscillator of mass m
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and stiffness k, and of the viscous damping coefficient b. With regard to mass m, we
assume that it is the combined mass of all the movable parts.

The system considered can be described in section 4.3.3, with two coordinates—x,
displacement of the movable coil, and e, electric charge flowing through the circuit. The
only difference consists in the fact that we shall be calculating magnetic energy Te],
somewhat differently. Now it is stored in the magnetic field of the permanent magnet
coupled with the field of the movable coil. Thus

Te] =\He2 +l^0+h.xy, (4.244)

where H is induction of the coil, fo is the permanent magnetic flux of the magnet, <j>c

denotes the coupled flux of coil with the magnet, and d is the diameter of the coil. The
form of (4.244) results from the general formula which may be found in Feynman et al.
(1965), Vol. 2.

Thus, the Lagrange-Maxwell function (4.203) is given by the formula

\kx2 (4.245)

and the Lagrange-Maxwell equations take precisely the form (4.196), and therefore we
will not quote them here. We can also use formulae (4.197), somewhat simplified be-
cause here we have no external mechanical force, and this yields

Qx=-bx, Qe = E-Re. (4.246)

Having introduced the function (4.245) to equations (4.202) and made use of formulae
(4.246) we obtain the equations

- y — e + kx = 0

( 4 - 2 4 7 )

which describe dynamic behaviour of the loudspeaker.
Consider first the autonomous system by taking E{t) m 0. Equilibrium position of the

system is described by

x = 0, e = 0. (4.248)

The characteristic equation of (4.247) takes the form

^fA+AWfA+AA^+AA+14L = 0, (4.249)
\m HJ {m mHj m H 4 d2mH

and, on the basis of the Routh criterion, in view of positiveness of all coefficients, this
implies that the equilibrium (4.248) is always stable.

When evaluating the dynamic properties of a loudspeaker one is interested in the
frequency characteristic of mechanical power yielded with constant amplitude of
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excitation voltage. Mechanical power transmitted from the coil to the membrane is given
by the formula

2 } , (4.250)

where, for a greater clarity, we have taken account of relation (2.37). The notations | • |
and Re denote the modulus and the real part of the complex number, respectively, Z(s) is
the operator impedance of the system, and s is the Laplace variable.

Applying Laplace transforms to the system of equations (with assumption of zero
initial conditions) we obtain the impedance in the form of

Z{s)=Hs+R + —= fy± • (4.251)
4d2(ms2+bs + k)

Now, substituting (4.251) into (4.250), talcing account of the fact that s=jco (j in the
imaginary unit) and neglecting terms with H and <j>2/4d (since they are a rather small
influence on the final result) we obtain

4d2k2R2\(l-Q2f +co2
aCl2(b/k)2J

(4.252)

where

n = Q)/o)n, 0)1= k/m. (4.253)

Since the quantities d and <pc characterizing the coil, and also the quantities b, k and R,
are assumed constant, so we can introduce the parameter

p = b*c - (4.254)
(2dkR)2

and then the equation (4.252) takes the form

(l-n2)2

From this, we can obtain interesting results. We shall define the system's transmit-
tance to be

K = ~ , (4.256)

and then we will calculate its extremum with regard to £1 Then assuming light damping
and using notation (4.254), we obtain

^ 2fk\
=(jj P- (4.257)
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The latter formula implies that for a given value of k/b the essential influence is exerted
on the power transmitted from the coil to the membrane by the parameter (4.254). Thus,
the properties of the loudspeaker can be improved through: (1) increase of <j)c, i.e. growth
of magnetic induction of the permanent magnet, (2) increase of the damping coefficient
b, and (3) decrease of resistance R of the coil.

4.4 MODELLING OF NONHOLONOMIC SYSTEMS

4.4.1 Introductory remarks
We introduced in section 2.2.2, after Hertz, the notion of a nonholonomic system. The
theory of nonholonomic systems started to develop at the end of the nineteenth century,
when it unexpectedly turned out that the wonderful and apparently universal formalism of
Lagrange is useless even for simple questions of rolling without slipping of a rigid disc
on a plane. As improbable as it may seem, Joseph Louis Lagrange (1736-1813) himself
did not suspect that such constraints might exist. He set out his belief in his famous
Mecanique Analytiquc (1788), in which he states that it is possible, for every mechani-
cal system, to select independent coordinates having independent variations. No excep-
tions were noticed for many years, until the problem of the rolling rigid bodies without
slippage was studied. Recall that Hertz introduced his classification into holonomic and
nonholonomic constraints as late as 1894. The development of the theory took a circuit
course, with numerous mistakes and errors committed by known exponents of mechanics
and mathematics. The series of mishaps lasted until the second half of the 1960s, when
the monograph of Neimark and Fufaev (1967) was published, resolving many existing
doubts. The present section of this book owes much to that book and in general to the
Russian school of mechanics. It is, simultaneously, worth emphasizing that many ques-
tions are still subjects of studies. We present here only a well-established apparatus for
modelling mechanical systems on which imposed constraints that are linear with respect
to velocities. Such constraints have, in generalized coordinates, the form (see also (2.24))

YjBpa{t,qa)q(J + Bp=Q, p'l,...,b, (4.258)
(7=1

where b denotes the number of nonholonomic constraints.
We will see later that the practical modelling of nonholonomic systems reduces mainly

to obtaining equation (4.258) and to the determination of the coefficients of this equation.
In order to develop certain skills which would then facilitate understanding of analytical
mechanics, we will comment on two well-known examples of nonholonomic constraints
and we will transform them to the form (4.258). The best-known example is probably
that of a billiard ball rolling without slipping on a rough table surface (Fig. 4.17). The
location of the ball will be posed by the coordinates X£ and yc of its centre and the three
Euler angles y, 0 and (p.

The fact that the ball rolls without slipping may be expressed through the statement
that vs = 0, where \ s is the velocity of the point of the ball in contact with the surface.
Since


