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tata 1961 oraz 1962 maja zasadnicze znaczenie dla
zastosowan maszyn matematycznych w Polsce. W tym okresie
rozpoczeta zostata produkcja krajowa, jak réwniez Import
maszyn cyfrowych, dzieki czemu powaznie wzrosta liczba
osrodkéw obliczeniowych wyposazonych w maszyny matema-
tyczne. Istotnego znaczenia nabrata wymiana informacji
i doswiadczen oraz zagadnienie publikowania odpowiednich
prac naukowych. Poniewaz zadne z istniejgacych w Polsce
czasopism nie posiada obecnie charakteru odpowiadajacego
tym potrzebom, postanowilismy, celem chociazby czesciowe-
go ich zaspokojenia, wydawa¢ odrebng serie PRAC Instytu-
tu Maszyn Matematycznych PA/l o nazwie “ALGORYTMY*, uka-
zujacag sie w okresach kwartalnych.

Z najwazniejszej tematyki zamierzamy uwzglednié¢ w
ALGORYTMACHI:
- Metody obliozen naukowych i technicznych. Z tego zakre-
su publikowane beda zaréwno prace teoretyczne z metod

numerycznych, jak réwniez konkretne programy pisane w
Jjezykach SAKO lub ALGOL.

- Metody programowania dla maszyn cyfrowych. Poruszane
tu beda problemy dotyczace jezykéw formalnych /w zasto-
sowaniu do autokodéw/, metody translacji oraz metody
optymalizacji programéw.

- Metody zastosowan administracyjno-gospodarczych. W tym
zakresie publikowane bedg prace teoretyczne, jak roéw-
niez przykdadowe opisy konkretnych systemoéw.

- Metody modelowé&nia cyfrowego.

- Prace nad matematyczng problematyka stosowania maszyn
cyfrowych do sterowania procesami przemystowymi.

W "ALGORYTMACH” zamieszczane beda prace wykonane w In-
stytucie Maszyn Matematycznych oraz w innych Os$rodkach.
Prace o bardziej teoretycznym i ogélnym charakterze beda
publikowane w jezyku rosyjskim i angielskim, za$ materia-
4y informacyjne, przeznaczone dla uzytkownikéw krajowych

- w jezyku polskim.

Prof. dr L. tukaszewicz



Years 1961 and 1962 were of great significance for the
use of mathematical machines in Poland. Our own production,
as well as the import of digital oomputers from abroad
began at that time. Due to this, the number of Poliah
Computing Centers provided with oomputers increased con-
siderably. The exchange of Information and experience as
well as the publication of appropriate scientific papers

beoaBm very important.

Since none of the Polish journals have met these needs,
we decided to issue a new series of our publication ’Praoe
SFA PAH* which may partly oover the demands} itwill appear
quarterly, under the title "ALGORYTMY* /Algorithms/. The
main subjects we intend to include in “ALGORYTMY* will be
the following:

- Methods of theoretical and technical computations. This
will include both papers on the theory of numerioal
methods and programs written in SAXO or in ALGOL.

- Methods of programming for digital oomputers. This will
include problems concerning formal languages /in rela-
tion to autooodes/, methods of translation and methods

of optimization of programs.

- Methods of business and economic application. This will
comprise papers concerning theoretical problems as well

as examples of real systems.

- Problems oonneoted with the control of technological

prooesses by means of digital computers.
- Methods of digital simulation.

Papers published in ’ALGORYTMY* may be both from our
Institute and from other Centers. Papers on theory and of
a more general charaoter will be published in Russian or

Bnglish and Information material for home use - in Polish.

Prof. dr Leon tukaszewicz
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ON A METHOD OF APPROXIMATIVE
FINDING CONDITIONAL MAXIMUMS
by Tomasz PIETRZYKOWSKI

Received January 1962

The paper considers an approximative
solution of the conditional maximum
problem, with constrains in the form
of the equality and inequality.

The purpose of the presented paper is to show that the problem
of constrained maximum can be reduced under natural conditions to
the problem of unconditional maximum of certain function.

Some partial results in this direction were previously obtained
by the author in [2Z] and [3]-

Let + denotes the n—-dimensional euclidean spece and suppose
that WcEn 1is defined as the set of points p eEn satisfying
the following conditions

®) =0 i* 1. m
<AP) 550 1 “ m+l» eeen m+l
where the real functions /1 =1, m+1l/ are defined and

continuous on En.

Let us suppose further that Ff 1is a real continuous Tfunction
on EN and let us consider the following problem;
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find a looal strong maximum of ¥ on
the set W, which is the same, find
a looal strong conditional maximum F
on En under the constrains /1/.

Let ees» be a sequence of positive numbers converg-
ing to kero.

Nov we define the sequence of function such that
m w+1 n
&k () -ST*1I<P) +21 S™i (D)*1 P PEE
1*1 k&1 oo

where S(t~ 1is the function defined on the real line by the for-

mula

for t<O0

el"on for t 3S0.

It turns out that the problem /P/ is linked to the following
problem:

find a looal unconditional maximum of
the function Gk on En /k @1, 2,

Namely the following theorem holds:

Theorem.

Let the point xQ be a solution of the problem /P/. Then there
exists suoh a sequence of points x1, x2, . that

lim x. - X
*

and x» is a solution of the problem /Pk/ /k -1, 2, ...,/
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Proof.

First of all, we notice that if xQ be! n?s to the interior

of W, the function is equal to the funct p-~1 in certain
neighbourhood of xQ. Since ~=>0, it iIs obvious that x0 ia
the solution of /P~/ for eaoh K so the theort true iIn this
oase.

Let us suppose now that. xQ belongs to the boundry of W and
e be on arbitrary positive number. We shall prove that there
exists suoh a *(£,)>0 that

1* - *o] e

where xk is a solution of the problem (pj£~)) and « >HE)

Denote by $ the function defined on EIl by the formula

w a>1
o(P) x “ 21 i) +2 521 ®)+ift) P 62 /3/
i«l 1-U+1

Let o0 - F(xQ).

Sinoe the point xQ by the assumption is a strong looal maximum
of the funotion Ff on the set W there exists a number \ so
that

74/

and

dC<oCO /5/

where « » sup {f(p)I and S - S(x , XYnW.*»
peS 1 ; 0

Sinoe the set W 1is dosed, xQ 1is a boundry point of W it
follows by compactness of S and in view of /5/ that there exista

*  S(x0,X) m{peED, p(p, x0) m X} denotes a sphere in B® with the
center in X0 and radius \ .
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a number satisfying the following conditions /6/, /7/ and /8/

where
“u

0<V. < £ 76/

/7/
where

peT
the set N - (el - KW, 4D)n K(xQ, X) is not empty. /8/
Let
/9/
110/

It oan be readily veryfied in view of /2/ and /3/ that the
function ¢ 1is equal to zero on the set W and Is negative on
En - W.

In view of /5/ and /7/ the intersection NnW 1is empty, sinoe
the Tfunotion $ is negative on N, this implies taking into
acoount continuity of ¢ and /9/ that <p<O.

Let
/11/
evidently X(£)> 0.
such that
/12/
Let us estimate the number
p«N
* K@, n) m {p€En, P(A, denotea a cloned s-neighbourhood of the

et A iIn Kn. The set A can be reduced to one-point set.
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From /37, /797 and /10/ it follows that

~ *0 - Y - 2%

In view of /11/ and /12/ we obtain

f « j*k (*»>-Y ) -7 > - Jlc K "vlIl - 'f>5 - <p- - 1 =0.
Henoe
&k Cx0) > 3UP {GkW}. /13/
peN J

Next let us consider the number
6 m Gk (x0) - SUIIQ {Gk P} -
pe
From /37 and /7/ we hare
k™Mo - N ~ BUP{*(P}} -~
reT

Sinoe the function ¢ 1is non-positive on En, henoe

sup o (M} < O.

peT
Therefore
6 *Pk 00 “£)e
From /7/, taking into acoount that > 0 we have

Gk (x0) > su? {GCk - /U/
(x0) > su? {Gk(p)}
It is easily seen, from /13/ and /14/ that
Gk(xo0) > 8*p_ {ck(p)}- /15/
peiiuT
Taking into aocount /6/ and /7/ it is obvious that the set

R - KXQ, X - T

is the closed neighbourhood of xQ.
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Of oourss
RCK (x0, 0 /16/
Nov we shall prove the following Inclusion:
HuTasFr(R)- /17/
Let peFr(R)- We shall oonsider two cases. In the first

ifS(io, ) nKn - Int(T)) . Sinoe Tck W, tj) aad

in view of
/7/ and /8/ we have

Xe€N.
In the second case x eFr(T) nK(xQ, X) since from xePr(r) it
follows
xeT

so finally xeNuT.

From /15/ and /17/ we obtain

Gk(xo)pzay&) {Gk (p)}* /18/

Sinoe R 1is a closed neighbourhood of xQ and the function Gk

is continuous it follows from /18/ that there exists a
maximum x~ of with x”elntCR).
is left to the reader.

local
The proof of the statement

Finally the inclusion /167 implies

K ”x°l <L -
Let

R & 719/

From /18/ we know that for each
V-i that

there exists such a number

1~ a0” ] = A>2> e ej/ 720/

where is a solution of the problem for such a Kk that
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15
Since the sequence is convergent to =zero and all ~ are
positive, hence for eaoh natural 1 nearly all terms of the
sequence { satisfy the Inequality /20/. Thus the proof is
completed.
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AN EFFECTIVE METHOD OF COMPUTING
GENERALIZED ROMAN FUNCTION

by Krzysztof MOSZYNSKI

Karol FELDMAN

Received December 1961

The method of an effective calculation of the
so-called generalized Roman Function is given in
the present paper. This function is defined by an
integral from zero to infinity involving Bessel
Function of order zero. The suggested method is
based on the solution of initial value problems
for the system of ordinary differential equations.
Information on the results obtained on the ZYZ
computer, using this method, as well as the pro-
gram in ALGOL is given in the Appendix.

A function expressed as integral

i r (V 2*+k.e"29a)- j (x-n
PR (KL” K2* r) “ 7 + 2 [ mommmmmmmem e T e O - - d4 71/
/ 1-V -2*- Vv =27 + klk2e-2n~ - D

where |k, R}, <1, r > 0, n 1is an integer, and JOo(z) 1is a
Bessel’s function of order =zero, is essential in geoelectric methods
of geology [1]-

The problem is to compute the tables of Pn(k-, k2,r) for the
given values of kl, k2, 0< rQ< r < 1000 and of 1< n < 32.

The method proposed in [1] requires a great deal of work to
find the complex zeros for a great number of algebraic polynomials
the iegree of which is n, 1< n < 32.

The authors want to avoid this difficulty and to give a more
suitable method for a digital computer. This method is based on a
direct computation of integral /1/.
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First of all, a simple transformation X m e_2X gives:

,.(V Vv ').i*/ , _ J(((‘f" dx. /2/

The difficulties lie, therefore, in the function

uo(x) = Jo(~ I In x)

which, however bounded in the entire interval [o, |I] , gives an
infinite number of “oscillationsl in the neighbourhood of zero.
To make it more suitable for computation we introduce the new
funotion

where K > 1 is an integer. This function is 0o - -
when x tends to zero [2]. r 1la »

Let PKk(X) » aQ + alx + ... + a~x*-1 be any polynomial. IFf
we denote the rational function in integral /2/ by Wo(x), it
will be:

f - j pa) - pkW]ud(x)dx + /7 rk Q" cd)«Ix

It is well known ["3 that:

k 1 a,
=2

1
/  Pk(OQuN(x)dx -

* The values of kj and k2 are ohosen so that the polynomial
1 - kX & k"gX11-1 - k2xn has no zeros in [o, 1] Z/see for
instance [1]/.
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The polynomial Pk () can be formed 1in such a way that all the
members of a degree strictly less than «k iIn the numerator of
rational function

V*) -V x)
will vanish.
So
. . & + a X + eee + g <xn_1
W-P®-xXx4Y *-X ————— oo 1~ /3/
a k n 1 - ~"x + kik2x "o2X

where V (X) is the rational function of the same denominator as
Wn (xX). The problem is therefore to compute the integral

Q » / Vn (XQUE(X)dX. /4/
0

Let 0O< 1 <1 and

AL -/ \PRYUERIck =/ VRLER K~ T \MRLEXTK

We shall not compute, of course, the integral /4/ but the integral
/v n QQuj(x)dx.
C

The number € must be chosen so that IpPE)] < 5 where $ is in

the range of error admissible in computation.

Let us estimate p(0 <«

IpCOl < J]vn UG [dx; nes g -A‘%)O

* The authors are grateful to doc. K. Bochenek for this idea.
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where A(X) is a polynomial, JAGO| < A,

4 = k™ - kMkgX11-1 + k2xL * x|k~ - kl1l-k2xn*“2 + kgX11-1] .

It is olear that: |E(X)|«Mx, M<3 in [o, 1].

For 0O<x<”, the inequality o<1 - Mx<1l - Pl - 4901

"lyes 1 -1mx > 1 - KX)| > R - 4] -

Therefore

dx, for 0< 6< 1.

From the asymptotio Tformula of JQ(®@ we have the estima-
tion [2]:

Jiow | V=+*FfT [1 &~ jr =
r i i r
for O<X<~™, S » -3 IB X, 2\ > > AT
2 B
and —
N\
\pt x
1
where B m 1 +
32lo 4r0
Henoe
Ip(0O] < J*] vXx)uEc*) dx N UX e X,

Using the “formula for the mean value», we get:

IpEH p - wM
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1 1-2AB 1 r X - 2AB t Tl Me @)
b ""\WSifv~al©d 1 - VSr*Vv~,ik+l + k+2 + +
e 2Al1. | r L +ILL +0«0! . 1. o Infio o Ml
Vf? &~ [>1 1 2 —J N N _FH+id la”t «}.
Thus we hare the estimation for p(E) s
n 15v» ~ 11(1" M)] /5/

It is possible to chose suitable values for £ and k, so as to
obtain a sufficiently small |p(£)|- The number £ must be ohosen
not too close to zero.

Let us consider now some properties of the function ufE(x) in
the interval [0, 1].

Sinoe uj(x) » x* JO(- J In x), it is dear that

uS() “ 1 /6/
and

lim uF(x) « O
x-0 K

for all values of r>0 and k * 0, 1, 2, 3, ...

UE(X) - kx7’1J0(a) + J xk-1J1(2) /7/

where

Henoe
u£0) - kJo(@) - kK /8/

for all values of k.
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Evidently

1Imue @ * O for k - 1,2,3, ... .
x—0

This result falls however for kK m 0. The above follows from
the asymptotlo formulas

JoE - \lLl ?2o0BCGB -1) - 84 e - s) + °c*1)]
Jlw -\l o4 . - Ji® - sin(a - jin + 0(b“D] .

For the seoond derivative we have:

2
I£(x) - xK'2A0W[K - DKk - *e] of JL() 2k - ) ¢ 4 J2(m)]. 79/

It Is easy to see that:

ag<?) - C* - m»> * 4
and

IIm IEX) - 0 for K 3* 2. /10/
x—0 *

For kK - 0O and 1 the Halt does not exist.

The above results oan be seen In the following table:

Table 1
Xo<(®) *£(*) <(*)
in* sot do*e not
exists for exlat for
- K- 0, 1.
0 0 K- 0 ;
0 fer k>0 0O for k>2

1 1 K 0 - ik -4
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It ie easy to prove that the funotlon u~(z) can be defined
as the solution of the eeoond order differential equation:

* £« > - 2k - ri]p* "1 4 . 1) + 4 x " 2] “ 0 /7 117

where

Equation /11/ Is not defined for x » 1] however, for x - 1,
the »limit equationl Is of the fora

0E(1) - (K-D* - -g = 712/

Vow It Is possible to present the method of oompatatlen of /1/.
The system of differential equations

E - - Ta(D"E™)

ur"fl-2k-a]x"l-<«[2 ~ 4 e)+Y /13/
da g
dx “ - 2x

with the Initial oondltlons from table 1

Q@ -0
uE(1> m 1
() -« 714/
a(1) m O

gives the funotlon Q(x). Its value at the point £, O ®C <1,
defined from /9/ Is a olose approximation of /4/.

For x m 1 one oan use equation /12/ Instead of the seoond
equation /13/.
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The authors want to emphasize that the ahove method, when used
on a digital oomputer, does not require any standard subroutine,
except a program for solving a system of differential equations.

Computational experienoes

The program for /13/ was completed in the Computing Center of
ZAM 1n Warsaw and oertain values of /1/ have been obtained on the
XYZ oomputer.

The program in Algol is given in the appendix. The SAXO version
of this program will appear elsewhere. The desoribed method was
adapced when k m 5 and C « . The well-known Runge-Gill
algorithm was used for the integration of the system /13/ [4] .
As It is easy to prove, the 5-th derivative of uf () 1is bounded

for kK » 5, on the interval 70, 1] . This is essential beoause
of Rung/B-Gill"s Method used here, whioh is of order 5 Good results
/six decimal places exact/ were obtained using step h « for

not very great values of r (r< 32), however, for small values
of r, much a greater step h seems to be sufficient. The step
must be decreased when r is augmented) it should be approximately
reversely proportional to r. As it follows from /5/, the interval
of integration of /13/ oan decrease when r augments. In faot,
the results thus obtained for Intervals [128* ] and 1]
differ on the last place only, even for the small values of r.
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AppendiXx

THE PROGRAM IN ALGOL 60
for K «5

array L[0:3])

L[o]:« 0.5

L[1]s- 0.29289322
L[2]:« 1.70710678
L[3]:» 0.16666666

hegin prooedure COEFFICIENTS (W1, W2, W3) RESULTS TO: (w)}
value W1, W2, W3} integer W3; real array W;
begin iInteger i}
switch S 1, 2, 3, 4, 5, 6, 7, 8;
WO w
if W3>7 then go to 8 else go to S[W3+I] ;

1: go to 11

2s go to 2;

3s W[1] ss WL x w[o] + W2x 1 _ W xw[0])i

I
o

for step 1 until 3 do

WEE+2] i* WL x W [I+1] + W2 x (w[l] - W1 x W [i+I]);
W[6]:= W2 x W[4] ;
for 1 s 7 step 1 wuntil 11 do w[i] 0} go to 9}

W[1] S* W1X w[O]|
w[2] :=WUW 1] +W2X @ - WLX W [0) }
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for i =0 step 1 wuntil 2 do_
WI[i+3] == YA x WJ[i+2] + W2=mWIJ[i] - WL x WJi+1]);
W[6] := W2k(w[3] - WL~ W[4])}
W[7] == W2x W [4];
for 1 =8 step 1 wuntil 11 d W[i]:= 0; go to
?: wli ]:= Wl xwl[o]}

W[2]:= Y1 ~W[1] ;

W[3]:= Wl »W[2] + w2*(1 — wl mwlo]) ;
W[4]:= Wl xw[31 + W2>wfO] - Wilixw 1D :
WI[5]:= WL XxW[4] + W2*QW[ - Wi *W[D ;
WIB]==W2 x(W[2] - WL xw[3]) i

W[71:= uz x(w[3] - W1 xw[4D ;

WBl=w2 x W41}

for 1 =9 step 1 wuntil 11 do W[i]:= 0; go to
6: for i « 0 step 1 until 2 df W[i+1] = WL x w[ilj

W[4]:= WL xw|[3] +W2x(l - W1 x W[O]) ;
W[5]:= WL xw[4] + W2x(w[0] - W xW[1]) j
W[6]: = W2 X Cw[1] - WLX w[2]) ;

w[7]:= W2 x (w[2] - WL x w[3]) }

w[8]:= W2 x (W[3] - WL xw[4]) i

w[9]:= W2x w[4 ;

W[10] := W [11]:= 0} go to_ 9;

7: for i =0 step 1 wuntil 3 dE W[i+1] := Wl xw[i]}
W[B] WLxw@ + w2x(l - wi xw[oD) ;

for i -m0 step 1 until 3 do w[i+6] := W2*(W[i] - WL * W [i+1D}

W[ 0] := w2 xw[4];
W[11] = 0; go to 9;
8: for 1 = 0 step 1 until 4 df w[i+l] = Wix w[i] ;

W 6] W2 x(l - wixw[O]) 3}
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for 1 » 0 step 1 until 3 do WI[i+7] :* w2*(W[1] - WI*W[I+-Q)»
WDMT = W2 *W[V1}
9: end of coefficients}

prooedure RG(f)foR:(x, m)j value M} vreal array X)
integer Mj

comment this prooedure gives the solution of a system of differen-
tial equations at the point x+H, when this solution for
X is known. The algorithm used here is a well-known
Runge-Kutta method modified by Gill}

begin real w, s, R1; integer J, 1i;

for j := 0 step 1 until 3 do begin F;

for 1 = 0 step 1 until 3XM-1 do

begin if Jj = 3 then begin W =2} S =3 end else
w =S 1;

RL :=L[JIx(X[i+M] - Wxxp. + 2XM]) (C
x [] :*x [1] + RL
X[i+2*M]] :=xCi+2*MI + 3*R1 - SxLM>°c[i+M3 end>
end} end of runge gill;
procedure RHS(Y1, Y2, Y3, Y4, Y5, Y6, Y7)}
value Y1, Y2, Y3, Y4, Y5, Y6, Y7} integer Y5}

real array Y6, Y7} real Y1, Y2, Y3, Y4}

comment this procedure oomputes the values of the right-hand
sides of differential equations}

begin integer S} real T1, T2, T3}

Y7[5]:-= Y4}
Y7CBH:- -Y4*Y3/2;
Y7C7]:= Y4*Y7[>3}
T1 :*0}



28 Krzyaatof MOSZYNSKI, Karol FELDMAN Algorytny

for S = 11 step -1 until 6 do T1 :=T1*Y7Ccf)+ACs
T2:=Y7COJt(Y5 - I) }

if Y5>7 then T3:*X7[o4 t(Y5 - 6) else T3:=X7Co3]|
T2:=1-YIXY7[0>Y2* (Vi-Y7[0j)xT2}

Y7C8]:— Y4x Y7C2>(A[5>T3*T1) /T2}
if Y7[0>1 then Y7[9H:=Y4*(20-(Y3j2) /8) else
begin T1 :* ((18/Y3)xY7[4>(Y7[2]/Y7Co]"5)x(Y3/2+50/Y3) }
T2 BA/Y7D XY 7 bl - (Y7[2]/Y71101)X5) }
Y7COD:=Y4x (Y3/ (Z*Y7[;0;1ipx(T1+T2) end;
end of RHS;

procedure READ(Z1, Zz2, Zz3, 74, 75, 76, Z7, Z8, Z9);

comment this prooedure is to be written in non Algol language - It
reads iInto the storage the values of the parameters quoted
in parentheses.

end of read;
procedure PRINT,

oonnnent this prooedure, in non Algol language, prints out from the
memory the values P, KL, K2, R1, N, H, and E;

end of print}
array ACO:10, RUNGE GILL CO:14l; real KL, K2, R, DELTA R,
FINAL R, H, E, P, RlL; 1integer N, F, j;

1s READ (K1, K2, R, DELTA R, FINAL R, H, EN, F)}

oomment The parameters quoted in parentheses define the variant.
Variable Ff must possess the value zero, except for
the last variant to oompute, when its value is one}

COEFFICIENTS (K1, K2, N) RESULTS TO : @& }
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onmniart The prooedure COEFFICIENTS computes the ooeffloiente of
the polynomial Pk (X)» as well as the ooeffloiente of
the denominator In formula /2/’;

for R1:«R step DELTA R until FINAL R do

hegln RUNGE GILL CO]:- RUNGE GILL [2]s- 1]
RONGE GILL [1Js- RUNGE GILL [33 m O;
RUNGE GILL [41*- 5]

for 3 m 5 step 1 until 14 d£ RUNGE GILL[J]s* O}

oomment the above sets the Initial values for differential
equations;

P :m 1/R1j for J O step 1 until 4 do
P P+ A[J] /sqrt (G+1)t2 + (R1/2)t2)f
2: RG(RHS(K1, K2, R, H, N, A, RUNGE GILL)) FOR: (RUNGE GILL, 5);

if E<RUNGE GILL [o] then go to 2 else

P :—= P + RUNGE GILL[3] J

nnmmftnt p is the required approximation to the funotion

P(K1, K2, r)j
PRINT}

3: if F«O then go to 1 else go to 3} end} end.
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COMPUTATION OF THE NORMAL
CUMULATIVE DISTRIBUTION
FUNCTION

by Elzbieta PLBSZCZYSSKA

Received January 1962

The paper contains effectively comput-
ed coefficients which allow convenient
approximation of normal distribution
function. The method for obtaining
these coefficients i1a also given.

The normal cumulative distribution function with parameters
0O and 1 has the form:

X t2
P (XD =Vv2IT ./ e 2 dt-
n
It may be approximated with accuracy to £= 3 < 10 by means
of the formula:
Fe(x) m j-( X — 3— — jTTjr)16 lor 140 11/
1+ allé&l + a6 1-81

where
al =0,3989387757
a2 =1,3530243935
a-j m1,6781446780
a4 =0,1556626432
ab *=1,6020483488
a6 =1,4111145983.
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Por X >0 the relation

P =1-P (%)

is used.

As t= P (-5) , we accept P (X) =0 for X<-5 .

The formula (@) is suitable for programming for XYZ and
ZAM-2 digital computers which have a fixed point and a long
word consisting of 35 bits, as:

a. each coefficient a" 1is comprised in one long word of the
computer,

b. the expression e e L IX 6
1+ al IIFI+ ee= + a6 ITI

which should be raised to the power 16, is comprised within

the interval (0,1) for X ¢ 0 ; it may therefore be given in a
zero scale. If the numerator of this expression is replaced by
1-2 _35, we always have then O0<A<1l , the correotness of the

computation not being reduced.
The computation of a single P (xX) value in the XYZ computer,
which is programmed by means of the above method, lasts about

0,12 sec.

The formula (1) is obtained by means of a transformation
applied on the approximation formula for the function:

given in [j1] .
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The PHOGRAM in ALGOL

procedure NORMAL DISTRIBUTION (X) RESULT TO: (y) ; value x

»
begin array A[0:6]; real Y, M, Z; integer i ; if x<-5 then Y :=0 else
begin A[0]:= +1 »
A1]:= +0.3989387757
A [Z] s= +1.3530243935
A[3]s- +1.6781446780
A ¥ = +0.1556626432
A[5]: = +1.6020483488
M := A[6]:= +1.4111145983
Z = abs (x/8)
for 1 =5 step -1 until 0 do M :=M=*2 + A [i] ]
Y = +0.5 x(1/ m) t 16 end ;

IT x<0 then go to END else
Y ss1-Y
END: end of the procedure}
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TRANSLATION OF ARITHMETIC
FORMULAE IN SAKO
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The paper presents the method for translating arithmetic
formula, used In SAKO language translators for digital
computers XYZ and ZAM-2. The local strongest operations
/and functions/ are chosen in the given formula, then
the elementary operations are constructed and sequential-
ly programmed. Principles of the optimization of result-
ing program are also given.

Introduction

The translation of arithmetic formulae was many times elabora-
ted because of its importance for automatic programming. The me-
thod accepted in FORTRAN 58 [1] , [2 , also the stack method []a],
\h should be distinguished. The method applied in FORTRAN is of
a rather historical significance, and therefore it will not be
considered in the present paper.

The stack method consists iIn chosing successive charakters of
the formula and in constructing the resulting program with a si-
multaneous recurrent adjustment of working plaoes.

In the case of relatively simple formulae, the above method
permits the optimal use of working registers; analogous opera-
tions cannot be discovered as they are erased immediately after
the segment of the resulting program has been written; the result-
ing program and its operation time become longer.
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The translator, operating at stack principle, becomes notably
complicated when indexed variables, arbitrary functions, arbitrary
indexed expressions and function arguments are introduced into the
arithmetic formula.

These disadvantages of the stack method induced the further
described method to be accepted and used in arithmetic formulae
translation for the SAKO language ["5" » » C83 =

The present paper presents only the general idea of the method
without considering technical details, as for instance: the
application of ARITHMETIC FORMULA TRANSLATOR 1in a fixed point
computer /which it was realized for/, the division of data into
1z~z alt™ short cne?, and p.lso the capacity of internal storage of
the computer is supposed to be not limited. All these limitations,
due to technioal parameters of a definite computer, do not cause
qualitative changes in arithmetic formula translation:they only
complicatc or simplify it in details.

1. General principles

After meeting an arithmetic formula in a SAKO program, the
program IDENTIFICATOR [7]] transfers the control to the ARITHMETIC
FORMULA TRANSLATOR program which is designedted to write the
possibly optimal program realizing the given formula in SAS-W [7] -
The ARITHMETIC FORMULA TRANSLATOR then transfers the control to
the IDENTIFICATOR.

These dependences may be presented in the following graphic form

Program written
in SAKO

4 J Resulting program
in SA8-W
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Translation of arithmetic formulae is performed in three stages:

1. Formulae analysis and standardization.

2. Writing of the resulting program in SAS-W.

3. Optimization of the resulting program. .

2. Formula analysis and standardization

When the ARITHMETIC FORMULAE TRANSLATOR intercepts the control,
the formula appears in the internal storage of the computer, and
each formula character is written in one word” /according to the
way of reading information from the tape/. The part of the
working storage designated to store the formula is called LINE Z.
Individual characters or character groups in the formula may be
classified as follows: variable, i1ndexed variable, short number,
long number, left brackets, right brackets, simple operation,
language function, and defined function.

The analysis of the formula consists in the classification of
individual characters or of their groups according to the above-
mentioned way.

The standardization of the formula consists in a determined
interpretation of the given character or of a group of characters
and in copying the obtained information onto another part of the
working storage called LINE LC.

The VARIABLE is replaced by a four-character group written in
one long word*Y* with the sign minus.
Examples:
Variable: EPSILON
will be written in LC in the form

* One short word - storage address » eighteen bits

** One long word - two storage addresses » thirtysix bits
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variable /1 will be written

A Tici/ej s#ifr Tiet/’E shift

OPERATION. LANGUAGES FUNCTION. PEPINE[ FUNCTION.

Simple operations, language functions and defined functions
are called operations. A certain number, called the
value of the given operation, is subordinated to each operation.

The table of values of an individual operation is given below

SIGN OPERATION DIGITAL VALUE
i Substitution
- Sign of equality 0
1KD Indexing 1
INP Indexing in
subroutines 2
+ Addition 3
- Subtraction 4
Olyl1slon 5
Multiplication 6
* Raising to a power 7
Language functions 8 - 31

Jefined functions 32 - 63
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The operation number of a given operation is the digital value
of the operation plus n.64 , where n 1is the difference between
the number of left and right brackets preceeding this operation.

The operation number increases by 64 after the appearance of
the left bracket on the left side of the operation, and it
decreases by 64 after the appearance of the right bracket on the
left side of the operation.

Example: In the expression

A B =(C + B) + E ...,

the operation numbers /written in brackets instead of the
operation/ will be the following

A @ B(® C®GNDGBEE ___ ;

Operations /i.e., simple operations, language functions and
defined functions/ copied from LINE Z 1in LINE LC, are replaced
by their binary numbers and written in one long word with the
sign plus.

Example

Multipli- X >
cation

Some
defined X X X X
function

Addition

/e¢/after X X X X
three left

brackets
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LEPT BRACKET. RIGHT BRACKET.

Left bracket and right bracket are not copied on LINE LC. They
only influence operation numbers appearing on the right side of
the given brackets.

The SHORT NUMBER is converted to binary system and written on LC
in one long nord with the sign plus in binary scale 35.

Examples:

number record on LC
+

511

0

42

The LONG NUMBER is transmitted to the NUMBER TRANSLATING PROGRAM,
which converts it to binary system /in an appropriate scale /,
places it in the LIST OP LONG NUMBERS /called x v L D /, and
gives the answer in the following form

where xvLD 1is written as a variable / but with the sign plus/,
and p - the position iIn the LIST OP LONG NUMBERS xvLD - is
written as a short number.

This information 1is transformed into three Qlong storages:

+ operation number UfD

. p - binary

and written in LINE LC according to the above-described rules.
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INDEXED VARIABLE.

As 1t i1s known, the LIST OP INDEXED VARIABLES, called LW,
is built on the basis of declarations:DIMENSION,BLOCK,STRUCTURE.
Besides the name of the indexed variable, this list includes
other information needed, for instance, for the realization of
the algorithm of indexing, such as the number of the dimension
of this variable and its number of words in each dimension.
Let the n dimensional indexing variable

VARIABLE a, J, K, L, eooooolo. k)
have

i words in the first dimension
1] n the second dimension
K words in the third dimension
1 n the fourth dimension

the algorithm of indexing will then have the following form:

VARI (GND ((--- (D)) x I+ D xkKk+K x 1+
n brackets

Numbers J, kK, 1, .... and the amount of left brackets after the
operation IND / equal to the dimension number of indexed
variables/ is taken from the OP INDEXED VARIABLES.

Example:

Given matrix A, n=2
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Let us find a2} by means of the algorithm of indexing:

i =3 as it changes from O to 2
i=25 as it changes from O to 4
1 =2
J = 3.

A(2,3)= A (IND (@ x5 + 3)= AC(IND(13)).

Indeedﬂ_ao, is the 13-th element of the matrix A if aoo

is considered its zero element, and if it is counted in lines.
INDEXED VARIABLE is copied from LINE Z on LIKE LC in the
following way:

The name of the INDEXED VARIABLE is written the same way as

in the case of a simple Variable /see page 3/.

Operation IND, x and + are written as simple operations,
left and right brackets being considered.

The values j, k, 1, being short numbers,are written
as short numbers: those of them which are variables are
written as variables.

Indexes 1, J, K, .... may be arbitrary expressions; each
expression value must therefore be copied according to
corresponding rules.

3. Writing the resulting program in SAS-W

When the analysis and standardization of the formula are
finished, variables, operations /simple operations, language
functions, and defined functions/ and short words appear in
long words on LINE LC. Each of the above values is written in
one long word as given in 2.

Example: Let the following formula be on LINE Z:
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P (X,¥Y) = AxX* 2+ (SUM (X,y) x B) + C (ALFA) + Y * N
where
P i1s a defined function of value 45,
X, Y, B, ALPA, N are variables,
SUM is a defined function of value 46,
C 1is an indexed variable.

It is stated that variables and short numbers will be written
below, in brackets, and operations iIn parentheses. Bach value,
written in brackets on LINE LC, occupies one long register.
The given formula will then be oopied on LINE LC in the following
form:

(45) (64) [xX1(6HLYI(O)[AT1(E) [xI(?H[21(3) (110) (128)[x]1(128)[y]
(70)Usl G [C1(65)[AUAT(3) YI(D [n]

On the basis of the given operation number and of its
neighbouring operation numbers, it will be possible to state
whether the RESULTING PROGRAM, realizing this operation, should

be actually written, or whether a stronger*" operation should
first be performed.

The given operation will be assumed evaluable if it is not one
of the oited-below exceptions and if it fulfills the two following
conditions:

0 *
a. i1ts number is greater or equal to the nearest operation
number on the right side,

b. its number is greater or equal to the nearest operation
number on the left side.

IT the given operation is on the utmost left /on the utmost
right/ of the formula operation, fulfillment of condition a.
/condition b./ will be sufficient to consider it as evaluable.

*for instance, in the expression A + B*C, cultiplicetion must be
done first, and then A may be added to the reault BxC.

** Definition of the number la given on page 40.
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Exceptions: Operations with the number N cannot be
performed on the left side of the equality sign if this number
fulfills the following condition:

0SSN $66. g
The operation of substituting arguments k. 64 in the function
cannot be performed on the right side of the equality sign
/operation 0/ if the function itself 1is one of this function
arguments.

Examples:

LINE Z P X+Y, D= ...

LINE LC e OM 6G) IYIM 2 O P - defined function
(67) is a performable with value @; X.Y.Z -

operation variables
LINE Z THY (ALPA, BETA)= .... TRY - defined function
with value(TRY™ ALPA,
LINE LC (TRY) (BD[ALPA] 6D [BETA] (O) BETA - variables
®&H are not performable
operations
LINE Z A=B-t-C+D*E A, B, C, 0, B—
variables
LINE LC 1 Okl @Il ® O] G kI
is a performable
operation
LINE Z T = TRY (U,V,TRY (X,Y,2)) TRY - defined function
with value(TRY™ U,V,X,
Y,Z - variables
LINE LC + (TRY) ti28) | x](128)(12a) [Z]
not performable performable
operations operations

It is obvious from the above examples that the given formula
may contain simultaneously several performable operations. In
order to execute them successively, i1.e., to write the resulting
program realizing these operations, the following definition
must be introduced:
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The given operation will be called the local strongest one on

LINE LC if it is the First performable operation from the left side.

The following definitions are inroduced:

[p] - the class of operation arguments,
i.e., information units, on which

written in

- _ , _ conwention LC.
this operation is realized

© the class of performable operations
[R] the class of working registers

Let us consider the record in LC:
[pIm (© Qpln
Notation [p] , Wwhere K is a natural number, indicates
that parameters of the given operation appear K times /in
neighbouring long registers/ on LINE LC.

For m=n =1 there is a simple operation.

For instanoe:
[Al (3 [B] :

M (1) [5];
Ci] {0) [tara] ; and so on.

For m>1, n = 1, we have to deal with the substitution (k =64)
/where Kk is a natural number/or with the equality sign (0) .

For instance:

(F)(64)[x](64)[r](64)M ; substituting of Z into the funotion
m =5

[21ESLide)Ir 11 sending P to the I-st place in A,
m =3

For m =n = o, we deal with the performance of a function Iin
which arguments are already substituted.

Notation:

[pIm Co) [pIn

will be oalled - elementary operation.

F,
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Each elementary operation corresponds to a set of instructions
SAS--W realizing this operation. This set is called the sequence
of the given operation.

Examples of several sequences are given below.
For elementary operation [&] (3 IB] the corresponding

sequence is LRA
Load Acc A
Add B
Store Acc RA

For elementary operation FfZAEI(6) [STAR] the corresponding
sequence is [R3]

Load MpR ZAK

Multiply STAR

Store Acc R3
For elementary operation [xI (6) Y1l the corresponding
sequence is [R7]

Load Acc X

DIVIBE Y

Store MpR R7

Let the defined Tfunction TOR have the value 38. Then for
elementary operation (38) the corresponding sequence 1is

[RO]
Load Acc + 0
NvTp * TOR
Store Acc RO

and so on.

In this way the problem of programming arithmetio formulae
is reduced to that of programming elementary operations.

The following Tflow-diagram presents the way ohosen:
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*See description of definition of analogous operations /see 4, p.51/

* *After the operation sequence is written, the synbol of the working
storage corresponding to this operation is recorded In its plaoe.
In all plaoes of analogous operations, the symbol of the working

storage is written and sinoe this moment it becomes the parameter
of another operation.
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Thus the sequence is written Tfor each performable operation.

Analogous operations are then sought * /page 51/ and the given
operation, as well as the analogous ones, are erased from LINE LC
and a working register corresponding to these operations is
recorded instead of them. Prom this moment on, it becomes the
parameter of another operation. The successive performable

operation is then sought and the handling begins once more. All
formulae operations will be iInterpreted in this manner into the
non-optimal program, written in SAS-W, realizing this formula.

Example:

A non-optimal program, vrealizing the following Tformula, 1is
mritten in SAS-W:

LINE Z 11 = AxB/C+D
LINE LC X 11 ()I[A1(6)[B1(3)C1(3)[P]

The sequence of elementary operations and corresponding sequences
of instructions will have the form:

1M Load MpR A
Multiply B

Store Acc R1

M oop ] Load Acc R1
Divide C

Store MpR R2

[R21(3) [4] Load Acc R2
M Add D
Store Acc R3

[11]()[R3] Load t0

Store Acc X1



HO 1 TRAHSLATIOH OF ARITHMETIC FORMULAE 1B SAKO 51

4. Optimization of resulting program

The purpose of the optimization of the resulting program is to
shorten it and to reduce the number of working registers.

The optimization starts when the part of the ARITHMETIC
FORMULA TRANSLATOR /writing the resulting program on the basis of
LINE LC/ operates. It consists in the elimination of so-called
analogous operations. An operation Ffulfilling the following two
conditions is analogous to the given one

a. it is a performable operation,

b. it has the same value and parameters
as well as the same sequence of
appearing parameters as the given

operation.
Examples:
x1()a13) 1) [c1(3)[e1(7)[a1(67)[b] ,
given ANALOGOUS
OPERATION OPERATION
[z1(65)[p 1)1 1A x1(3) (SQRY[h 3(69)[1]1(68)[k] , where(SQR)
given NOT ANALOGOUS
OPERATION OPERATION numberof
taking a
square
root

In the Ffirst example, the expression in the exponent is analogous
to the operation A + B. In the second example the operation
L-K under the sign of a square root is not analogous to the given
operation, as a not performable one.

The elimination of analogous operations consists iIn storing
the working register in LINE LC in the place of the given
operation, after the sequence-realizing the given operation has
been written, and in the place of all operations-analogous to
the given one.
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Example:

Let us consider the formula:

LINE Z Z=X*2+SINX*2+i)/ X- X=2-1 xY)
LINE LC  HEIOXIMOEIGGCINIXICDEZIEND LG IXIE) 1A [21(132) [11(FO)[T]

where (SIN) is the operation taking sinus
elementary operation being interpreted

Wqjjfl

After the program finds analogous operations to the given one,
LINE LC has the form:

[z]1(0)[R7](3) (sin) [H7] (67) M (5) [x] (68) [R7] (132) [i](70)[y] .,
(SIN) is an operation of computing sinus, as
above,

and only the following sequence will then be added to the RESULTING
PROGRAM:

Load MpR X
Multiply X
Store Acc R7

The further optimization 1is carried over the finished
RESULTING PROGRAM, written in SAS-W.

This is the third stage of ARITHMETIC FORMULAE TRANSLATION.
It consists in:

a. erasing needless iInstructions on the sequence contacts;

b. replacing some sequences of RESULTING PROGRAM instructions
by shorter ones but realizing the same function:

c. erasing needless working storages and corresponding
instructions of the RESULTING PROGRAM.

An example of erasing some needless instructions on sequence
oontacts is given:

Let us write the program for the formula:

LINE Z Z=A+B+C

LINE LC [Z](O)[AI(3)[BI(3)IC]
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Let us write the sequence of elementary operations:

M O ﬂ4t[8] the corresponding sequence Load Acc A
] SAS-W 1is Add B
Store Acc R1

[Ri](3%}c] the corresponding sequence Load Acc R1
[B SAS—fF is Add c
Store Aco H2

The instruction Load Acc H1 will be erased on the contact of
sequences as non-effective.

Let us write the program for formula:

LINE Z C =(CAT / MOUSE) x PENCE PENCE
LINE LC [C1(0) [CAT](69) [MOUSE](6) [PENCE]

Let us write the sequence of elementary operations and the
corresponding sequences of SAS-W instructions:

[CAT](69) LnouseU Load Acc ' CAT
[P-Al Bivide MOUSE
Store MpR RA

[RA] (6) [FENCE] Load MpR RA
[RE] Multiply PENCE
Store Acc RB

The instruction Load MpR RA will be erased on contacts of
the sequences as a non-effective.

An example of ohanging the fragment of the RESULTING PROGRAM
into a shorter fragment realizing the same function will now be
given.

Let us write the program for the formula:

LINE Z T=Y+ (A+23)
LINE LC T @Y @ A (7)) B .
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Let us write the sequence of elementary operations and the
corresponding sequences:

K6?9 B] Load Acc A may be changed Load Acc A
Frml Add B  into the program Add B
Store Acc R1 Store Acc R1
[Y1(3) [RIJ Load Acc Y Add 1
LR2J Add R1 Store Acc R2
Store Acc R2
[TUBICH23 Load Acc R2
Store Acc T Store Acc T

To reduce the number of working registers and instructions 1in
the resulting program connected with the above mentioned working
registers, the storing instructions from separate machine registers
/the Accumulator and the Multiplying Register/ are considered.

If the working register, storing the content of separate
registers of on arithmetic unit, does not appear in the RESULTING
PROGRAM anywhere below, the instruction Store Acc or Store MpR
may be erased from the program and the working register discharged.

Let us consider the last example:

In the program Load Acc A
Add B
Store Aoc R1
Add Y

Store Acc R2
Store Acc T,

let us consider accumulator storing instructions Store Acc R1 and
Store Acc R2 in the working storage. As the working storages Rl
and R2 do not appear any more below the instructions may be erased
and the program written in the following form:
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Load Acc A
Add B
Add T
Store Aco T

which is obviously the optimal program for realizing the formula
written.

Conclusion

It ought to be emphasized that the necessity of simplifying the

translator induced some disadvantages of the discussed method.

They are: the optimization of the resulting program not being fully
realized /this problem seems to be not yet solved/; the limitation
of the lenght of the formula which is due to the storage capacity ;
a small number of identifying characters of variables /four/ end of
functions /three/; the signalization of syntactic errors not being
sufficiently extended.

However, a liberty of writing arithmetic formulae / indexed
variable, language and defined functions, arbitrary superpositions
of expressions and so on/, also a significant optimization of the
lenght of the resulting program seem to prove rather serious
advantages of the described method.
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Podano zastosowani* metody stosu do
translacji formu4 arytmetycsnych
SAKO, zabierajacych funkcje 1 mmien-
ne Indeksowane.

1. Wstep

Praoa niniejsza podaje zastosowanie metody stosu, znanej
z pracy [1] do translacji formud arytmetycznych SAKO zawiera-
jJacych funkcje i zmienne indeksowane.

Pierwsza czes$6 pracy obejmuje opis translacji formut aryt-
metycznych SAKO metoda stosu ze szczegdlnym uwzglednieniem
translacji funkcji i1 zmiennych indeksowanyoh. Cze$¢ druga sa-
wiera opis zastosowanej metody w odniesieniu do funkcji
i zmiennych indeksowanyoh.

2. Translacja formut arytmetycznych

2.1. Formudy arytmetyczne sa zdefiniowane jak w jezyku SAKO

[2] , z tym, ze wprowadzono odréznienie miedzy nawiasami
funkcyjnymi / kwadratowe”....]/ 1 nawiasami zmiennych indek-
sowanych / tro jkatne<s .. .>/.
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Definicja wyrazenia arytmetycznego w SAKO zawiera miedzy
innymi nastepujace elementy:

a. Jesli G jest nazwg bloku, A, B, ---, Z sa wyrazenia-
mi przyjmujacymi wartosci catkowite i1 ilos¢ tych wyrazen
jest rowna ilosci indekséw danej zmiennej indeksowanej G,
wowczas

G<A, B, umm) Z>
jest roéwniez wyrazeniem.

b. Jesli F jest nazwag funkcji, A, B, ---, Z sa wyraze-
niami w ilosci zgodnej z argumentami tej funkcji, woéwczas

F [A, B, «e«, Z]
jest réwniez wyrazeniem.

Symbole uzyte w formule arytmetycznej mozna podzielié na
a. zbidér znakéw dziatan,

b. zbidér parametroéw.

Parametrami sa: liczby, zmienne proste, zmienne robocze,
nazwy funkcji, nazwy blokéw. Znakami dziatan sa pozostate
znaki. Jezeli nazwa funkcji lub nazwa bloku jest uzyta jako
argument funkcji lub zmiennej indeksowanej, wtedy .stawia sie
przed nazwg odpowiednio znak t lub- —, np:

t FUN , — - BLOK .

Blok jednowymiarowy bedziemy nazywali linig. Zaktadamy, ze
formuta zapisana jest na linii Z w sposéb nastepujacy: w jed-
nym elemencie linii Z miesci sie doktadnie jeden symbol for-
muty / parametr lub znak dziatan /, w Z (L) znajduje sie, li-
czagc od zera, L-ty symbol formud. Przystepujac do translacji
formuty, bedziemy tworzy¢: linie parametrow LP, linie znakow
dziatan LD oraz linie miejsc roboczych MR.

Translacje formut rozpoczynamy od poczatku linii Z naste-
pujaca metoda:
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jezeli badany symbol na linii Z jest parametrem, to zapisu
jemy go do pierwszego wolnego miejsca za wierzchotkiem stosuOLP
/ 1naczej: na wierzchotek stosu LP/ i1 przechodzimy do badania
nastepnego znaku linii Z ;

gdy badany symbol na linii Z jest dziataniem, wtedy w zale
nosci od dziatania, ktére znajduje sie w wierzchotku stosu LD,
wykonujemy czynnosci podane w Tablicy 1.

Tablica 1

Badanj sjabol  wjerschokek stosu T PO &k
foraut arjta. LD - LD Sesawiera Vjkonjwane oajnnosoi

« @)L Jest

¢ sawartos¢ « LD(S) S « S ¢ 1] prmepisanie dsiatania
C nie Jest badana s Z(L) do LDS)|] Lmt el

wjkonanie dsiatania sawartego w
LDCS)] SmS-1

V Q=
NN o

«

»
. C m S * 1] prxepisanie dsiatania
é 82(L) do LD ] L-Le1
z Z wgkoname dsiatania sawartego w
/ / Lb(S)] S-S-1
»
C
; C Sm S+ 1i prseg |san|e dsiatania
4 < s Z(L) do LD(S) nl el
*

- * wjkonanie dsiatania *j S-S -1
- / S-S e 11 prse glsanle dS|al-an|a
z B Z(L) do LD(S)

- > SmS + 1(! prse |san|e dsiatania

c B Z(L) do L-Le1

<

c wjkonanie funkoji

< wjkonanie indeksowania saiennej
) [ S-S-11 LmLe1

Jt- J e 1] prsep‘l(?anle nallsvvj th—

s a epUJaoeJ sa shaklea — ,

T ﬁ?gagggiobgdléags) LPCJ) i tashaoBenie, te w
LP(J) Jest naswa wektora lIub

funkcji

i - wjkonanie snaku réwnosci

Sjabol ¢ osnacsa koniec forsulj arjtaetjosneJ.

Okreslenie zasady stosu znajduje sie w praoy 7[1j S. 76-79-
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Wykonanie translacji dziatan +, X, [/ oraz potegowania
opisane jest w pracy [1] - W zwiazku 2z tym ograniczymy sie do
opisu translacji funkcji oraz zmiennych indeksowanych.

2.2. Z powyzszego opisu wynika, ze funkcje lub zmienng indekso -
wana z obliczonymi argumentami, bezposrednio przed kompilacjag
mamy zapisang w Sposob nastepujacy

W stosie LD, poczynajac od wierzchotka, zapisane sg wszyst-
kie przecinki, ktére oddzielaty argumenty funkcji lub zmiennej
indeksowanej. Bezposrednio za tymi przecinkami znajduje sie na-
wias /otwierajacy/ funkcji lub zmiennej indeksowanej. 11os¢
tych przecinkéw plus jeden roéwna sie 1ilosci argumentow danej
funkcji lub zmiennej indeksowanej. Zmienne przyjmujace wartos-
ci tych argumentédw zapisane sg w stosie LP pd wierzchotka
w g¥ab stosu. Zmienne te bedziemy dalej nazywali zmiennymi poa-
stawiania.

Kolejnos¢ zmiennych jest nastepujgca: zmienna pierwsza z wierz-
chotka stosu LP przyjmuje wartos¢ ostatniego argumentu funkcji
lub zmiennej indeksowanej, zmienna druga z wierzchotka - wartosc¢
przedostatniego argumentu funkcji lub zmiennej indeksowanej,
itd. BezposSrednio za zmiennymi podstawiania znajduje sie nazwa
funkcji lub nazwa zmiennej iIndeksowanej.

Wykonanie funkcji

Wartosci zmiennych podstawiania z wierzchotka stosu LP podsta-
wiamy do podprogramu o nazwie wystepujgacej w stosie LP za tymi
zmiennymi . Wartosciami zmiennych podstawiania moga by¢ roéwniez
nazwy blokéw i nazwy funkcji.

Stosy LE 1 LP obnizamy w zaleznosci od argumentow

funkcji. Stos MR obnizamy w zaleznosci od zmiennych

* problem ter jest szerzej oméwiony W 2.
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roboczych, wystepujacych wsréd zmiennych podstawiania. Po tych
czynnosciach nastepuje wywokanie podprogramu obliczajacego te
funkcje. Wynik obliczonej funkcji pamietamy na stosie MR,

a jego adres w stosie MR pamietamy na stosie LP; przechodzi-
my do dalszego badania linii Z =z nastepnym znakiem formut aryt-
metycznych.

Wykonanie indeksowania zmiennej.

Otrzymane zmienne podstawiania sa indeksami danej zmiennej
indeksowanej. Jezeli znamy zakresy tych indekséw, to indeksowa-
nie tej zmiennej mozemy wykona¢ przy pomocy tzw. algorytmu in-
deksowania.*"

Stosy LD, LP i1 MR obniza sie tak, jak przy wykonywaniu
funkcji. Nazwe zmiennej indeksowanej z obliczonym indeksem
wpisuje sie na wierzchotek stosu LP; jest ona odtad traktowana
jak zmienna prosta.

Dalsze badanie linii Z rozpoczynamy z nastepnym znakiem
formut arytmetycznych.

Nizej podany przyktad ilustruje opisang metode translac
funkcji.

i
Niech na linii Z dana bedzie formuta arytmetyczna

w

Kazdy wiersz tablicy 2 zawiera: adres aktualnie badanego
symbolu linii Z , aktualny stos LP, aktualny stos LD oraz
aktualnie wykonywane dziatanie. Stany translatora, przedstawio-
ne w wierszach tablicy 2, powstajg w wyniku analizy linii Z
oraz stanu translatora, odpowiadajacego poprzedniemu wierszowi
tablicy 2. Symbol LP (3 oznacza adres 3-go elementu / liczac
od zera/ na linii LP. Warto zwréci¢ uwage na fakt, ze w przy-
ktadzie tym korzysta sie dwa razy z podprogramu obliczajacego

* Algorytm ten podany jaat w pracy \Z] B. 30-31
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funkcje F; za kazdym

menty .
Niech hlok G

NOEBRRNBEBNNREERERBRERESo~wvnwr

Stos LP

<«

w2

WZF

WZPO
WZFSA
WzZz?2aAC
WZPG
WZFGWWY

W Z K G KR/O/D
WZPG

WZFG

1 Z 7?2 MR/O/

W Z P MR/O/P

W Z P MR/O/F A
WZPM/O/P AHX
W Z F MR/O/F A

» Z P MR/O/P A V\R/1L/
W Z P MR/O/

W Z P MR// MR/V/
Wz

W Z MR/O/

w

W MR/O/

Alfred 3CHUWKNAH Algorytmy

razem podstawia sie do niej inne argu-

(] - X I m .

® S + =

ma wymiary 80,

Stos LD

XC
x[<
XMN<+
X[<+
xX[<
x C<,

100.

Tablo» 2

Wjkonanle dzlaiania

MR/O/ - A aC

MR/0/ - MR/0/x 100 + D
MR/O/ - LP/3/ ¢ MR/O/ - GNR/

WR/1/ - HIX]

W/ - P[A, MR/L/]
MR/O/ - PDVR/O/, NR/L/]
MR/O/ = Z x MRIO/

W - MR/O/

3. Opis metody rozwigzywania funkcji i zmiennej Indeksowanej

Metoda rozwigzywania zmiennej
funkc ji.

indeksowanej jest ta sama co
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3.1. 7a%6zmy, ze rozwigzywany Ffunkcja jest Ffunkcja F1. Jej
argumentami moga by¢ dowolne wyrazenia arytmetyczne. Rozwigzywa-
nie rozpoczyna sie od zapisania nazwy Pl na wierzchotek sto-
su LP. Nawias zostaje zapisany na wierzchotek stosu LD.

3.2. Jezeli argumentem funkcji jest liczba lub zmienna prosta,

wowczas zostaje ona zapisana na wierzchotku stosu LP za nazwag
?1. Jezeli za argumentem wystepuje przecinek, to zostaje on za-
pisany na wierzchotek stosu LD; przechodzimy do badania nastep -
nego argumentu funkcji F1. Gdy =za argumentem wystepuje nawias

zamykajacy, wtedy funkcje F1 mamy zapisang zgodnie z opisem w 2.2.
i nastepuje wykonanie funkcji. Pokazuje to ponizszy przyktad:

Formute

A =FU T, Rx (F+B) , G Jj*FU [r,S [a+1] ., K]

zapisujemy nastepujaco:

Linia Z

Rx (F+B) , G FU [r,s [a+1] , K]
Stos LP

A FU T
Stos LB

[.

3.3. Jezeli argumentem funkcji Fl1 jest proste wyrazenie aryt-
metyczne AF1l, nie zawierajgce funkcji 1 zmiennej indeksowanej, to
wyrazenie to rozwigzuje sie znang metodg stosu dla prostych
formut [1] , z tym ze stos parametréw tego wyrazenia tworzy sie
na linii LP od wierzchotka stosu LP wzwyz; analogicznie two-
rzy sie dla wyrazenia AFl stos znakéw dziatan na linii LE

i stos miejsc roboczych na linii MR.
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Objasnia to przyktad:

Linia Z
PU ,s [a+1] , K]
Stos LP
A PU T R P B
Stos LD

*L[» * (+

Wynik obliczonego wyrazenia AFl zapamietuje sie na wierzchotku
stosu MR, a adres tego wierzchotka /adres ten jest zmienng pod-
stawiania/ zapisuje sie na wierzchotek stosu LP. Dalej postepuje
si<i wedtug opisu w 3.2.

Ilustruje to przyktad:

Linia Z

G [FU [r .S [A+L] .1
Stos LP

A PU T M)

Stos LD

Stos MR
MR@ =R x (P+B)

3.4. Nieoh argumentem funkcji Fl1 bedzie dowolne wyrazenie aryt-
metyczne APl. Z wyrazeniem tym postepuje sie w nastepujacy
sposob:

Dopoki w wyrazeniu AF1l nie wystepuje funkcja, traktuje sie
je tak, jak proste wyrazenie arytmetyczne /zob.3.3./. Gdy w wy-
razeniu AF1 pojawi sie funkcja, wtedy wykonuje sie te same
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czynnosci, co przy rozpatrywaniu funkcji F1, tzn. zapis nazwy
funkcji do LP, nawiasu Q do LD, itd.

Wed>ug powyzszego opisu w czesci 2 dochodzi sie w sposéb re-
kursywny do funkcji, ktdérej argumentami sg proste wyrazenia aryt-
metyczne. Istnienie takiej funkcji Jest oczywiste na podstawie
definicji formut arytmetycznych.

Niech PN bedzie nazwg tej funkcji. Z Tfunkcja tg wykonuje

sie czynnosci, ktore zostaty opisane w 3.1., 3.2. i1 3.3. Funkcja
FN zostaje wykonana.

W przyktadzie przedstawia sie to nastepujaco:
Linia Z

- H]]

A FU T MO G FU H M@

Stos LP

Stos LD
= L..LL,

Stos MR
MRO@ =R x (F+B)
MR@ =S [a+1]

Po wykonaniu, funkcja PN zostata zredukowana do zmiennej
prostej. Postepujac dalej zgodnie z powyzszym opisem, redukujemy
funkcje typu PN do zmiennych prostych, a funkcje o argumentach
zawierajacych funkcje typu PN redukuje sie do funkcji typu PN.
W ten rekursywny sposéb dochodzi sie do obliczenia wyrazenia AFl
oraz funkcji F1.

4. Uwagi koncowe

Metoda stosu niczym nie ustepuje metodzie dotychczas stosowa-
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nej do translacji formut arytmetycznych.

W obu metodach mozliwa jest optymalizacja programu wynikowego

przez wykreslenie z formuty tzw. analogicznych operacji.
Zalety opisanej metody:

1. znaczne skrécenie programu tdumaczgoego formute arytme-
tyczng na jezyk maszyny,

2. skrocenie czasu translacji formuty,

3. optymalne wykorzystanie pamieci roboczej.
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ON TRANSLATION 0? ARITHMETIC FORMULAE

Summary

The translation of arithmetic formulae SAKO using stack method is describ-
ed. If the arithmetic expression oontains functions or indexed variables the
arguments of the functions and indices are the arithmetic expressions.Symbols
used in the formula are divided into parameters and operation signs. Numbers,
simple variables,function names and names of indexed variables are parameters.
The remaining symbols are operation signs.

The scheme of arithmetic formulae translation is presented as follows:

Let LP be the, so-called, parameter line, and LD - operation signs line.
IT the examined formula symbol is a parameter one writes it on the top of
the staok LP and one begins to examine the next sign of this formula. If the
examined formula symbol is an operation sign, then depending on the opera-
tion sign placed on the top of the staok LP, the action is performed accord-
ing to table 1, e.g. the examined symbol is rewritten on the top of the
stack LC, or the operation is performed from the top of the stack LD.

After having executed the operation, Tfurther examination of arithmetic
formulae are to be performed.
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The paper proposes the formal language for general-
—purpose addresslees digital computer. The proposed
language does not represent a complete computer
Instruction set. It only determines instruction
groups which should appear in it. Attention is
drarn towards oertain requirements in regard to the
organization of such a computer, for instance to
facilitate computing with double-length numbers.

Z. Pawlak in QI] and \2] describes the methods of designing an
addressless computer, which may realize arithmetic expressions
with substitutions and repetitions. Such a computer may constitu-
te the basis for the development of an all-purpose or specialized
digital computer, the instructions of which would be not ordinary
ones but similar to those of some autocode systems.

Such a computer would be more convenient for mathematicians
than a classical one.

A general concept of language for an addressless computer is
given below. Symbols, formulas and current language expressions
form the internal language of such a computer. The program is
transfered from the input device into the memory directly, with-
out being translated, the characters of no iImportance to the
computer are neglected /i.e. space, line and so on/. The length
of the instructions is not fixed but, of course, the number of
/alpha-numerical/ characters is limited in each instruction.
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The end of the instruction is denoted by a ’point”> /the cha-
racter CR may be this Zpoint* in a teletype code/.

Formal structure of language.

1. All words are written in capital letters, the entire expres-
sion being in inverted commas.

Examples:
*STOP”
GO TO
IF” ... GO TO~”
READ”
PRINT” ... *SIZE”

PRINT TEXT?

2. Numbers are denoted by small letters. A single number is de-
noted by a letter or by a letter and number from O to 9. Some
letters are distinguished as names of indexes /for instance -
from i to n/.

Examples:
a, b, bl

Sets of numbers are denoted by small letters with indexes; in-
dexes are written in square brackets.

Examples:

a [1,1] i=1 @O t 3 =1 @M t
signifies a quadratic matrix of dimension t.

a [s-j] 1=1 0t
signifies the s-th row of the matrix.

b [i] i=1Mp is a vector,
a [s.t] is an element of the matrix a [i,jJ]where
i=5s, J =t

The shifting of a number a to the left or to the right is
denoted by a.10P.
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3. Expressions and formulas may be numbered by natural numbers,
their s’icoossiveness not being required.

Arithmetic?.

Numbres are represented in binary-coded decimals. Arithmet-
ical operations are carried out as well in fixed as in floating
points. Only fifteen decimal digits are used.

One or two double-length registers, having the property of an
accumulator with regard to multiplication and the possibility of
adding to its first and second part /in fixed point operations
only/, and also as an overflow position, must be distinguished
from the memory in order to facilitate operations with double
precision.

This being so, the subroutine of every arithmetic operation
with double precision may be written as one instruction.

For instance:

Let the name of the above distinguished place be A, and two
numbers of double- length: a = /al,a2/, b = /bl, b2/.

Then:

the sum is A /a2 + b2/ . 1C1 + al + bl

/al < b2 + a2 -bl/ <1055 + al =bl

the product is A

The subroutine for division is more complicated.

These instructions are standard formulas in the sense of [I].

Note

Z. Pawlak suggests a parenthesis-free notation of arithmetic
formulas more convenient from the technical point of view. This
does not matter in our case as we use the parenthesis notation
for simplification.
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Subroutines.

Short subroutines which may be included in one formula are de-
noted by single capital letters and called out as in [Z2]. Long
subroutines are called out by the instruction:

GO TO SUBR * XYZ .

This instruction induces the name /number/ of the next iInstruction
to be located 1in the first free ’return register’. The last sub-
routine instruction 1is

"RETURN * ,

which causes a jump to the place noted in the ’return register’
used last. This return register is simultaneously cleared out.
Working places of every subroutine or standard formula are con-
stant. Subroutines can be fixed in dead memory or be included in

the program.

It is important that the main, operational and auxiliary stor-
ages /except when magnetic tape iIs present/ be treated as a whole.
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by Staniata* WALIGORSKI
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The aubjeot of the preaent paper la the extenalon of the
problem of aimplifylag normal equivalenta of truth func-
tiona formulated la [15]. The funotion defined on a aet
of normal expreaaiona with valuea from a partly ordered
aet la Introduced. The problem under consideration la to
find normal equivalenta of truth funotlona avoh that
a value of f be minimal. Partial orderings of normal
expreaaiona connected «1th almpllfylng of expreaaiona in
different vaya are defined. Algorithms for solving this
problem for funotloma laotone with reapeot to theae
orderings are included.

Introduction

Wany papers have dealt with simplifying normal formulae of truth
functions, and there exist quite a number of algorithms for solving
this problem /refer for example to [2], 1 [7-171, [19]1. [20],
[21]1 /. In most papers the simplicity of a formula is estimated ac-
cording to a number of literals that this formula contains. When de-
signing switohing circuits a number of literals in formulae describ-
ing them oan, 1in many cases, be regarded as sufficient estimation
of the complexity of those oircuits. It happens, however, that suoh
estimation refleots neither the aotual worth of these oirouits nor
their complexity. In suoh oases it is convenient to assign a number
to every formula describing the switohing oirouit; this number would
represent the worth of the oirouit, a number of the elements includ-
ed, etc. By this means we obtain a oertain real funotion defined on
the set of formulae, and designing will then be reduoed to finding

minimums of that funotion on sets of normal equivalents of truth
funotions.
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The real function determined on the set of formulae maps it
onto an ordered set of numbers, and in this way the worth of two
arbitrary formulae can be compared. In some practical oases, how-
ever, comparison of the worth of certain formulae is rendered
difficult or even proves to be useless. In such cases it is con-
venient to use the function that maps the set of formulae onto
a certain partly ordered set instead of a real function.

Logical design of switching circuits that can be constructed of
kK different kinds of elements will be a good example of the prac-
tical application of the problem under consideration. In comparing
different circuits we have to consider a number of elements of
each kind that each circuit includes. To each circuit /hence to
each formula as well/ is then assigned k- element sequence of
natural numbers. A set of these sequences can be only partly order-
ed.

In such a case the problem of designing the circuit consists in
finding normal expressions for which values of a function determin-
ed on the set of expressions are minimal.

Such extension of the problem of simplifying normal equivalents
of truth functions is the objective of the present paper.
The results given may be used in a particular case for finding
equivalents with a minimal number of literals /i.e., of variables
or negated variables/.

1. According to the terminology used by other authors finite alter-
nation of conjunctions of a finite number of variables or negated
variables will be termed alternative normal formula; it should be
noted that conjunctions do not appear repeatedly in that alterna-
tion and in eaoh conjunction does not appear twice in the same
variable or negated variable. Since this paper deals with alterna-
tive formulae only, the word "alternative” will be omitted for
simplicity of wording, k set of all N-element combinations of zeros
and ones will be denoted by BI¥. This set is partly ordered in
the following ways if x e x1, x2,..., XN£ BN and

Yy “ oy Y2reeey
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then i<y if and only if for 1 =1, 2, ..., N, assum-
ing that 04 0, 041. 1<1* and not 1<O.

It often happens iIn practioe that the function of N-vPTiables
realized by a designhed network for certain values of the sequence
X * x1lt 12, Xji can take the arbitrary value 0 or 1 ; in
such cases the funotion is not defined. Such values are often
named >don"t-care conditions’ . For simplicity of wording we as-
sume, iFf no particular reservations are made, that every normal
formula has a determined value for all possible values of vari-

ables.

If the function Tf() is defined on the set PCBN and maps P
into B then every normal formula equal to f on P will be
termed normal equivalent of T(xX) . The function ¥f(x) determined
on PcB® is called isotone if for arbitrary u € P and v € P
from u<v follows Tu)<f(v). If for any pair u,vEP does not
hold u<v then every function determined on P 1is isotone.

2. Every isotone funotion has its normal equivalent that does not
contain negated variables. Aotually, if f (X.p Xg» eee» XN) is
an isotone function determined on BN then the following formula

is true
FO v x27 ***7 xu ) F(*l* eee* 1* O» Xi+l”~’
XN NCX1* eeey Xj__i o] » eooe) N = _..F H
Hence N
F(X1l» X2* e*e” xn)= joB le i + Ji) £ 3 /2/

where — denotes a negation, + and ~ denote an alternation,
andTf denotes a conjunction.

In the formula on the right side of equality /2/ no variable
xN Is negated.

Denote N

o
-

PJ« XACXL1 + 0i) /v
1=1

mhere J€B~*, X€B5.
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IfT J*00 ... 0, then Pj(x) is a conjunction of all variables
X1 with the indices 1 suoh that Ji =1. If J * 00 ... O,
then P~AC*) * 1 for all x£BS.

The formula /2/ can be now expressed as follows

where f is a set of all J£B® suoh that f(J)« 1 =

If the function g(x) is determined and isotone on the set PCBN
P ® BN then exists the isotone function f(x) determined on B®
such that f(X) = gx) for x£P _ It implies the existence of a
normal equivalent of g(x) that does not contain negated variables
Any normal formula that does not contain negated variables can be
expressed as follows:

‘J& P(é ) /5/

A can be an arbitrary non-empty subset of BN. Since the as-
signment of formulae to the subsets of BN is a one-one cor-
respondence we can consider instead of formulae the sets cor-
responding to them; likewise, instead of conjunctions, the ap -
propriate elements of BN can be considered.

The problem of simplifying normal formulae containing negated
variables can be reduced to the analogous problem dealing with
formulae not containing negated variables. On the other hand,
the problem of finding normal equivalents of an arbitrary
function can be reduced to the same problem for isotone functions.
For that purpose it will be satisfactory to treat all literals,
i.e., variables and negated variables, as independent values.
Strictly speaking, we can introduce mapping tfof the set BN
into B 2/: if X =x1, ..., Xjj £ BN then
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*C-,5 =e=> XD - t eee» Xjj XfR1> eeen x2N
where
VEP) = x1 ,4xi)= x1+N for i1 =1, n
For every function f defined on the set P£ BN we can intro-
duce a function f* defined on ~(p) such that for every Xx&£P

there S "A\>(X)) = F(X). The sequence x 1is substituted by a
pair: the sequence x and its negation X .

To every normal w of N-variables we assign the formula w” in
which each variable XN is substituted by while
*i by Vi+s W

Any normal formula of N-variables can be expressed as follows:

/6/

where N
=40 i1+ kD (x1 + ki+N) ;

TTk() for X € BN and K 6 B2N is a conjunction of all
variables X such that k™ a 1, and of negated variables x”~ such

that ki+u=1* In Parti®ular» if 1 exists suoh that k™ ki+N * 1,

then UM(x)= 0. I Kkt = Ki+N for 1 =1, N then 'TK (D is
a complete product. IT kn =0 for i =1, 2, ..., 2N then
Tk ()= 1. -
Substituting variables X, x-P() In 8 we obtain
N N
»()- £ Tk&)- X X N=~ACx)N)
kec kéC i-1 KC i-1
2N
e X J »k (X> *»Ne )) .
keC i-1 kec

We see that the discussed mapping maintains equality of func-
tions in the following sense: if fF(X)= w() on the set PcBN
then TFEK*)) * »,(IK¥)) on 1>(P)CB2A . With this In mind, our
considerations will be oonfined to the problem of finding
equivalents of isotone funotions, sinoe passing from any function
to the isotone one and from isotone formulae to the ones with
negated variables is always easy.
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3. The conjunction Pj(x) equals 1 on the set of Xx such that

XN J . Hence X pN=x)1l 1 if and only if J€A exists such
JEA J

that X. IFf such a formula is to be an equivalent of a certain
isotone function then it must be equal to that function on points
In which the function is determined; on other points the formula
can be of some value, provided that the function, after being
expanded, remains isotone.

Hence follows:

Theorenm 1

Necessary and sufficient conditions so that the function Ff(X)
determined and isotone on PC BN be equal on P to the normal

formula pu(x), are:
JE€A

fl. For every x€ P if fT(X)” 1 then a j€ A exists such that j$x.
f2. For every xf? i1if Ff(xX)» 0 then for every JE£A, J<X
does not hold.

Let A(F) denote a family of all sets A that satisfy the
conditions fl, 2 for the given function f &) defined on
Pcb\ and thus assign all normal equivalents of T &) -

The family A(t) 1is additive. The greatest set Amax of

the family A(F) is the set of all j€BN satisfying the con-
dition Ff2, and since TfTCAmax then this set satisfies also
the condition f1.

According to[1], by a minimal element of arbitrary partly
ordered set K we mean an element x (K such that for every yeK,
y<x implies y » x. A set of minimal elements of the partly
ordered set K 1is denoted by Min K.

For assigning Awax 1t is sufficient to find the set Min Amav
of its minimal elements. Min Awax corresponds to the set of prime
implicants and can be found by applying any method by means of
which assigning all prime implicants of a given function is pos-
sible. Some methods for simplifying normal formulae /for example
the one of McCluskey Jj / render possible direct assignment of
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the whole Amax although it is expressed in another form. When
the McCluskey method is applied the following set corresponds to
Amax: it consists of values of variables for which the function
equals 1,don t-care conditions, prime implicants and all partly
simplified entries obtained during computation of prime impli-

cants.

X is a minimal set of the family /A(r) if and only if

al. XcC AuJaX
a2. X satisfies the condition fl1

a3. no set smaller than X satisfies the condition Fi1.

Min N(f) can be assigned in the following way. A table is to
be formed,7 to each column of which we assign one element of Amax”
and one element of f to each row. At the intersection point of
the column corresponding to Amax with the row corresponding
to Xx£EFf we enter 0 if Jsx, and 1 in the opposite case.
The subset of AmaX satisfies the conditions a2 and a3 if in
the appropriate subset of columns there is at least one zero in
each row, and if after any column is deleted there appears a row
with ones only. The algorithm for assigning such subsets is des-
cribed in [22] and it is reduced to finding prime implicants of
a certain auxiliary function. Therefore, when an algorithm for
assigning Min Amax to an arbitrary function is known,then we
can assign Min A(t). In an analogous way, when *3 have the algo-
rithm by means of which direct assignment of Amax is feasible
/like the mentioned algorithm of McCluskey/, then we can directly
assign 4(f) with the aid of the described table.

Jt(f) can be assigned in another way too, i.e., by adding all
possible subsets of Amax to the sets belonging to Min 4(f).

A. Normal equivalents of a truth function, which have minimal
worth can be assigned by finding the set A(f) and rejecting
formulae with non-minimal worth. This method proved,however, to
be very inoonvenient in practice, as it requires a great number
of data to operate and a lot of computations to perform. We shall
discuss further some cases in which that procedure can be simpli-

fied. For that purpose we shall investigate more closely certain
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partial orderings of formulae or subsets of BN corresponding to
that formulae, what gives the same effect.

Subsets of BN are partly ordered by the inclusion relation

of sets C e We introduce the relation ~» , the definition of
which is as follows.

Definition; X~2Y if and only if there exists mapping @ of
the set Y on X such that for every y€Y there is cp(y)<y-

The relation dr 1is, of course, reflexive and transitive;
moreover, it i3 antisymmetric. Indeed, assume that XCBN and
YCZBN, where N is a natural number arbitrarily fixed, and
XYNYAX. It means that there exist one-one correspondences ql
and ip2, defined on X and Y respectively, such that x>1pMX)

4ad y>cp2@)" ¥2 41 is one onfe mapping of X on X, and for

every X£X there is X>®2 41" N Nor a certa:lm x€X  there
is x>tf2 x)» 8@ since g2 G, 1is its one-one correspondence
then there must be @2 g™ X)>(cp2 () etc; in this way, we
could make an infinite sequence of different elements of X. It

i3 impossible, however, since X is finite, and hence for every
XEX we have x =<p2 @, (X)), i-e., x m@,(x) and therefore X =Y.

We have shown then that is a partial ordering. If in
the formula expressed as pr(xX), where Xx€ g" , xcgV ,
jex
a certain number of literals will be deleted so as to leave in
each conjunction at least one literal, and if the repeated con-
junctions will be rejected, we obtain then the expression A~Tp~(x)

such that Y~X. JEY

The sum of relations ¢ and ~ is not a partial ordering
as it is not transitive. Let us investigate a transitive closure
of this sum in the sense of [18].

Definition; X</2Y 1if and only if there exists a finite sequen-
ce of subsets of BN, namely X m Xq, X1, ..., X~Y such that
for every 1 in 14i<n we have or X/~_1/N XA

The relation (S is transitive and reflexive; let us check it
for antisymmetry. If X <~Y then a number of elements of X 1is
not greater than a number of elements of Y. Hence, if X enY
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and Y ql1X, then X and Y have the same number of elements.
From the definition follows the existence of the sequences

X - X0, X1, Xn - Y - Y0, Y1l Ym = X

such that between their successive elements occurs the inequality
c or N _ Extreme elements of these sequences, however, have
the same number of elements, and consequently a number of elements
of all sets in a sequence are equal; all the inequalities C can
then be substituted by ». Hence X~ Y ~X, i.e., X * Y.
The relation ei is therefore a partial ordering.

IT in the normal formula Xp[Ax) literals and conjunctions

No J
will be arbitrarily deleted so as to obtain finally the normal

formula £ p,(X), then Y r~-X.
JEY 2

Lamma 1

Let KCBN, SCBN and let T be a family of all subsets of S
satisfying the following condition: if X€T, then for every
a(K there exists b£X such that b<a.

Then Minl T =T « 2/"" 3 /8/

where 2~ denotes a family of all subsets of 1
S denotes a sum of sets of family T
Minl denotes a set of minimal elements with respect to
the relation -

Proof

Let us assume that XCIS and XCFfMin S. There exist then
X€X - Min S and y€Min S such that y<x. Let tpX> vy
and <p@=z TFfor z£X and z / x. It is readily seen that
cp(X)Cjx and @ X t X

From the assumed property of the family T it follows then
that

Y = tf() eT and therefore X Minl T. Hence, if X€Min., T,

then XC Min S.
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Let us suppose that Xc Min S, YcS and Y C,X. There exists
a mapping f of X onto Y such that <P for every Xx£ X.
Since Xc Min S, < must be an identity function and then Y C™X
implies Y = X.

Hence, T . 2Min Sc Min., T and thus T * 2Min S = Minl T.

Lemma 2

I X, YCBN and X C1Yy then exists a ZCBN such that
X q,ZCY.

Proof

It will be satisfactory to show that if XC K CNY then an
Ic~N exists such that X C~ICY; the relations ¢ and  being
transitive imply the Theorem. If K CAY then a function < exists
such that K = @) an<* <fOCO$x For x€Y. Let L = Yep-1 X;
hence ICY and X =cp(l} andcp(u)®u TFfor u £L; therefore,

X C~LCZ.

Lemma 3

Let T be a family of sets satisfying the conditions of Lemma
Then
Minl T = Min Minl T = Min (T < 2Min S) /9/
where Min denotes a set of minimal elements with respect to
relation q -

Proof

Prom the definition of c it follows that If X€ Minl T
and YG6T, X tY then Y<tX and YC~AX. Therefore, Minl Tc
C Minl t *Min T.

IT AE MIN T e«Min., T, then for every B€ Minl T, B * A
does not hold BCA; hence A£ Min Min., T and therefore

Minl TCMinl T Min TC Min Min., T.

Now we shall prove the inverse inclusion.
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Let X € Min Min™® T; thus for an arbitrary YET from Y o X
follows Y ctx. Let us suppose that the inclusion does not hold.
In such a case, YET and Y cX and Y + X; there 1is a

Z, ZCB”™ such that Y CjzCl, Foir. Lemma 1 follows XCMin S
and therefore Zc Min S. If YET and Y CjZ, then

YCMiIin S ; hence Y » Z . Therefore, from Y cX follows

Y CjX whioh, as shown earlier, 1is impossible. Then the inclusion
Min Minl TC Minl T is true.

5. Let V be a finite partly ordered set, and let  be a func-
tion that maps V onto another partly ordered set. Ordering rela-
tions in both sets will be denoted by symbol ~ .

LBwwa 4

If for an arbitrary XtV, YEV from X<Y follows
JTFOO< (YY) then for every K6 Min y(V) exists a MeMin V
such that (m= K.

Proof

Let K€ Kin y(v)= bet us assume that there exists a L €V
such that J*'()= K and L$ Min V. Then a M€Min V also
exists such that M<L. However, (DEMiINn F(v) and @A) ;
hence ~(M) =mjIflL = K.

Lemma 5

If for an arbitrary X€V, YE£V from X<Y follows yQ)<y(Y)
then Min £-(V)Qf(MIin v).

Proof

Let K€ Min JF(v). Consider LEV such that % (I) = K.
If K€ Min J3f(v) then for every Te <f(v) we have T<K, and
so for every M€V there is JFOONMFCL) = Kk ; thus M < L.
Therefore LE Min V and KEy(Kin v).

Lemma 6

If for an arbitrary XEV, YEV is X<Y if and only
if yQO)<y(y), then Kin r(v)= f(Kin V).
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Proof

Let K€ Min v) . Consider LE Min V such that ~(1) = K.
Por every MEV we have M<L, i.e., for every T6jJ(Vv)
there is T<K = L); thus K€ Min (v). "t have therefore

shown that if X<Y follows from ~(X)</(A then )fMin V)CMin;f(Vv)
Prom the above and from Lemma 5 follows JFf(Min V) = Min

6. In what follows we assume that T 1is a function determined on
a set of normal formulae and values of that function are on
a certain partly ordered set W. To simplify the wording we
assume that y 1is also defined on sets corresponding to these
formulae and the following equality is true

;rA) = 1IrCrPjwW) - /1°/

J€A
Theorem_2
IT for arbitrary normal formulae such that w is to bo obtain-
ed from v by deleting its certain conjunctions there is
mn») < Kv)~’

then all y -minimal normal equivalents of a given isotone
truth function F can be found in the following way:

1. assign Amax

2. make a table as described above In 3 and assign Min -4(f)
according to it

3. find all if-minimal sets in Min n(f)

4. for each set B obtained in this way find all sets C such
that BCC and jF(@®B) = j~©O

5. write normal formulae corresponding to the sets obtbined
in 3 and 4.

Proof
If ) p, () follows from ) Pi(-x) bY deleting
JeEX JEY 2

certain conjunctions then XCY and YoY. The set of
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-minimal elements in A (f) can be denoted by Min fr(A (.
Prom lemma 4 it follows that for every K€ Min () there
exists a ME€EMIin (@ () such that e (K) = K. Hence, already in
point 3 of the algorithm we obtain at least one formula with
a minimal value of ~ _ 1t 1is clear then that all remaining
elements of Min g-(A () are to be found in point 4 of that
algorithm. To find these elements the following proves helpful:
if B £Min F(A (f)) , BC ClcC2c ...cCn and b = Mcn) ,
then $ (B) = = jfCc2) = ... =*(Cn) , and iIf D*Min $(A ()
and DcE, then E<€Min y(A (F)).

Theorenm 3

If we accept the assumptions of Theorem 2 substituting the in-
equality /11/ by the inequality
F(C)<E(V) /12/
then all -minimal normal equivalents of the given isotone func-
tion f can be found by means of the algorithm of Theorem 2
rejecting its point 4.

Yroof

The function ¥ satisfies the conditions of Lemma 5 and there-
fore

Min fr(d (D)C iiMin A () -

Th>o0r «a 4
ITf for arbitrary formulae w = 21 p.(X), Vv = p-(xX) we
3€* 3 J
obtain g W) <~(v) if and only if w Tfollows from v by deleting
certain conjunctions, then all g -minimal normal equivalents of
a given isotone function f can be found by means of the
algorithm of Theorem 2 rejecting its points 3 and A.

Proet

The function ft satisfies the conditions of Lemma 6 and there-

fore

Min $ (A (D) = if(Min A (F) .
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Theorem 5

ITf for arbitrary formulae w = p-(xX), Vv = £ p, ()
JEX J JEY
such that w 1is obtainable from v by deleting 1its certain

literals /however, 1iIn each conjunction at least one literal is
left/, and by rejecting repeated products, there is

friv) < JI0)» /11/
then all ;F-minimal normal equivalents of a given isotone func-
tion f can be found in the following way:

1. assign Min Auwax

2. form a table analogous to that described iIn section 3, and
assign all subsets of Min AomX belonging to A (f)accord-
ing to iIt; note, however, that in the columns of that table
there should be only elements of Min Awax instead of
Amax

3. from the results obtained take all Mm-minimal sets

4. for each set B obtained in this way find all sets C such
that B CM and jub) = £©

5. write normal formulae corresponding to the sets obtained in
3 and 4.

Proof

If S P-t(x) follows from Y p4x) in the above way
J6 X JEY

/by deleting literals and rejecting repeated conjunctions/ then

X CNY and X * Y. The set A (F) satisfies the condition of

Lemma 1, if we take for K, from the assumption of the Lemma, the

set of all elements x such that X £ P and f & =1 and for

S the set AmaX /refer to Theorem 1/. Then from Lemma 1
follows Minl A (F) = A (F) =2 Anax. The proof goes further
than the proof of Theorem 2 but all C and Min are to be
substituted by and Minl, vrespectively.

Theorem 6

IT we accept the assumptions of Theorem 5 substituting the in-

equality /11/ by
f(w) < f(Q), /12/
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then all  j-minimal normal equivalents of f can be found by
means of the algorithm of Theorem 5 rejecting its point 4.

Proof

The function Jf satisfies the conditions of Lemma 5 and there-
fore
Min JfGA (F)TCiHMinl A (F))= »{A (F) <= 2Min -

Theor em 7

If for every pair of formulae w = ~ P<(x) , v - PuM
iEX 3 JEY 3
we have yWw) < Iflv] ~ an< only * follows from v by

deleting literals in the way given above, then all f-minimal
normal equivalents of a given funotion ¥ can be found by means
of the algorithm of Theorem 5 rejecting its points 3 and 4.

Proof

The function jf satisfies the conditions of Lemma 6, and
therefore

Min F(A (F)) - 5Minl A (F))* ~(A (F)=2Min Amax ) .

Th>o0r»M 8

If for two arbitrary normal formulae w = Z p-,0),
\" } de X 3
v = “*~ Pp(x) suoh that w can be obtained from v by delet-
i€y

ing its certain literals and conjunctions, there is

Fiw) < *@)* 711/

then all £ -minimal equivalents of the given function f can
be found by means of the following algorithm:

1. assign Min Amax

2. make a table as in point 2 of Theorem 5 and assign all
minimal subsets of Min Amax belonging to «4(F) according
to it

3. from the obtained results take all £ -minimal sets

4. for each set B obtained in this way find all sets C such
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that B cC and Jf®B) = y(©)
5. write normal formulae corresponding to the sets obtained
in the above points 3 and 4.

Proof

It n p,(x) Tfollows from 21 p~i) by deleting its
JEX 1 J€EY 3
certain literals and conjunctions, then XcY and X €Y. Prom

Inota 3 follows Minl A (f)CMin Minl A () = Min B(F)-2Min Amax.
Prom Lemma 4 it follows that for every K € Min f (A (Ff)) there
exists a M€ Min Min® A (f) such that If(M)= K. The proof goes
further as the proof of Theorem 2 provided that all symbols C
are to be substituted by ci .

Theorem 9

IT we accept the assumptions of Theorem 8 substituting the 1in-
equality /11/ by the inequality

Jav) < w)* /12/
then all f-minimal normal equivalents of a given isotone function

can be found by means of the algorithm of Theorem 8 rejecting its
point 4.

Proof

The function f satisfies the conditions of Lemma 5 and there-
fore by virtue of Lemma 3 we have

Min y {1 () c "(Min"rA (F) = y(Kin A (F)<2MIn Amax)) .

Theorem 10

If for arbitrary formulae w = 2lp.<(x), v = 21 p.(X) we
jex*1 J€y 1
obtain () < ~(v) if and only if w follows frox \Y; by
deleting literals and conjunctions, then all jJf-minimal normal
equivalents of the given isotone function F can be found by means

of the algorithm of Theorem 8 rejecting its points 3 and 4.
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Proof

The function Ff satisfies the conditions of Lemma 6 and there-
fore Min fF(A (F)) = )fMinL A (F)) = FMIin A "2 1In Amax ) . The set
Min A *2Min Awax was obtained in point 2 of tue algorithm.

7. Theorems 2-10 include cases in which the function f 1is iso-

tone with respeot to C, C, or c¢. The algorithms given are

also for the case when j(w) 1is a number cf literals in a formula
w /Theorem 9/.

In a way similar to that in which Theorems 2-10 have been deriv-
ed we can obtain algorithms for finding f-minimal normal equiv-
alents when y is antitone with respeot to C ,C1 or c¢. In such
cases, If we confine ourselves to considering equivalents in which
appear only variables that are arguments of a given truth function
then, for solving a problem, it would be satisfactory to find
certain maximal sets with respect to the appropriate ordering re-
lations. We are not, however, going to handle all suoh cases in
detail as suitable algorithms for solving the problem can be
obtained by a reasoning analogous to that by means of which we
arrived at the above theorems.

As mentioned earlier computations specified in algorithms of
Theorems 2-10 can be performed if we know any effective method of
finding Min A and Awax /the latter directly or from
Min AﬁMx/ for arbitrary truth functions; a method for finding all
prime implicants of arbitrary functions would then be satisfactory.
In this sense the present paper is a generalization of papers
giving algorithms for finding normal equivalents with a minimal
number of literals.
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EXAMPLES

Example 1

Pind jfFminimal normal equivalents for the function determined
in the table.

Jf(w) is the greatest number of identical letters appearing in
the expression w /variables and negated variables are treated
3; different letters/.

x3 X2 X, 169

0 1 0 1

0 1 1 1 Por the remaining values of x
1 0 1 0 the function 1B not determined.
1 1 0] 0

1 1 1 1

When in the expression w letters and products are canceled, Jf(w)
remains constant or it deoreases; therefore, the function satisfies
the assumptions of the Theorem 8.

are being written in the table *

i3 X2 X, X3 X2 *1

1 0 1 0 1 0 1
1 0 0 0 1 1 1
0 1 0 1 0 1 0
0 0 1 1 1 0 0
0 0 0 1 1 1 1

Using any method, one obtains prime implicants of the function:

Min Amax = 1 000011,010010,100000,001001,011000 I
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> -0 OF0O
K»>T 000
k 00000

Cuine®s table

k' Oo o Y
K o to0o0F
K Oo _ 0o

*3 M2 *1 *3 *2

1 01 0 1 0

1 0 0 0 1 1 +

O o0 0 1 1 1 +

From the above table one obtains the expression
X)) + x1 x2 *0)

The value of Xdoes not change if the literals x*, x, or

are introduced to w .

Since the sequence corresponding to X, xa belongs to Min AW&X’
then x1 or X1 x2 x» may be added to w.

If in the expression w x1 x* substitutes x», or x1 x2 x®
substitutes x1 x? /but not simultaneously/, expressions obtain-
ed will be equivalents of the function *F.

Finally, the following expressions are solutions of the problem:



92 Stanistaw WALIGORSKI Algorytmy

Example 2

Find jFminimal normal equivalents of the function determined

in the table
the number of Iletters iIn the expression w

«w =1 + the number of conjunctions with one letter
*3  x2 X1 [ ()9
0 0 0 0
0 10 0
1 1 0
1 o 0 1
1 0 1

The function satisfies the assumptions of Theorem 6: the value
of T decreases after canceling letters, but it may increase while

canceling conjunctions.

Table of the function f after wri ting negations :

)
1 1 1 0 0 0 0
10 1 0 10 0
0 0 1 1 1 0 Mi n Amax = {000001 ,0100)10,
0 1 1 1 o0 0 010100,100100%}
0 1 O 1 0 1
Quine®s table H.4 Tooo
M o T o0 o
s
M 0 O -
pfr o 0 o O
In o T- r— o0
o
M o o O F
X X2 X4 %3 xi
0 1 1 1 0 0 +
0O 1 0 1 o 1 +

+
All subsets of Min A containing 010100, belong to .rl(f) .
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The value of ~ may he decreased when a conjunction is added to
the expression, only if this conjunction includes one letter.
Therefore, it is sufficient to examine the value of for the
following subsets of Min AmQx .

{010100%} w = x2x3 r¢a)

1
N

(010100,000001%} w * *2X3 + X1 =2

1,5

The second of the above expressions is the solution.

Example 3

Find normal equivalents with the smallest number of conjunc-
tions for the function determined in the table.

*3  x2 *1  F)

0 0 0 0
0O 0 1 1
0] 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

The table of the function after writing negations.

max
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The set nw ax contains 48 elements, but i1t suffices to «rite
to the Quine®s table only elements less than one or worp sequences
for which A has the value 1.

M o = o T- o o < o T

<4

M o o o o o o O o o

&

M o o o o O o _ -
X3*2 XJ *1
1 1 0 0o o 1 + +
1 0 0 o 1 1 + + T+ o+
o o 1 1 1 o + + + +
o o o 1 1 1 + + + +

Computing the Quine"s table we obtain the following expressions
with the least number of conjunctions:

X2 + X1 Xj

X9 +

X?.x? * X1 b

Conclusion

Operating with combinations of zeros and ones instead of con-
junctions and with sets of the.se combinations instead of alterna-
tive normal formulae is very convenient when the discussed problems
are to be solved on binary digital computers. Also, expressing
b value of every variable by means of a pair of bits, i.e.. the
value of a variable and its negation /transformation”™/ is a
technique used in different completed programmes of simplifying
normal formulae. Such a way of expressing the values of variables

has been wused in programmes of this kind worked out in our
Institute.
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