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Preface

Visual presentation of document collections can provide us with new
insights into their content. A number of research projects have been
launched to create document maps, like WebSOM, Themescape and
other.

The WebSOM document map representation is, regrettably, time
and space consuming; it also rises the questions of scaling and updating
document maps.

In this book we describe some approaches we have found useful
in coping with these challenges. Solutions have been verified by cre-
ating a full-fledged visual search engine for document collections (up
to a million). We have extended WebSOM’s goals with a multilin-
gual approach and new forms of geometrical representation, and have
also experimented with various modifications to the basic WebSOM
document map creation process itself.

We also present certain map quality evaluation techniques, along
with experimental results confirming the validity of our approach.
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Chapter 1

Introduction

The increasing number of documents returned by search engines for
typical requests forces us to look for new methods for representation
of query results.

Nowadays, simple ranked lists, or even hierarchies of results seem
inadequate for some applications.

That is why document maps have gradually become more and more
attractive as a way of visualizing the contents of a large document
collection. Within a broad stream of various novel approaches, we
would like to concentrate on the well-known WebSOM project, pro-
ducing (via extensive clustering) two-dimensional maps of documents
(research by Kohonen and co-workers). A pixel in such a map rep-
resents a cluster of documents. Document clusters are arranged on
a 2-dimensional map in such a way that the closer the clusters are
to each other on the map, the more similar are the documents they
contain.

The WebSOM document map representation is, regrettably, time
and space consuming; it also rises the questions of scaling and updating
document maps.

In this work we describe some approaches we have found useful in
coping with these challenges. Among others, techniques like Bayesian
networks, growing neural gas and artificial immune systems will be
discussed. Based on the above-mentioned techniques, we have created
a full-fledged search engine for collections of documents (up to a mil-
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lion) capable of representing on-line replies to queries in a graphical
form on a document map, for exploration of free text documents by
creating a navigational 2-dimensional document map, where geomet-
rical vicinity would reflect conceptual closeness of the documents. We
have extended WebSOM’s goals with a multilingual approach and new
forms of geometrical representation. We have also experimented with
various modifications to the underlying WebSOM clustering process
itself.

The issue of crucial importance for the user’s ability to understand
the two-dimensional map is the clustering of its contents and appro-
priate labeling of the clustered map areas. It has been recognized long
time ago that clustering techniques are vital to information retrieval
on the Web. We will discuss several important issues that need to be
resolved in order to present the user with an understandable map of
documents. The first issue is the way of clustering the documents. In
the domains, like e.g. biomedical texts, where the concepts are not
sharply separated, a fuzzy-set theoretic approach to clustering appears
to be a promising one. The other one is the issue of initialization of
topical maps. Our experiments have shown that the random initial-
ization performed in the original WebSOM may not lead to emergence
of a meaningful structure of the map. Therefore, we have proposed
several methods for topical map initialization, based on SVD, PHITS
and Bayesian network techniques, which we will explain in the book.

We also consider selected optimization approaches to dictionary
reduction, so-called reference vector optimization and new approaches
to map visualization.

We will also report on an experimental study on the impact of
various parameters of the map creation process on the quality of the
final map.

The process of mapping a document collection to a two-dimensional
map is a complex one and involves a number of steps, which may
be carried out in multiple variants. In our search engine BEATCA!
[15, 12, 13, 14, 41], the mapping process consists of the following stages
(see Figure 2.1): (1) document crawling (2) indexing (3) topic identifi-

Lhttp://www.ipipan.waw.pl/klopotek/BEATCA



cation, (4) document grouping, (5) group-to-map transformation, (6)
map region identification (7) group and region labeling (8) visualiza-
tion. At each of theses stages, various decisions can be made, implying
different views of the document map.

For example, the indexing process involves dictionary optimiza-
tion, which may reduce the document collection dimensionality and
restrict the subspace, where the original documents are placed. Top-
ics identification establishes the basic dimensions for the final map
and may involve such techniques, as SVD analysis [3], fast Bayesian
network learning (ETC [37]) and others. Document grouping may in-
volve various variants of growing neural gas (GNG) techniques, [26].
The group-to-map transformation, used in BEATCA, is based on the
SOM ideas, |43], but with variations concerning dynamic mixing of lo-
cal and global search, based on diverse measures of local convergence.
The visualization involves 2D and 3D variants.

With a strongly parameterized map creation process, the user of
BEATCA can accommodate map generation to his particular needs, or
even generate multiple maps covering different aspects of the document,
collection. Chapter 2 provides with more details on architecture of the
search engine.

The overall complexity of the map creation process, resulting in
long run times, as well as the need to avoid "revolutionary" changes
of the image of the whole document collection, necessitate an incre-
mental process of accommodating new, incoming documents into the
collection.

Within the BEATCA project, we have devoted much effort to en-
able such a gradual growth. In this study, we investigate vertical (new
topics) and horizontal (new documents on current topics) growth of
document collection and its effects on the map formation capability of
the system.

To ensure intrinsic incremental formation of the map, all the
computation-intense stages involved in the map formation process
(crawling, indexing, GNG clustering, SOM-clustering) need to be re-
formulated in terms of incremental growth.

In Chapter 4 we briefly mention our efforts to create a crawler
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that can collect documents (from the Internet) devoted to a selected
set of topics. The crawler learning process runs in a kind of horizontal
growth loop while it is improving its performance with the increasing
amount of documents collected. It may also grow vertically, as the
user can add new topics for search during its run time. In Chapter
5 we describe how the indexer is constructed in order to achieve in-
cremental growth and optimization of its dictionary with the growing
collection of documents. In Chapter 7 we describe how we explore the
clustering properties of growing neural gas to accommodate new doc-
uments to the current clustering framework. At various stages of the
overall process Bayesian networks are used, hence we briefly introduce
in Chapter 3 the concept of Bayesian networks and in Section 3.3 we
show how they are used in our search engine.

To evaluate the effectiveness of the overall incremental map forma-
tion process, we have compared it to the "from scratch" map forma-
tion in our experimental Chapter 8. We also present topic-sensitive
approach, which appears to be a robust solution to the problem of the
map generation process scalability (both in terms of time complexity
and memory requirements).

In Chapter 9 we briefly characterize our map viewing system.
Chapter 10 reports on related work by other researchers.

The conclusions from our research work can be found in Chapter
11.



Chapter 2

(zeneral Architecture

Our research targets at creation of a full-fledged search engine (with a
working name BEATCA) for collections of up to million documents,
capable of representing on-line replies to queries in a graphical form
on a document map. We follow the general architecture for search
engines, where the preparation of documents for retrieval is carried
out by an indexer, which turns the HTML etc. representation of a
document into a vector-space model representation. After that the
map creator is applied, turning the vector-space representation into a
form appropriate for on-the-fly generation of the map, which is then
used by the query processor responding to user’s queries.

2.1 Modular Structure

The architecture of our system has been designed to allow for experi-
mental analysis of various approaches to document map creation. The
software consists of essentially five types of modules, cooperating via
common data structures. The types of modules are as follows (see
Figuire 2.1):

1. robot (spider, crawler), collecting documents for further process-

ing,
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Figure 2.1: BEATCA system architecture

2. indexer, transforming documents into a vector space representa-
tion,

3. optimizer, transforming the document space dictionary into
more concise form,

4. document clustering, identifying compact groups of documents
sharing similar topics,

5. mapper, transforming the vector space representation into a map
form

6. search engine, responding to user queries, displaying the docu-
ment maps in response to such queries.

Additionally, we have an experiment management module, that
can be instructed to configure the search engine process out of selected
modules, to repeat the execution of some parts of the process, and to
collect various statistics about the execution of the other modules and
on the quality of the final and the intermediate results.

2.2 Data Structures

The data structures interfacing the modules are of the following types:
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1. HT Base |hypertext documents],

2. Vector Base |vector space representations|,
3. DocGR Base [thematical document groups]
4. Map Base [repository of various maps],

5. CellGR Base [map areas (groups of cells)]

6. Base Registry [registry of all databases, parameters and evalua-
tion results.

A HT Base is the result of a robot activity. We have currently two
types of robots, one collecting documents from the local disk space,
and another from the Web. A robot collects the hypertext files walking
through links connecting them and stores them in a local directory and
registers them in an SQL (actually MySQL) database. Standard infor-
mation like download (update) date and time, original URL, summary
(if extractable) , document language and the list of links (together with
information if already visited) is maintained by the robot.

A HT Base can be processed subsequently by an indexer and pos-
sibly an optimizer to form a Vector Base for the document collection.
A Vector Base is a representation of a document space — the space
spanned by the words (terms) from the dictionary where the points in
space represent documents.

A Vector Base is then transformed to a document map by a map-
per process. A map is essentially a two-level clustering of documents:
there are clusters of documents (stored in DocGR Base) and clusters
of document clusters (stored in Map Base). Document clusters are
assigned a graphical representation in terms of elementary "pixels"
(labeled by appropriate phrases) in a visual representation, whereas
clusters of document clusters are assigned "areas" consisting of "pix-
els". Note that in our approach we use a kind of multilevel maps, where
higher levels "pixels" are "expanded" into maps/map fragments at a
detailed level.

Note that the same HT Base may be processed by various indexers
and optimizers so that out of a single HT Base many Vector bases may
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arise. Similarly one single Vector base may be processed by diverse
mappers to form distinct maps. To keep track of the various descen-
dants of the same HT Base, the Base Registry has been designed.
The search engine makes use of all the maps representing the same
HT Base choosing the one most appropriate for a given user query.

The search engine has been explicitly designed as a test-bed for
various algorithmic solutions to constituent search engine components.
Hence an important additional feature is a database keeping track of
results of experiments (constituting of selections of process compo-
nents and data sets as well as quality evaluation procedures). The
database of experiments is filled (and used in case of continued exper-
iments) by the special experiment management module.



Chapter 3

Efficient Bayesian Networks

Bayesian networks (BN) [52] encode efficiently properties of probabil-
ity distributions. Their application is spread among many disciplines.
A Bayesian network is a directed acyclic graph (dag), the nodes of
which are labeled with variables and conditional probability tables of
the node variable, given its parents in the graph. Let capital letters
X1, ..., X, denote variables, and lower case letters xq, ..., x,, their par-
ticular instances. The joint probability distribution is then expressed
by the formula:

n

P(zy,..., ) = [ [ Pil(z1, ... 20) | 7(X0)) (3.1)

=1

where 7(X;) is the set of parents of the variable (node) X;, and | is
the projection of the left-hand vector onto the right-hand subspace.

On the one hand, BNs allow for efficient reasoning, and on the
other hand many algorithms for learning BNs from empirical data
have been developed [36]. When one can expect a particular form of
the underlying dag structure, the learning algorithm can be quite sim-
ple. In particular, this is the case with the Chow/Liu [10] algorithm.
The said algorithm is essentially a tree-spanning algorithm, where the
weight of an edge between variables XY is calculated using the so-
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called DEP function:

(3.2)

P
DEP(X,Y) ZPmylog (x’y(>

P(z)P(y)

We start with a "dag" consisting of the nodes representing vari-
ables, and containing no edges. Then we add an edge between the
nodes X,Y for which the DEP(X,Y’) is maximal. This constitutes
our initial tree. In subsequent steps we join other nodes one by one,
and select the one node X from outside the tree, for which for some
node Y in the tree DEP(X,Y) is maximal at the given step. In this
way we obtain an undirected tree, which we then orient arbitrarily,
but in such a way that no edges meet head-to-head at any node. Note
that the DEP function can be considered as a kind of "strength" of
relationship between two variables: the higher its value, the stronger
a mutual predictive relationship exists.

Other algorithms, learning a dag structure from data which assume
a more general dag form are much less trivial.

A well-known problem with Bayesian networks is the practical lim-
itation for the number of variables for which a Bayesian network can
be learned in a reasonable time. In a comparative experiment us-
ing the BNLEARN system [36], for a network with 8 nodes and 8
edges and the sample size 15,000, several known algorithms had the
following computational speeds: Chow/Liu [10]: 2s, Pearl [52]: 2s
PC [56]: 12s, K2 [19]: 7s, SGS [56]: 107s. For a network of 210 nodes
and 301 edges (7 times replicated ALARM network) and the sam-
ple size 60,000, same algorithms had execution the following times:
Chow /Liu: 40 min., Pearl: 40 min, PC: 12 hours, K2: 11 hours, SGS:
could not be determined. The Chow/Liu [10, 11| algorithm learning
tree-like Bayesian networks (and its derivative Pearl algorithm learning
poly-trees) performed consistently better than the other ones. How-
ever, also this algorithm has an important limitation, related to the
time and space consumption. The time and space required are both
quadratic in the number of variables. This may prove also prohibitive
for high dimensional data.
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3.1 Types of Bayes Net Algorithms

The so-called "naive Bayes” classifier has been used for comparison
in this study because it has been successfully applied in text catego-
rization previously [62]. It may be viewed as a primitive form of a
Bayesian network (a decision node connected to all other variables,
which are not connected themselves).

The so-called TAN classifier (Tree Augmented Naive Bayes [25]
is a combination of a naive Bayes classifier with Chow/Liu tree-like
Bayesian network. The TAN classifier is constructed as follows: we
create a tree-like Bayesian network using the Chow/Liu algorithm with
the DEP function modified to:

DEP(X,Y|C) =" P(z,y.c)log ; P, yle) (3.3)

(z]e) P(yle)

T,Y,C

where C' is the category variable.

We add the node C' to the network connecting it with all the other
nodes with arrows pointing away from C.

In our approach we use Bayesian multinets. They differ from TAN
as follows: TAN assumes an identical structure of dependencies be-
tween non-category variables. A multinet-classifier allows for different
structures of dependencies between variables for each level of the cat-
egory variable, so it learns a separate Bayesian tree-like network (in
our case using the ETC algorithm, see Section 3.2). For classification
purposes we need to identify the a-priori probabilities Po(c) of the
categories ¢ (values c of the categorical variable C).

Classification with a Bayesian multinet is carried out by identifying
the category ¢ which maximizes P(c|z1, ..., x,). The latter probability
is calculated according to the Bayes rule as

P(z1,...,z,]c)P(c)
P(zy,...,x,)

As P(Xy,...,X,) is not category-label dependent, we can simplify the
above to:

P(clzy, ..., x,) = (3.4)

P(clzy, ..., xn) =nP(x1,...,z,|c)P(c) (3.5)
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where 7) is a positive constant.

3.2 ETC Algorithm- Edge Tree Construc-
tion

The ETC Algorithm [37] may be considered as an accelerated algo-
rithm for construction of a Bayesian network dag structure in the case
when it can be assumed to be tree-like (either the true probability dis-
tribution is "tree-like", or a "tree-like" underlying dag is a sufficient
approximation to the intrinsic probability distribution structure). The
idea of the algorithm is based on growing tree of edges. Consider a
Bayesian network with the dag structure in form of a tree. The tree
of edges (edge tree) is a binary directed tree labeled with (undirected)
edges of this dag such that if the dag consists of two nodes connected
by an edge, then the edge tree consists of a single node labeled with
this edge. Otherwise the edge tree describes the dag as follows: if we
remove from the dag the edge labeling the edge tree root, then the
dag splits into two subtrees which are described by the corresponding
subtrees of the edge tree below the root. Thus, an edge tree is a kind
of a complementary description of an ordinary tree.

In each iteration, one node (in our case describing a term from the
dictionary of the document collection) is added to the tree, which in
turn results in insertion of a new edge between that term and term
already existing in the structure (see figures 3.1 and 3.2). In the second
phase, the Edge Tree is converted to a BN and marginal probabilities
are calculated.

As a foundation for the edge insertion process, DFE P functions in
the style of the Chow/Liu algorithm are used (see preceding section)
to evaluate similarity of terms labeling the nodes of the dag we used
in our experiments the DE P functions given below:

DEPy(A, B) ZP a,b) log PI(DX b()b) (3.6)
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DEP(A,C)>DEP(B,C) @
c
e D

Figure 3.1: Adding a new term to the Edge Tree

DEPi(A, B) = (P(alb) — P(a|b))* + (P(bla) — P(bla))*  (3.7)
DEPy(A, B) = (P(alb) — P(alb))* - (P(bla) — P(bla))*  (3.8)

(The DEP function can be chosen as a parameter of the system).
Note that the first equation is due to Chow/Liu [10]. The other ones
were invented to overcome some problems with transitive similarity
(see |37]). Calculation of DEP in the original Chow/Liu algorithm is
necessary for each pair of terms. However in a massive collection of
documents it is time consuming.

Therefore, in the ETC algorithm, the Edge Tree is built instead.
First of all, terms are randomly permutated. The root node of the edge
tree is composed of the two first terms. Each node in Edge Tree is
constructed from two terms that represents one edge. In each iteration,
a single subsequent term is inserted, constituting a new edge in the
tree. For each new term, we start from the root node and calculate
DEP between the new term and the left and right-hand side terms
in the considered node. If the new term is more similar to the left-
hand side term in the node, it goes left-hand side branch. If it is more
similar to the right-hand side term, it goes. After selection of the
branch, the term is repeatendly tested one level lower until it reaches
the lowest level.

The ETC algorithm maximizes' the value of the DE P function of
two terms in particular nodes. This means that edges are created on

IStrictly speaking, it can be proved mathematically that if the real depen-
dence structure between variables is tree-like, and we take DFE P, maximization
is achieved. For DEPy, and DEP;, for a wide range of values it has been ex-
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Figure 3.2: Replacement of a term in the node

E& G ES L

Figure 3.3: (a) Conversion from the edge tree into an undirected graph
(b) Settlng a dlrectlon inside the undirected graph

the terms that are as similar as possible. If the new term has a DEP
greater than the DEP between the left and the right members of the
node, it replaces the term to which it is more similar. Creation of a
new node on a lower level of the tree is based on one of the terms from
the top node and the new term.

Conversion from Edge Tree into BN is immediate. First of all, ET
is converted into an undirected graph. Each term represents one node
in BN and nodes are connected by edges taken from the edge tree
(Figure 3.3).

The relation between the parent node and a child node (edge direc-
tion) is set randomly. First of all, a randomly selected node from the
net becomes a root in the Bayesian tree, all the neighbors of root node
become their children and so on. Finally, the marginal probabilities
are calculated, i.e. the probability of occurrence of a term when the
parent term is present (co-occurrence) and the probability when it is
absent (exclusion) in a document.

perimentally verified that maximization preconditions hold. However, neither a
mathematical proof nor a counter-example has been found.
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Why is ETC applicable to large Bayesian networks? This is due to
its reduced complexity, resulting from the use of the Edge Tree. When
inserting a new variable into the Edge Tree, only logn comparisons
with (at most n) variables already in the Edge Tree are needed. So, as
proven in [37], only n log n comparisons (that is computations of DE P)
are needed. For this reason, the algorithm scaled well for hundreds of
thousands of variables.

Details of the ETC algorithm can be found in [37].

3.3 Bayesian Nets in the BEATCA System

In the BEATCA search engine, BNs are used at a few critical moments.
We have found them very useful for initial clustering of documents
set (see Section 7.5). For the map creation phase, a couple of clearly
separated clusters are calculated. Such clusters proved to be especially
useful for topical initialization (topics identification) of a clustering
model and the SOM projection model, which we describe in section
7.5.

A BN is also used as a thesaurus in our system. After the indexing
phase in BEATCA, a special dedicated BN is built on all terms in the
dictionary?. Having collected the relevant set of documents on a given
subject, a joint information stored in the BN and in the clustering
model (described in Chapter 7) will constitute a context-dependent
thesaurus. There is no room for the details, so we only notice that
such a thesaurus is used to expand user queries for the purpose of
more precise search in BEATCA search engine [41].

For building such a net, we use the ETC algorithm, which is effec-
tive and can hold a huge number of nodes (terms). A thesaurus needs
to keep a thousands of terms and relations between them. After cre-
ation of the BN via the ETC algorithm, we obtain a special form of a
net - a tree. Each term in our net has exactly one parent (except root
node) and a set of children. The relation between the neighbor nodes
is unidirectional (parent-child) but this direction does not determine a

Zexcluding terms of low clustering quality [39]
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strict implication between the terms. The parent-child relation gives
an information what is the probability of the child occurrence if the
parent term does or does not occur. It is important in such a tree
that the terms, which are close to each other in the net structure, are
close conceptually. We would like to use relations between terms to
complete a user query in order to restrict too general queries. Let us
consider the user query "sheep". The answer to such a query can have
a smaller number of results and can be more specialized if the query is
extended by terms, which are the parent and children of "sheep". Ini-
tially, for small document sets we decided to build a Bayesian tree on
terms which have frequency in the dictionary greater than 1. Tt means
that term occurring in only one document will not be used to build
thesaurus. This simplifies final Bayesian tree, decreases the number
of terms to be processed and reduces the number of terms of lesser
importance. However, the Bayesian net still will consist of dozens of
thousands of nodes.

A special field of BN application in the BEATCA system is intel-
ligent, topic-sensitive crawling, described in Chapter 4.



Chapter 4

Intelligent Topic-sensitive
Crawling

Let us mention briefly our efforts to create a crawler collecting doc-
uments from the Internet devoted to a selected set of topics. The
crawler learning process runs in a kind of horizontal growth loop while
it improves its performance with the increasing amount of documents
collected. It may also grow vertically, as the user can add new topics
for search during its run time.

The ultimate goal of intelligent crawling [1] is to grasp documents
which belong to certain topics and, obviously, to do it as efficiently as
possible. Often it is particularly useful not to download each possi-
ble document, but only those which concern a certain subject. In the
original approach, Aggarwal et al. [1] relied on versions of Naive Bayes
estimates of the probability of a page being interesting based on the
terms of the pointing pages, URL structures, sibling pages contents
etc. In our approach we restrict ourselves to term occurrence; we do
not assume term independence, but instead of this use Bayesian net-
works (BN) and the HAL! algorithm to predict relevance of documents
to be downloaded.

'HAL, Hyperspace Analogue To Language, [47] is a text processing technology
based on the psychological theory claiming that the meaning of a word is a func-
tion of contexts in which it appears, and the words sharing contexts have similar
meanings. For its mathematical form and usage in a search engine see Section 4.2.
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Our topic-sensitive crawler begins processing from several initial
links, specified by the user. To describe a topic we are interested in,
we use a query document. This special pseudo-document contains
descriptive terms with predefined weights, which are later used to
calculate the priorities of the crawled documents. During the crawling
of the first few hundred documents, crawler behavior depends on the
initial query document only. In the subsequent cycles, BNs or HAL
models are built using the ETC algorithm (see Section 3.2)) or the
HAL algorithm. Each of those nets is assumed to be a more accurate
approximation of terms co-occurrence in the predefined topical areas.
Subsequent BNs/HALSs are constructed in increasing time intervals;
the number of documents between the subsequent nets is calculated
as 0 - i2, where ¢ is the initial number of documents and 4 is the net
index.

Once the BN/HAL is built, we use it to expand the query (the
pseudo-document) with new terms and to calculate weights for further
documents.

We expand the pseudo-document by the adding parent and chil-
dren nodes of the BN/HAL terms which are already present in query
document, obtaining a set of extended query terms. New terms are
assigned weights proportional to the product of the likelihood of their
co-occurrence and the weight of the original term. We can also have
negative weights, to exclude some terms which are unlikely to ap-

pear, calculated on the basis of extremely low marginal probabilities
in BN/HAL.

4.1 Bayesian Net Document Query Expan-
sion

At increasing subsequent time intervals, we build Bayesian Nets via
ETC learning algorithm |[37| to approximate term co-occurrence in
topical areas. We use them to expand query and to calculate priorities
for further documents links. We expand query by adding parent and
children nodes of BN terms, which are already present in the query.
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New terms get weights proportional to the product of the likelihood
of their co-occurrence and the weight of the original term.

For each query term ¢; we determine weights wz;; for terms ¢; €
PC, where PC'is the set of parent and children terms taken from BN
model:

where tq fidf; is the product of query term frequency and inverse doc-
ument frequency and p;; is the probability of term i on the condition
of occurrence of term j (taken from BN).

We can also have "negative" weights, to exclude some terms which
are unlikely to appear. Final document links priorities are calculated
by modified cosine measure between new expanded query document
and document containing those links:

ey 0 - Wy
Ve, wad) - (Yo, wa?)

where wd; is the weight of term ¢ in document d, wg; is the weight of
term ¢ in query ¢q. It should be noted that all sums are restricted only
to terms appearing in q.

cos(q,d) = (4.2)

4.2 HAL Document Query Expansion

To expand query document we also use HAL model [47|. the ideol-
ogy of HAL roots in the assumption that the context determines the
meaning of a word. From computational perspective, HAL model can
be represented as a matrix A in which each cell h;; corresponds to a
similarity measure of terms ¢ and j.

Briefly speaking, if s = (ti,...,%;) is a sentence (ordered list of
terms), then h;; is the sum (over all sentences in a collection of doc-
uments) of co-occurrences of terms ¢ and j. The scoring value of
co-occurrence is defined as maxz (0, K — p) where K is the predefined
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size of the scoring window and p is the number of terms which separate
terms ¢ and j in a given sentence. The main problem in this simple
algorithm is obviously huge size of the matrix, which is equal to the
number of distinct terms.

Similarly to the BN case, we build and iteratively update HAL term
co-occurrence table. Next, we expand our pseudo document by adding
k best co-occurrence terms t; € W = {t1, ..., ¢} for the terms already
present in the query document. New terms get weights proportional to
the product of their co-occurrence score and the weight of the original
term:

hij .
Wwzij = —— - tq fidf; (4.3)

> hi

keW

where tq fidf; is defined as in Equation 4.1, h;; is the weight of term j
taken from the HAL table.

Like in the Bayesian Net algorithm, the final priorities of the doc-
ument links are calculated using a modified cosine measure between
the new expanded query document and the document containing those
links that is according to (4.2).

4.3 Experiments

To evaluate effectiveness of the presented topic-sensitive crawling, we
have conducted two experiments, the first for the Bayesian Net algo-
rithm and the other for the HAL algorithm. In both cases, the crawler
starts from three seed links |[http://java.sun.com/j2ee/index. jsp,
http://java.sun.com/products/ejb/, http://www.javaskyline.
com/learning.html]. A pseudo-document (a query) contains six
descriptive terms with the corresponding weights, treated as oc-
currence frequencies [java(20) documentation(30) ejb(100) applica-
tion(50) server(50) J2EE(30)]. Figure 4.1(a) presents the results for
the crawler based on the Bayesian Net algorithm, and Figure 4.1(b)
presents the results for the crawler based on the HAL algorithm.
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Figure 4.1: Crawler evaluation - average relavance measure (Y axis)
after a number of iterations (X axis, one iteration - 500 documents

downloaded): (a) Bayesian Net algorithm (b) HAL algorithm
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The quality measure is the average relevance measure (4.4), com-
puted after downloading each new 500 documents. The relevance is
equal to the modified cosine measure (4.2), but only for the terms
which are present in the initial user query (¢ = qo).

Zteqo wdt : th

Ve wad) - (i, wa?)

Both methods gave similar results; the average cosine measure was
about 0.4. This appears to be a satisfactory result, which shows that
the crawler did not lose the predefined topic during the crawl. The
Bayesian Network proved to be the faster of the two methods. How-
ever, its disadvantage is the requirement to stop whole process in order
to rebuild the BN model. The HAL table can be built during the crawl,
but it requires more computations.

relevance = cos(qo,d) = (4.4)
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Indexer

5.1

Functionality

The indexer/analyser in our search engine accepts plain text and html
documents. Our solution allows for using documents in English, Ger-
man and Polish. The document analyzer proceeds as follows:

Recognizes the language of the document.

Removes html tags from the document (if necessary).
Retrieves single words from the document.

Removes the stop words.

Stems words and stores their base forms.

Calculates the frequency of terms for each document and builds
the dictionary for the whole document set.

Creates an abstract of the document

The English "stop words" list was taken from [67|, the German
"stop words" list - from [68], and the Polish "stop words" list - from

[69].

All lists are kept in separate text files, so new words can be

added to one of the current list or a completely new one can be
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used. To create our indexer we used certain existing stemmers for the
three languages. The English stemmers come from Porter [53] and
Lovins [71, 49|, the Polish stemmer comes from [70], and the stemmer
for German words is based on |72]. The structure of the experimental
platform BEATCA allows for an easy inclusion of further languages
into the analysis as new modules. Inclusion of a new language requires
incorporation of appropriate stemmers because of the importance of
appropriate word stemming for human friendly performance (docu-
ment clustering, response to queries), and the significant differences
between various languages prohibits creation of a common stemming
algorithm.

Our implementation of the indexer allows for running it as mul-
tithreaded indexing process to gain performance on a multiprocessor
machine. For testing, we used a Pentium IV 3.2GHz HT machine
(running under Windows XP) and documents from [73|. We achieved
a 22% performance gain using multithreaded indexing in comparison
to a single thread. There is no design limitation on the number
of threads that the indexer can use (the number of threads should
depend on the number of available processors).

Typical html documents (around 10kB each) indexing rate is about
80 per second on typical AMD Athlon 2000+ machine. The speed of
indexer is limited by MySQL server (running on the same machine).

5.2 Dictionary Optimization

Lagus [46] and other authors pointed at the fact that the speed of the
process of map creation and map visualization depend heavily on the
dictionary size. Therefore we attempted to reduce the dictionary size,
however trying different methods than e.g. random projection [5] or
LSA [21].

The idea of dictionary optimization is based on filtering words that
are useless for clustering purposes. Clustering is based on similarity of
objects, i.e. documents; therefore the best cluster separating features
(i.e. words/terms) are those that are common for objects (documents)



5.2. DICTIONARY OPTIMIZATION 31

within one cluster and rarely occur outside that cluster. It means
that these features need to be characteristic for set of objects - group
of documents. Hence one needs to exclude from dictionary words
occurring only in a few documents as well as those occurring in the
vast majority of them — as they poorly split the set of documents. Our
goal in dictionary optimization is to decrease the number of words in
dictionary (by ignoring useless words) so that the time of clustering
process is diminished without seriously deteriorating the quality of the
search engine processes. Most of text analyzers use "stop words" list to
delete from dictionary common words for considered language. Some
approaches use deleting the words occurring in one document only.
In our analyzer we did exactly the same but we also noticed that the
approach may be generalized. Below we explain this generalization..
It is useful to have some quality measure that can express quality
of term for specified set of documents. By quality of term we mean
quality from clustering point of view. The quality should be based on
frequency of term in each document and frequency of documents that
contain the term. All measures use an entropy of the term. Normalized
entropy equals 0 if term occurs only in one document and 1 if term
is uniformly distributed over the documents (no matter how many of
them). Fraction of the documents that contain considered term gives
additional information about representation of the term in set of the
documents. We proposed and use the following measures:

Nij Nyj
Q@'):%_—Z%T;.log]vj (5.1
Y log N; '
- ZN:1 N” 'log &
Q2(t:) = ’ NZN Nkj_vz N (5.2)

MaT;tyis o term(_ Zj:l ™ log N, )
where N;; = Freq(t;,d;) is the number of occurrences of term ¢; in
document d;, N; = Freq(t;) is the number of documents that contains
term ¢; and N is the total number of documents. The factor % means

fraction of the documents that contain considered term.
For dictionary optimizer we defined two parameters: minimal
threshold (minTres) and maximal threshold (maxzTres). For each mea-
sure there are different default (mazTres) and (minTres). After couple
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of experiments we decided to use ()1 with (minTres) set on 0.01 and
(mazTres) set on 0.95. All words that are below minTres or above
maxTres are ignored during building the map. In the future we would
like to combine quality with weight of term to use one measure for
optimization, map learning, clustering and map labeling.

The initial experiments showed that after dictionary optimization
we are left with one tenth of the words in the dictionary (decreasing
their number by 90%) and the map learning process is over 30% faster
with exactly the same map of documents (see Fig. 6.1).

5.3 Incremental Indexer

The indexer has been designed in order to achieve incremental growth
and optimization of its dictionary with the growing collection of doc-
uments.

In our database, a document can be labeled as 'indexed’, ’down-
loaded’ and ’updated’. After each new portion of documents down-
loaded by crawler, indexing is run on the ’downloaded’ or 'updated’
documents (marked by crawler). For recently updated documents in-
dexer runs reindexing process. In the first step of this process indexer
analyzes vector of terms and decreases corresponding frequencies in
the dictionary. In the second step vector of terms is dropped down
and document is indexed from scratch. Process described above is a
simple solution, however it has very strong advantage since it mini-
mizes cost of the database communication.

After the indexing phase, afore-described (section 5.2) dictionary
reduction techniques are applied.

5.4 Summarizing Documents

General idea of document summary in our search engine is to select
the most valuable sentences from document. Summary of a document
is based on user’s query which can be presented as set of terms:

{ti,ta, ... tn} (5.3)
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that influence on later selection of sentences. Let us assume that each
sentence ends with ’.> or ’!” or ’?’ and in given sentence there are m
terms. For such sentences the algorithm calculates frequencies of each
term from the query using stemmed forms of terms.

{fi, far- s [} (5.4)

To measure importance of sentence we calculate the following weight
for each sentence:

1 = entropy + intensity + size (5.5)
where: g ik .
entropy = ZZI;Z £ F= ; Ji (5.6)
intensity = % (5.7)
size = { %: z;; § TTZ’ (5.8)

Third factor in 7 is a penalty function for too long or too short sen-
tences. In initial experiments we used parameter s set on 15. Final
order of the sentences in the summary is the same as in document.
Abstracts below come from medical documents [73]. For example we
present two abstracts for user query ’Sleep Disorder’:

e 'MEDICAL PROBLEMS AFFECTING SLEEP First, the bad
news: Older people are likely to suffer both medical disorders
that may disrupt sleep and specific sleep disorders. One sleep
disorder combines dreams with movement: REM sleep behavior
disorder. Most sleepers are virtually paralyzed during REM or
dreaming sleep; people with REM sleep behavior disorder do not
have this motor inhibition and literally act out their dreams.’

e ‘Fach year, there are about 40 million people in the United States
who suffer from sleeping disorders. Recent research suggests
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that if sleep deprivation is long-term—whether because of lifestyle
choices or sleep disorders—it may increase the severity of age-
related chronic disorders such as diabetes and high blood pressure.
director of the National Center on Sleep Disorders Research, part
of the National Heart, Lung, and Blood Institute.’

Use use dynamic abstracting techniques, that is the actual abstract
is generated on the fly in response to user query. The proper indexing
phase concentrates on preparation of static structures and weights
needed during the dynamic phase.
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Mapper

One of the main goals of our BEATCA project is to create a multi-
dimensional document map where geometrical vicinity would reflect
conceptual closeness of documents in a given document set. Additional
navigational information (based on hyperlinks between documents) is
introduced to visualize directions and strength of inter-group topical
connections.

At the heart of the overall process is the issue of clustering docu-
ments. Clustering and content labeling are the crucial issues for user’s
understanding of the two-dimensional map. It was recognized long
time ago that clustering techniques are of vital importance for infor-
mation retrieval on the Web [38]. We started our research with the
WebSOM approach, which, however, was a bit unsatisfactory for us,
as both speed and clustering stability were not very encouraging.

We guess that the basic problem with WebSOM lies in the process
of initialization of so-called reference vectors, being the centroids of
the clusters to grow. In the original WebSOM, they are initialized
randomly, to be corrected later on in the clustering process. Such
an initialization may lead to instability during clustering, because the
WebSOM learning process possesses a "learning speed" parameter o
which may turn out to be too low to ensure convergence for a par-
ticular initialization. Another problem lies in the general concept of
clustering. In WebSOM, it is tightly coupled with a (non-linear) pro-
jection from a multidimensional to a two-dimensional space. As there
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may be infinitely many such projections with equal rights, one really
needs a sense of goal to select the appropriate one.

The first issue we have tackled was dictionary optimization strate-
gies and their speed-up effects to cope with the complexity issue (see
Section 5.2. Another research direction was to obtain better clus-
tering via the fuzzy-set approach and immune-system-like clustering,
[39]. Our approach to document clustering is a multi-stage one:

e clustering for identification of major topics (see [14], [13])
e cellular document clustering! (see [15])
e cellular document clusters to WebSOM map projection (see [12])

e cell clusters extraction and cell labeling (see [39])

In order to obtain a stable map, we need to fix the perspective
from which the document collection is viewed. This can be achieved
if we identify major topics of the document collection. This is done
during the step "clustering for identification of major topics". In Sec-
tion 6.3 (see also [15]) we suggest a Bayesian approach, which was the
result of our investigation into the behavior of the algorithm [32]. Al-
ternatively, different initialization techniques could be used: in [14] we
described an approach to major topic identification based on LSI/SVD
(Latent Semantic Indexing/Singular Value Decomposition), and in [16]
we described usage of a version of Fuzzy-ISODATA algorithm for that
purpose. Having identified the major topics, we can initialize the map
in a more definite way, as described in Section 6.4.

After the topics have been identified, the documents need to be
assigned to these and the intermediate ones, and the relationships

!By cellular clustering we understand those clustering techniques which lead
not only to obtaining a set of (disjoint) clusters, but also to imposition of an inter-
cluster relationship based on content similarity between clusters. The clusters
in such a technique will be called "cells". One example of such a technique is
the WebSOM (Web Self-Organizing Maps) approach, where Web documents are
assigned to cells in a rectangular grid of squares or hexagons. Other approaches
in this class are growing neural gas (GNG) and artificial immune systems (AIS).
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between the topics have to be identified. This process is called by us
"Cellular document clustering", and leads to creation of a graph model
of the document collection. Three different techniques may be used at
that point: the WebSOM (plain or hierarchical) approach (see Section
6.1), the GNG approach (see Section 6.5), or the artificial immune
systems (AIS) approach (see [42]).

The graph model of the document collection needs to be visualized
in the form of a document map. Therefore, a step named "projection
of cellular document clusters to the WebSOM map" is applied. It is
redundant if the WebSOM algorithm (plain or hierarchical) is used to
cluster the documents, but is necessary for more elastic topologies like
the GNG model and the AIS model. The above step is described in
Section 7.5.

Finally, for the purposes of better readability of the document map,
cells need to be joined into larger, topically uniform areas, which is
done in the step named "cell clusters extraction", described in Section
6.6. Also cells have to be labeled, as described in Section 6.6.

6.1 The Original WebSOM Approach

Our starting point was the widely-known Kohonen’s Self-Organizing
Map (SOM) principle [43]. SOM is an unsupervised learning neural
network model, consisting of a regular, 2D grid of neurons. Regression
of neurons (represented by reference vectors m € R") onto the space
of document vectors x € R™ can be iteratively computed as:

mi(t +1) = mi(t) + alt) - hei(t) - () —mi@)l] - (6.1)

where 7 is the neuron index, ¢ is the iteration number, {(z) is the index
of the winning? (closest to z(t)) reference vector, a(t) is the learning

2The process of establishing the winning reference vector is called winner search.
If all the reference vectors are taken into account, when looking for the winner, as
in the original WebSOM approach, we speak about global winner search , while
any heuristics that restrict the set of candidates to a single reference vector and its
vicinity, is called local winner search .  The advantage of the global search is the
correctness of identification of the winner, which is paid for by high computational
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coefficient h(t) is the neighborhood function (the kernel learning func-
tion), usually the Gaussian one [43], and the |x(t) — m;|| operator
measures the distance between the vector x(t) representing the docu-
ment and the vector m;, being the model vector of the cell i.

d(j, )
2 (o*(t))
with o(t) called neighborhood width function.
It should be noted that the distances d(j,7) between map locations
in R? are Euclidean (Manhattan distances may also be considered),
while the similarity between document and reference vector in the
original document space is computed as the cosine of the angle between

the corresponding vectors (in order to account for diverse document
lengths).

] (6-2)

h;i(t) =a-exp[—

6.2 Our Optimizations

On each level of processing (dictionary building, document representa-
tion, map learning, fuzzy segmentation, labeling and visualization) we
have introduced and implemented a number of alternative solutions
to compare their efficiency and performance both as free-text group-
ing and a visualization method for documents groups. Our design
principle was to separate the map itself from map processing. This
allowed us to examine various combinations of map topologies with
map processing methods as well as incremental learning of the map
with combinations of learning algorithms.

The first step was to implement the above-mentioned Euclidean
map, projected on a torus surface. The documents in the document
space were represented as vectors of standard term frequency inverse
document frequency (tfidf) weights:

burden. In local winner search strategies, this cost is reduced by radical reducing
the number of reference vectors to compare to, but at the risk of missing the
intrinsic winner and using only a locally best reference vector.
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Figure 6.1: Computation time vs optimization of dictionary and ref-
erence vectors
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where t fidf;; is the term frequency inverse document frequency value
for term ¢; and document d;, Freq(t;, d;) is the number of occurrences
of term ¢; in document d;, Freq(t;) is the number of documents con-
taining term ¢; and N is the total number of documents. As we have
to deal with text documents represented in a very high-dimensional
space, we applied the previously mentioned methods to reduce the
dimensionality of the document-space (see Section 5.2).

Keeping in mind that the target application has to group and visu-
alize as much as one million documents, the only structure which can
be stored in RAM is the map itself. We have to represent it in a way
which is both compact and efficient from the algorithmic point of view.
While the clustering structure emerges during the learning process,
the individual reference vectors become gradually sparser, attempting
to approximate different subspaces of the original document space.
We represent those sparse vectors as balanced dictionaries (based on
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red-black trees [20]), additionally restricting their size by imposing
a tolerance level, below which given term’s weight is assumed to be
insignificant and the corresponding dimension is removed from the
dictionary.

The above mentioned approach resulted in fast computation (with
expected linear complexity with respect to a number of significant di-
mensions) of two crucial parts of any map learning algorithm: similar-
ity computation and map updates in the vicinity of the winning (most
similar) cell (Figure 6.1%; tolerance = 107%, 0.01 < quality < 0.95).
It should be noted here that similarities computations during winner
search and map updates are performed concurrently to take advantage
of the multi-processor environment.

Furthermore, in order to restrict the total amount of computa-
tions needed, we combined in a creative way two approaches to winner
search The strategy, that we call joint winner search, is carried out by
creatively combining two widely-used methods: global winner search
and local winner search (see section 6.1). In the first few iterations
global search is performed. In this phase, the high computational cost

3all experimental results depict the average performance of five system runs
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of global search is counterbalanced by the incremental map size growth
from some initial, moderate value towards the postulated target one.
After global similarities between groups of documents emerge, we start
the next phase, in which local relations between documents have to be
approximated. Thus, for each neighborhood width, only one phase of
global search is executed, and thereafter local search (in each iteration
starting from the winner of the previous one) is only performed. When
the convergence criterion is met, the learning neighborhood width o (t)
is decreased and whole procedure is repeated. We call this strategy
joint winner search.

Since the neighborhood topology alterations in the subsequent it-
erations are more smooth than at the very beginning of the learning
process, in this phase the lokal search moves the document only slightly
and the average length of the document movement path (which influ-
ences the computation time) is significantly less dependent on the map
size (Figure 6.3%). Tt can also be seen (on the right-hand side of Fig-

4the visible computation time peaks are single global search iterations when
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ure 6.3) that after global similarities emerge, the computation time is
even slightly lower for bigger maps. In case of a sparser map (having
a lower average number of documents in a single cell) the clusters are
more disjoint (have fewer common terms), which in turn results in
sparser reference vectors representing lower-dimensional subspaces of
the original document space.

At the same time, the joint winner search strategy has produced
better maps (compared with local strategy) with respect to the cluster-
ing error computed as the average cosine angle between each document
and its nearest reference vector (Figure 6.4).

One can note that during few middle iterations the learning process
convergence (with respect to the clustering error) is disturbed. This
effect results from incompatibility of the learning speed funkcion «()
and the neighborhood width funkcion o(t). Our initial research shows
that the wrong choice of these functions can negatively impact the
map quality. On the other hand, changing the learning factor and the
neighborhood width consistently and at proper rate can accelerate

the neighborhood width o(t) is decreased



6.3. IDENTIFICATION OF BROAD TOPICS 43

convergence and improve the final result. For instance, a reciprocal
(i.e. inversely proportional to the iteration number) function «a(t)
behaves better than a linear one (Figure 6.2).

6.3 Identification of Broad Topics

Our preliminary experiments showed that the random initialization
performed in the original WebSOM may or may not lead to emergence
of a meaningful structure of the map. It was known also in the past
that the SOM map as a whole behaves in a highly chaotic way, and
even a slight disturbance in the data or introductionel some random
factor (which is always the case, for the document vectors are presented
in a random order and the model vectors are initiated randomly at
the beginning) can make the resulting maps dramatically different,
although both may be of the same quality. Different parts of the map
can be rotated, scaled and twisted in many ways, though they may
still reflect a specific clustering structure that is enforced by the data
set and the algorithm principles.

As a first step towards the map stability, we need to fix the per-
spective from which we look at the documents. The most natural way
would be to identify the major topics of the document collection and
to distribute these topics over the map. Topic identification is covered
in this section, and the map initialization in the next one.

One of the well-known possibilities to identify topics in a collection
of documents is the LSI/SVD (Latent Semantic Indexing/Singular
Value Decomposition). For a detailed description please refer to [3].
Our implementation has been described in [14]|. In brief, the idea
is that the document-term matrix N;; = Freq(t;,d;) (with non-zero
entries indicating presence of a term ¢; in a document d;) can be de-
composed into a set of eigen vectors, with the eigenvectors associated
with the largest eigenvalues being capable of a good approximation
of the original matrix content. The principal eigenvector can be in-
terpreted as the "major" theme of the collection, with components
indicating which terms are characteristic for the topic. The second,
third etc. eigenvector can be viewed in a similar way (as variations
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of the major topic). Some controversies about negative values of the
non-principal vectors need to be resolved (see [14]). One possible in-
terpretation is of a departure from the topic of the major eigenvector.
The other one is to take documents closest to the axes spanned by the
orthogonal eigenvectors as representative of the topic of an eigenvector
and to derive term profile of the topic from these documents.

After having studied the LSI approach, a natural alternative
seemed to be the investigation of the PLSA algorithm [32], based
on the same general ideology as LSI, but on different, probabilistic
principles. PLSA (Probabilistic Latent Semantic Analysis)

The PLSA algorithm seemed to be a good choice in principle, but
some weaknesses came to sight. The advantage of the PLSA approach
over e.g. LSI is the possibility of using fuzzy membership in each
cluster (sum of membership levels need to be 1) and working on the
frequency of terms in documents. However, there is a problem with al-
gorithm convergence. We presume that the direct reason is a too high
number of degrees of freedom and existence of more than one maxi-
mum for the likelihood function. Therefore, we decided to abandon
the fuzzy clustering of PLSA in favor of a crisp cluster membership
(like that used in Naive Bayes approaches). This approach gives us
sharp clusters that are easily processed and stable.

The original PLSA algorithm [32] can be viewed as a combination
of Naive Bayes reasoning with the well-known EM (Expectation Max-
imization) algorithm. PLSA views a document collection as a Naive
Bayes network of variables: terms and documents, which are all de-
pendent on a single, hidden (latent) topic variable. That is, given the
knowledge of the topic, the probabilities of occurrence of topics are
independent of each another. Similarly, given a topic, the probability,
that a document belongs to this topic, does not depend on the prob-
ability of some other document belonging to this topic. The PLSA
consists in finding the most probable distribution of topics, given a
known distribution of terms in documents. The EM process in the
PLSA algorithm consists - after a random initialization - in estimat-
ing cyclically the probability distribution of hidden topics given the
term/document distribution, and then the conditional probabilities of
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terms and documents given the hidden variable distribution.

Our modification consist in assigning document to exactly one -
most probable - topic. Furthermore, we do not assume that terms are
independent, given the topic, but rather that there exists a Bayesian
network of terms, given the topic (the BN is obtained via the discussed
ETC algorithm, see section 3.2). In this way we take into account the
known fact of the dependencies existing between terms.

To sum up, we have made a small but important change: for doc-
uments we do not calculate the degree of membership, but instead
assign a document to the most probable class. After selection of nat-
ural clusters in our documents collection, the algorithm selects the
description of each cluster. To describe clusters, it uses the terms
from the search engine’s dictionary.

A Naive Bayes classifier assumes that "events" (in our case doc-
uments) are described by a set of attributes (in our case terms)
Ay, Ay, ...y Ay, and that these attributes have nominal values (in our
case "present" or "absent") and are (statistically) independent of each
other. Independency of attributes in our case means that a document
contains terms without any order, and the presence or absence of each
attribute depends on the cluster only. These assumptions simplify
grouping of huge collection of documents. We need to remember that
a dictionary which contains 100 000 terms is nothing unusual, and
that each term is related to one attribute.

Given a test set D of documents, we estimate the probabilities of
the individual values of all attributes for each decision concept ¢ € C
(in our case the cluster to which the document belongs). We need to
estimate the a-priori probability of each concept too. Let us assume
that there is a document d € D in the collection D of documents,
and c¢ is a concept identifier. The hypothesis h(d) of document’s d
class membership is derived from probability distributions evaluated
by Naive Bayes classifier as follows:

n

h(d) = argmazec Plc) [ [ P(Ai(d)|c) (6.4)

=1

The number of clusters K in the algorithm is a parameter which
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can be set to any positive number. However, on this stage we have
decided to group documents into 4 clusters for quadratic map cells
and 6 clusters for hexagonal cells. This number of clusters results in a
natural map initialization (see next section, also |13]). After random
initialization of clusters, there is time for estimation of probabilities
P(c) that is, for each document d we compute how probable its mem-
bership to group c is; and P(a;|c) that is, how probable it is that the
attribute A; takes the value a; for the object x, given the fact that the
document d belongs to group c.

Next, we assign a new cluster for each document using Equation
(6.4). This process is iterated: after each evaluation of a new cluster
for all documents we re-calculate the probabilities P(c)and P(a;|c) for
the whole document collection and so on. The number of iteration is
a parameter but for the initial experiments was set to 10, as we found
it satisfactory in terms of convergence for the data sets we used.

For the clustering phase each document is represented by a bit
different vector than used at earlier stages. This vector has length
equal to the size of the dictionary. Each value in the vector corresponds
to a particular term in the dictionary. If a given term is present in
the document, then the term value is set to 1; if it is not - the value
is 0. For the initial clustering of documents, we do not take into
consideration the frequency of the terms. This allows us to calculate
only the following probabilities for each term P(A; = 1|c¢) and P(A; =
0lc).

After creation of clusters we need to find the terms that describe
the created groups. To achieve this goal, we have implemented the
following algorithm. For each group, we select a set of terms ¢; that
maximizes "representativeness" 7 within the group c.

_ og(30; Nije) - avg;(Nije) | Dy
stddev;(Njj.c) | D|

(6.5)

Tice
where N;; = Freq(ti,dj) is the number of occurrences of term ¢; in
document d;. The index g denotes the terms that occur in considered

group. The abbreviation mean - denotes arithmetic mean, stddev -
standard deviation, |Dy, .| - the number of documents that contain the
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term t;, and |D,| - the number of documents in the considered group
c.

The idea behind this "representativeness" measure is to promote
terms that occur in a larger number of documents, occur frequently
(with logarithmic order), and occur uniformly in the documents in a
given group.

The computed value of 7; . is the basis for inclusion of term ¢; into
the set of descriptors of group c. To be included, the 7 measure must
exceed a predefined threshold. Furthermore, it can be included into
the descriptor set of one group only, that is of that ¢, for which it
reaches the highest value.

6.4 Fuzzy Initialization of Broad Topics on
the Map

The map-based approach, especially applied to free-text documents,
is very sensitive to initialization of the cell reference vectors. To a
large extent, this is caused by overlapping topical clusters. The ini-
tialization method leads to obscure visualization, if it does not take
into account the main topics present in the document set and the
inter-topic similarities. Besides, such a method negatively affects the
cluster extraction algorithms which operate directly on the resulting
map reference vectors (e.g., Fuzzy-ISODATA).

Therefore, we needed to create a clever initialization algorithm.

We have proposed the following topic-based initialization method:

1. using PLSA [32] (see previous sectionfor the modifications we
applied), select K (our choice was K = 4) main topics in the
given document set

2. select K map cells as the fixpoints for the individual topics. The
fixpoints are cells evenly spread over a centrally placed circle
whose radius is about 2/3 of the map dimension. The radius is
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chosen so that the internal and external distances (on a torus
surface) between the opposite fixpoints be equal.

3. initialize selected fixpoints with K main topics

4. initialize all the remaining cells reference vectors using the fol-
lowing rule:

S dee) v
v = K €
> iz dlcj, ¢)
where d(c;, ¢;) is the Euclidean distance on torus surface between given
cell and i-th fixpoint (represented by vector v;) and ¢; is a small,
random disturbance vector.

Our experiments showed that maps initialized in this way are not
only more comprehensible and stable - they are also easier and faster
to learn. One example can be seen in Figure 6.5. We can see, for
example, the closeness of the concepts of sleep disorders and general
health conditions, or pregnancy and birth. There is, of course, no «a
priori knowledge encapsulated in the algorithm, but rather a reflection
of the fact that people talking (writing) on both the subjects use a
particular vocabulary more frequently than on average. There are, of
course, many ill-defined clusters, but this should not be a surprise for
news-groups data.

Since global similarities are determined during the initialization
phase, only local relations have to be learned. Consequently, such a
map can be learned with a smaller learning kernel radius and a lower
value of the learning coefficient alpha. Moreover, in case of hierarchical
maps, such an initialization procedure can be repeated iteratively on
each level of the map hierarchy.

6.5 Growing Neural Gas for Document
Clustering

Another possibility of extracting topical groups is offered by the Grow-
ing Neural Gas (GNG) networks proposed in [26]. Like Kohonen’s
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disease state de salud para
birth disease database trigenesis medline
hiv pregnancy disease health faq human
health directory potency
agent oral heart senior inject

general 1 therapy cough

Figure 6.5: Themes identified by WebSOM
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Figure 6.6: SOM map for a data distribution which is uniform in the
shaded area (output of the DemoGNG applet [48])

(SOM) networks, the GNG can be viewed as a topology learning al-
gorithm. More precisely, its aim can be summarized as follows: Given
some collection of high-dimensional data, find a topological structure
which closely reflects the topology of the collection. In a typical SOM,
the number of units and the topology of the map are predefined. As
observed in [26], the choice of the SOM structure is difficult, and the
need to define a decay schedule for various features is problematic.
A typical SOM produced by Kohonen’s algorithm is shown on Figure
6.6. On the contrary, a GNG network does not require specification
of the network size and the resulting network adapts very well to a
given data topology - see Figure 6.7. If we treat a single GNG graph
node as a cluster of data, then the whole network can be viewed as a
meta-clustering structure, where similar groups are linked together by
graph edges.

GNG starts with very few units® , and new ones are inserted suc-
cessively every k iterations. To determine where to insert new units,
local error measures are gathered during the adaptation process; a new
unit is inserted near the unit which has accumulated the maximal er-
ror. Interestingly, GNG cells of the network are joined automatically
by links, which results in a possibly disconnected graph, the connected
components of which can be treated as different data clusters. Fig-

Sthe initial nodes referential vectors are initialized with our broad topic initial-
ization method [39]. We briefly describe it in section 7.5.
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Figure 6.7: GNG network for a data distribution which is uniform in
the shaded area (output of the DemoGNG applet [48])

ures 6.8 and 6.9 compare SOM and GNG networks for the well-known
Wisconsin Breast Cancer set, consisting of 683 nine-dimensional data
points representing two different cancer classes: malignant, and be-
nign.

Both algorithms discover regions typical for each diagnostic class,
and present regions where both the classes overlap. The complete
GNG algorithm specification and its comparison to many other com-
petitive soft methods can be found in [27] or [26].

6.6 Topical Groups Extraction

The SOM algorithm can be generally viewed as a clustering algorithm:
map cells serve as a kind of containers for groups of similar documents.
But the idea of WebSOM represents still something more. Not only
the similarity within and dissimilarity outside a cell plays a role, but
also the issue of similarity to the neighboring cells on the map. For this
reason, also inter-cellar clusters may occur on the map of documents,
making some groups of cells appear separated from the other ones.
These clusters of cells will be called topical groups here, such a cluster
is expected to contain documents concerned with some (more or less
broad) topic. Recall that the number of cells, and hence the respective
cellular clusters of documents may be quite large (thousands), so that
in order to understand the whole collection of documents, a human
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being, would not try to in identify the subject of each map cell, but
he would rather look first at the content of the larger intercellular
clusters. So, once the two-dimensional map has been generated (i.e.
the generation process has converged, with respect to the clustering
error measure, to some optimum), it represents some (possibly fuzzy)
structure of topical groups. It is often useful to extract borders (which
may also be fuzzy) of such groups and to assign them to different areas
of map.

Identification of such broad topics in document collections drew
attention of a number of researchers. For instance, the issue was ap-
proached by the so-called PLSA [32], a method based on the assump-
tion that there exists a latent variable Z, whose levels 2,k =1... K
correspond to underlying topical groups. Conditional probabilities
P(z; | d;) can be computed by means of singular-value decomposition
(SVD) of the term-document frequency matrix N;; = Freq(t;, d;) or,
alternatively, by maximizing log-likelihood function:

InL(z) = Z Ny; - log (P(t; | dy)) (6.6)

_ ZNij -log (Z P(t; | zi) - P(zy | dj))

As an alternative to the word-document representation we can use
WebSOM to build a model of citation patterns. In a such model,
a document is represented as a sparse vector whose i-th component
represents the path length from [via outgoing links| or to [via incoming
links| the i-th document in a given collection. It is also possible to
estimate a joint term-citation model [17, 18|.

In our own investigations we have applied algorithms for extraction
of fuzzy clusters. Numerous methods were drawn up in the past, to
mention only [64], |24], [4] or [58]. Unfortunately, none of them ap-
peared to be directly applicable to free-text document maps, mainly
due to extremely fuzzy structure of SOM clusters (very smooth simi-
larity structure of topical groups).
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Fuzzy-ISODATA algorithm [4] (called also Fuzzy C-Means, or
FCM) is based on a gradual approach to the nearest (with respect
to the fuzzy similarity measure) attractor and dynamic modification
of similarity weights. The goal is to maximize the fuzzy partition
quality measure:

V] e
T (L} {on}) = D) i (k) - di (k) (6.7)

k=1 i=1
where V' is the set of objects (vectors) to be clustered, d;(k) is the
distance between v, € V and the i-th cluster centroid v;, p; : V —
[0, 1] is an i-th cluster fuzzy membership function and m is a positive
constant, defining clustering crispness (in our case, m = 1.5), and ¢ is

the number of topical clusters.

Though numerous methods were drawn up in the past, none of
them appeared to be directly applicable to free-text document maps.

We have encountered several difficulties:

1. extremely fuzzy structure of implicit clusters in SOM (due to
the smooth similarity structure of topical groups)

2. necessity of taking into account both the similarity measure in
the original, document space and in the SOM space (in order to
obtain jointed clusters during visualization)

3. necessity of identification and exclusion of outliers (i.e. docu-
ments not representative of any topical group) during the cluster
formation process

Fuzzy-ISODATA [4] is based on a gradual approach to the nearest
(with respect to the fuzzy similarity measure) attractor and dynamic
modification of similarity weights. A priori estimation of the number
of topical clusters (¢) in a given document set is usually a non-trivial is-
sue. Consequently, a family of graph-theoretical clustering algorithms
based on the minimal spanning tree (MST) construction has been
proposed [64]. We have adapted an efficient implementation of the
Prim algorithm on Fibonacci heaps to build the MST for a lattice (a
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graph connecting adjacent cells) of reference vectors, in which the edge
weights represent the similarities between the corresponding vectors.
In the second step, the edges whose weights are significantly higher ©
than the adjacent ones are assumed to be fuzzy cluster borders and are
removed from the MST. The resulting connected graph components
represent clusters.

Unfortunately, the MST on the original map reference vectors re-
veals the previously mentioned problem; in particular, the weight de-
viations the among neighboring edges are not significant. For this
reason, we have applied a two-stage approach: in the first step, the
Fuzzy-ISODATA algorithm is performed on the reference vectors, of
the original map using the upper-bound estimate of the number of
clusters (for visualization purposes, it is sufficient to set it to 10-15).

Next, cluster centroids (cluster reference vectors) are computed as
weighted average:

_ Z'kjill Freq(celly) - vy
‘ ‘k]icll Freq(celly)

(6.8)

where viis the reference vector of the k-th cell, N, is the set of cells in
the cluster, and Freg(celly,) is the number of documents assigned to
the k' cell. Finally, the MST is built on the lattice of cluster reference
vectors, and the edge trimming algorithm described above is applied.

Finally, the MST is built on the lattice of cluster centroids.

Having fixed the map segmentation, we label each topical group
with the most descriptive term, chosen among the descriptors with
highest weight in the reference vectors assigned to the corresponding
area. The best label can be computed on the basis of inter-group
entropy:

Fuw(t;, celly) = Freq(t;, celly) - w(t;, celly) (6.9)

SE.g., we > avg(wg) + k- std(wg), where E is the set of neighboring edges, k is
a small positive constant, avg is the average edge weight and std is the standard
deviation of weights in the vicinity
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‘k]L' Fuw(t;, celly,)

witi, Ne) = IN.| Fuw(t;celly) Fu(ty,celly)
c w(t;,ce w(t;,ce
k=1 (z;fﬁi Fultroelly) (1 +log (1 U/ Fw(ti,ﬁezzw)))
(6.10)
It should be stressed that in case of hierarchical maps, this mea-
sure has to be recomputed on each level of the hierarchy. Another
possibility is to compute a measure based on inter-cluster term fre-
quencies, average weights and standard deviations, for instance, in a
manner similar to the previously mentioned macro-averaging of refer-
ence vectors:

avg? Fw(t;, cell
U}(t“Nc) _ gcellkENc ( ( k)) (611)
log (stdeen,en, (Fw(t;, celly)))
and to label each cluster with the descriptors which are highly rated
(characteristic) with respect to above measure, but only for a given

cluster.

6.7 Map Quality

A very intricate problem is the issue of map quality. We have devel-
oped the following procedure to check "objectively" the map proper-
ties. One of the maps is assumed as the "ideal" one. In case of our
(dictionary) optimization methods, it is the map without optimization.
Then the map creation procedure is run with identical initialization
for the "ideal quality" and the optimized procedure. The map quality
is measured as the sum of squared distances of the location of each
document on both maps. The initial results seem to be encouraging,
though it is still too early to present a complete report.



Chapter 7

Incremental Document
Clustering

In this chapter we describe how we explore the clustering properties
of growing neural gas and artificial immune networks to accommodate
new documents into the current clustering framework.

Clustering and content labeling are the crucial issues for the user’s
understanding of the two-dimensional map. We started our research
with the WEBSOM approach, which appeared to be unsatisfactory:
both speed and clustering stability were not very encouraging.

One of the main goals of the BEATCA project was to create mul-
tidimensional document maps in which geometrical vicinity would re-
flect conceptual closeness of documents in a given document set.

In our approach, objects (text documents, as well as the graph
nodes, described below) are represented in the standard way, i.e. as
vectors of the dimension equal to the number of distinct dictionary
terms. A single element of a so-called referential vector represents
importance of the corresponding term and is calculated on the basis
of the t fidf measure (6.3) or our own context-sensitive wyye measure,
which will be described later. The similarity measure is defined as the
cosine of the angle between the corresponding vectors.
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7.1 The Referential Approach - WebSOM

From the purely conceptual point of view, the SOM approach to docu-
ment clustering (WebSOM) is incremental, as documents are presented
one by one to the learning mechanism.

In Section 6.1 we have already described the SOM clustering al-
gorithm. We have pointed out subsequently various shortcomings of
that method, and suggested ways of overcoming them, e.g. the issue
of slow winner search (Section 6.2) or non-reproducable initialization
(section 6.3), too rigid structure (Section 6.5).

However, from the perspective of an incremental approach to map
construction (which is essential for long-term time complexity reduc-
tion), further important deficiencies of SOM need to be mentioned and
overcome (cf. [2]): (a) SOM is order dependent, i.e. the components
of the final weight vectors are affected by the order in which train-
ing examples are presented, (b) the components of these vectors may
be severely affected by noise and outliers, (c) the grid size, the step
size and the neighborhood size must be tuned individually for each
data-set to achieve useful results.

7.2 GNG Extension with the Utility factor

A typical problem in web mining applications is that the data being
processed is constantly changing - some documents disappear or be-
come obsolete, while other enter the analysis. All this requires models
which are able to adapt their structure quickly in response to non-
stationary distribution changes. Thus, we decided to adopt and im-
plement the GNG with the utility factor model [28]. We have already
characterized the basic GNG approach in Section 6.5, and will now
concentrate on the utility factor extension.

A crucial concept here is to identify the least useful nodes and to re-
move them from the GNG network, enabling further node insertions in
regions where they would be more necessary. The utility factor of each
node reflects its contribution to the total classification error reduction.
In other words, a node’s utility is proportional to the expected error
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growth if that node were removed. There are many possible choices
for the utility factor. In our implementation, the utility update rule of
the winning node has been simply defined as Uy = Us+error,—errors,
where s is the index of the winning node, and ¢ is the index of the
second-best node (the one which would become the winner if the ac-
tual winning node did not exist). The utility of a newly inserted node
is arbitrarily initialized to the mean of the two nodes which have ac-
cumulated most of the error: U, = (U, + U,)/2.

After the utility update phase, the node £ with the smallest utility
is removed if the fraction error; /Uy is greater than some predefined
threshold, where j is the node with the greatest accumulated error.

7.3 Robust Winner Search in GNG Net-
work

Similarly to Kohonen’s algorithm, the most computationally demand-
ing part of the GNG algorithm is the winner search phase. Especially
in application to web documents, where both the text corpus size and
the number GNG network nodes is huge, the cost of even a single
global winner search phase is prohibitive.

Unfortunately, neither the local-winner search method (i.e. search-
ing through the graph edges from some staring node) nor the joint-
winner search method (our own approach to SOM learning described
in section 6.2, see also [39]) are directly applicable to the GNG net-
works. The main reason for this is that a graph of GNG nodes can be
unconnected. Thus, the standard local-winner search approach would
prevent document from shifting between the separated components
during the learning process.

A simple modification consist in remembering the winning node for
more than one connected component of the GNG graph! and conduct-
ing in parallel a single local-winner search thread for each component.

n our experiments, two winners turned to be sufficient to overcome the prob-
lem of components separation
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Obviously, this requires periodical (precisely, once for an iteration) re-
calculation of connected components, but this is not very expensive?.

A special case is the possibility of a node removal. When the
previous iteration’s winning node for a particular document has been
removed, we activate search processes (in parallel threads) from each
of its direct neighbors in the graph.

We have implemented another method, a little more complex (both
in terms of computation time and memory requirements) but, as the
experiments show, more accurate. It exploits the well-known Cluster-
ing Feature Tree [65] to group similar nodes in dense clusters. The
node clusters are arranged in a hierarchy, and stored in a balanced
search tree. Thus, finding the closest (most similar) node for a docu-
ment requires O(log,V') comparisons, where V' is the number of nodes
and ¢ is the tree branching factor (refer to [65]). The amortized tree
structure maintenance cost (node insertion and removal) is also pro-
portional to O(log;V).

7.4 Artificial Immune Systems

An immune algorithm is able to generate the reference vectors (called
antibodies) each of which summarizes basic properties of a small group
of documents treated here as antigens® . This way the clusters in the
immune network spanned over the set of antibodies will serve as in-
ternal images, responsible for mapping existing clusters in the docu-
ment collection into network clusters. In essence, this approach can
be viewed as a successful instance of exemplar-based learning giving
an answer to the question "what examples to store for use during gen-
eralization, in order to avoid excessive storage and time complexity,
and possibly to improve generalization accuracy by avoiding noise and
overfitting", [59].

%in order of O(V + E), where V is the number of nodes and E is the number
of connections (graph edges)

3Intuitively by antigens we understand any substance threatening proper func-
tioning of the host organism while antibodies are protein molecules produced to
bind antigens. A detailed description of these concepts can be found in [8].
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7.4.1 The aiNet Algorithm for Data Clustering

The artificial immune system aiNet [7] mimics the processes of clonal
selection, maturation and apoptosis? observed in the natural immune
system. Its aim is to produce a set of antibodies binding a given set
of antigens (i.e., documents). The efficient antibodies form a kind of
immune memory capable to bind new antigens sufficiently similar to
these from the training set.

Like in SOM, the antigens are repeatedly presented to the mem-
ory cells (being matured antibodies) until a termination criterion is
satisfied. More precisely, a memory structure consisting of matured
antibodies, M, is initiated randomly with a few cells’. When an anti-
gen ag; is presented to the system, its affinity aff (ag;, ab;) to all the
memory cells is computed. The value of aff (ag;, ab;) expresses how
strongly the antibody ab; binds the antigen ag;. From a practical point
of view the aff (ag;, ab;) can be treated as the degree of similarity be-
tween these two cells®. The greater the affinity aff (ag;, ab;), the more
stimulated ab; is.

The idea of clonal selection and maturation translates into the
next steps (here o4, and oy are parameters). The cells which are
most stimulated by the antigen are subjected to clonal selection (i.e.,
each cell produces a number of copies proportional to the degree of
its stimulation), and each clone is subjected to mutation (the inten-
sity of mutation is inversely proportional to the degree of stimulation
of the mother cell). Only the clones ¢l which can cope successfully
with the antigen (i.e., such that aff (ag;, ab;) > 04) survive. They are
added to a tentative memory, M;, and the process of clonal suppres-
sion starts: an antibody ab; too similar to another antibody aby (i.e.,
the aff (ab;, ab,) > 05)) is removed from M;. The remaining cells are
added to the global memory M.

1. select n most excited antibodies,

“Consult [8] for description of these notions.

5In section 7.5 another initialization is proposed.

6In practical applications this measure can be derived from any metric dissimi-
larity measure dist as aff (ag;,ab;) = MMW, where d;,q. stands for the

maximal dissimilarity between two cells

dimaz
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2. clone these cells (the most stimulated cell the more clones it
produces),

3. mutate clones (the more stimulated the cell the more careful
modification of its components),

4. compute the affinity of ag; to the mutated clones

5. select €% of highly stimulated mutants and add them to tempo-
rary memory structure M,

6. eliminate those ab; € M, for which af f(ag;,ab;) < o4, obtaining
a reduction in the size of the M,

7. calculate the network affinity af f(ab;, aby) for all ab;, ab, € M,

8. (clonal suppression) eliminate too similar antibodies (i.e., if
af f(abj,aby) > o5, one of the respective cells is removed from
M;)

9. add the remaining cells to the global memory M

The n most stimulated antibodies produce a number of clones
(proportional to the degree of their stimulation). These clones are
subjected to a directed mutation carried out in accordance with the
Equation (6.1). However, now the "learning rate" « is not a func-
tion of time, but is inversely proportional to aff (ag;, ab;). Next, each
mutant computes its affinity to the antigen ag; and £% of highly stim-
ulated mutants are added to a temporary memory structure M;. The
cells in M; compete for survival, i.e. (a) the cells weakly responding
to the antigen, and (b) the cells which are too similar to another, are
removed from M;. Two control parameters, o, and o, are used to
refine conditions (a) and (b). The remaining cells are added to the
global memory.

These steps are repeated until all antigens are presented to the
system. Next, the degree of affinity between all pairs ab;,ab, € M is
computed and again overly similar (in fact: redundant) cells are re-
moved from the memory. This step represents network suppression of
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the immune cells. Lastly, 7% (one more parameter) worst individuals
in M are replaced by freshly generated cells. This ends one epoch,
and the next epoch begins until the termination condition is met.

Step 3 of the algorithm is carried out according to rule resembling
Equation (6.1). The only difference is that the "learning rate" « is not
a function of time; instead, it is inversely proportional to af f(ag;, ab;).

Among all the parameters mentioned above, the crucial one seems
to be o, as it critically influences the size of the global memory. Care-
ful examination of the network suppression step allows to observe that
when o, — 0, only clones identical with the presented antigen can sur-
vive, and the algorithm reduces to the well-known Leaders algorithm —
cf. [31], Ch. 3. Each memory cell can be viewed as an exemplar which
summarizes important features of the "bundles" of antigens stimulat-
ing.

7.4.2 Identification of Redundant Antibodies

The clonal suppression stage requires |M| - (|M;| — 1)/2 calculations
of the affinity (in fact: distance) between all the pairs of cells in M.
To reduce the time complexity of this step, we refer to the agglom-
erative clustering approach. The crucial concept here is to manage
the matrix of distances in a smart way, and to update only those dis-
tances which have really changed after merging of two clusters. Among
many possible solutions, we have applied the so-called partial similar-
ity matrix and update algorithm presented in [34]. The authors have
shown that the expected complexity of a single-step update is of order
O(2cN - C - k), where N is the number of objects, C' is the maximum
number of clusters, k£ << C'is the number of maximal column rescan-
ning 7. This is significantly less than the O(N?) complexity of a naive
approach. Finally, the reduced antibodies are replaced by a single cell
being the center of gravity of the set of removed antibodies. Thus,
we not only reduce the size of the immune network, but presumably

“That means that the number k of columns in the similarity matrix that need
to be updated in a single clustering step is significantly lower than the maximum
number C of clusters.
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compress the information contained in the set of specialized antibodies
to the new, universal antibody.

7.4.3 Robust Construction of Mutated Antibodies

In case of high-dimensional data, such as text data represented in a
vector space, calculation of the stimulation level is quite costly (pro-
portional to the number of different terms in the dictionary). Thus,
the complexity of an immune algorithm might be significantly reduced
if we can restrict the number of required expensive recalculations of
the stimulation level. The direct, high-dimensional calculations can
be replaced by operations on scalar values on the basis of the simple
geometrical observation that stimulation of a mutated antibody clone
can be expressed in terms of the original antibody stimulation.

Such optimization is based on a generalized Pythagoras theorem:
if vy, va, v3 are vectors forming a triangle (vy + vo + vz = 0), then

]v3]2 = ]vl|2 + ]112]2 — 2|vy||va]cos(vy, vg) (7.1)

If also vy L vy, we get the well-known equation: |vs]? = |v |2+ |vg|?.
We can define a mutated clone as: m = rd 4+ (1 — k)¢, where m is
mutated clone, ¢ is cloned antibody, d is antigen (document) and & is
the (random) mutation level.

Taking advantage of Equations (6.1) and (7.1) (where v, := d' =
K-d, vg:=¢ = (1 —K)-c, vs:=—m) and having calculated the orig-
inal antibody stimulation af f(c,d), we can calculate mutated clone
stimulation level af f(m,d) as follows: P = cos(d,d') = cos(c,d) =
L—aff(c.d), Imf> = |d'|* + || + 2P|||d'| = w?|d* + (1 — 5)*|c]* +
26(1 — k) P|c||d|, s = k|d|* + (1 — k)|c||d] = &|d|* + (1 — k) P|c||d]|, and
finally

s
aff(m,d) = (7.2)

im| - [d|
Dually, we can find a mutation threshold s such that the mutated
antibody clone stimulation af f(m,d) < o4. More precisely, we are
looking for k¢ such that af f(m,d) = o4, which in turn can be used
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to create a mutated antibody for a random mutation level x € (0, ko).
The advantage of such an approach is the reduction in the number
of inefficient (too specific) antibodies, which would be created and
immediately removed from the clonal memory. Analogously to the
previous inference, if we define p = aff(c,d), * = —p|d| + p*|c| +
og(pld] —c), y = |d|* — 2ple|d| + p?|c* — og(|d|* — |c|* + 2p|c||d]) and
z=o0g4-|d]\/(p*—1) - (062 — 1), then

_ e (z+2)
Rg = Y (73)

7.4.4 Stabilization via Time-dependent Parame-
ters

A typical problem with the immune paradigm based algorithms is the
stabilization of the cardinality of the memory cells set. Majority of al-
gorithms are also quite sensitive to the choice of the input parameters.
The detailed analysis presented in [58] shows that in case of aiNet the
crucial factor is the choice of the suppression threshold o, and the
number of antibodies to be cloned m;. Our experiments showed that
the correct choice of the death threshold o4 can also significantly in-
fluence the final model. To stabilize the network, we decided to treat
its parameters, like o, 04 and m; as functions of time (i.e. o(t), oa(t)
and m,(t)). Let p be any of these parameters and let py be the initial
value of p and p; be the final value of p. So the function p(¢) has to
be defined as follows: If 7" is the number of iterations through which
we want to proceed, then obviously we have to ensure that p(0) = po
and p(T) = p1.

In particular, in our system, both o,(t) and o4(t) are reciprocally
increased, while my(t) is linearly decreased with time. So to ensure
the marginal conditions at ¢ = 0 and ¢ = 7' the time dependence has
the form:

t-(T+1)

0i(t) = iy + (03, — 04) - T-(t+1)

(7.4)
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my(t) = mo + w -t (7.5)

where @ stands for either s or d, o,, = 0.05, 05, = 0.25 for o,(t);
04, = 0.1, 04, = 0.4 for o4(t); mo = 3, my = 1 for my(t).

7.4.5 Robust Antibody Search in an Immune Net-
work

One of the most computationally demanding part of any AIS algo-
rithm is the search for the best fitted (most stimulated) antibodies.
In particular, in application to web documents, where both the text
corpus size and the number of idiotypic network cells is huge, the cost
of even a single global search phase in the network is prohibitive.

We propose to replace the global search approach with a modified
local search (i.e., searching for current iteration’s most stimulated an-
tibody through the graph edges of the idiotypic network, starting from
the last iteration’s most stimulated antibody). The modification relies
upon remembering the most stimulated cell for more than one con-
nected component of the idiotypic network, and to conduct in parallel
a single local-winner search thread for each component. Obviously,
this requires one-for-iteration recalculation of connected components,
but this is not very expensive: the complexity of this process is of
order O(V + E), where V is the number of cells and E is the number
of connections (graph edges).

A special case is the possibility of an antibody removal. When the
previous iteration’s most stimulated antibody for a particular docu-
ment (antigen) has been removed from the system’s memory, we acti-
vate search processes (in parallel threads) from each of its immediate
neighbors in the graph.

We have developed another, slightly more complicated, but, as the
experiments show, more accurate method. It exploits the well-known
Clustering Feature Tree (CF-Tree, |65]) to group similar network cells
in dense clusters. Antibody clusters are arranged in a hierarchy and
stored in a balanced search tree. Thus, finding the most stimulated
(similar) antibody for a document requires O(log;V') comparisons,
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where ¢ is the tree branching factor (refer to [65] for details). The
amortized tree structure maintenance cost (insertion and removal) is
also proportional to O(log;V).

7.5 Adaptive Visualization of the Model

Despite their many advantages over SOM approach, both GNG and
AIS have one serious drawback: high-dimensional networks cannot
be easily visualized. However, we can build Kohonen map on the
referential vectors of a GNG or AIS network, similarly to the case of
single documents, i.e., treating each vector as a centroid representing
a cluster of documents.

To obtain the visualization that singles out the main topics in the
corpus and reflects the conceptual closeness between topics, the proper
initialization of SOM cells is required. We have developed a special
initialization method aimed at identifying broad topics in the text
corpus. Briefly, in the first step we find the centroids of a few main
clusters (via the fast ETC Bayesian tree [37] and SVD eigenvectors
decomposition [21] ). Then, we select fizpoint cells, uniformly spread
them on the map surface, and initialize them with the centroid vectors.
Finally, we initialize the remaining map cells with intermediate topics,
calculated as the weighted average of main topics, with the weight
proportional to the Euclidean distance from the corresponding fixpoint
cells.

After initialization, the map is learned with the standard Koho-
nen algorithm [43]. Finally, we adopt the so-called plastic clustering
algorithm [8] to adjust the position of GNG/AIS model nodes on the
SOM projection map, so that the distance on the map reflects the sim-
ilarity of the adjacent nodes as closely as possible. Here the topical
initialization of the map is crucial for assuring the stability of the final
visualization [39].

The resulting map is a visualization of the GNG /AIS network with
the detail level depending on the SOM size (a single SOM cell can
gather more than one GNG/AIS node). The user can access the doc-
ument content via the corresponding GNG/AIS node, which in turn
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sport injury

Figure 7.1: Example of a GNG model visualization

can be accessed via a SOM node - the interface here is similar to the
hierarchical SOM map case.

An exemplary map can be seen in Figure 7.1. The color brightness
is related to the number of documents contained in the cell. Each cell
which contains at least one document is labeled with a few descriptive
terms (only one is visible here, the rest are available via the BEATCA
search engine). The black lines represents borders of topical areas®. Tt
is important to stress that this planar representation is in fact a torus
surface (which can also be visualized in 3D), so the cells on the map
borders are adjacent.

After initialization, the map is learned with the standard Kohonen
algorithm [43]. Finally, we adopt the attraction-repelling algorithm
[57] to adjust the position of AIS antibodies on the SOM projection
map, so that the distance on the map reflects the similarity of the
adjacent cells as closely as possible. The topical initialization of the

8The clustering of map nodes, based on the combination of Fuzzy C-Means
algorithm and the minimal spanning tree technique is described in Section 6.6
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map is crucial here to assure the stability of the final visualization
[39]. The resulting map visualizes the AIS network with resolution
depending on the SOM size (a single SOM cell can gather more than
one AIS antibody).

7.6 Contextual Maps

In our work we use the well known approach which consists in repre-
senting documents as points in the term vector space. It is a known
phenomenon that text documents are not uniformly distributed over
that space. The characteristics of frequency distributions of individ-
ual terms depend strongly on document location. On the basis of
experimental results presented in the previous section, we suggest au-
tomatical identification of groups containing similar documents via a
preprocessing step in document maps formation. We argue that af-
ter splitting documents in such groups, term frequency distributions
within each group become much easier to analyze. In particular, it ap-
pears to be much easier to select significant and insignificant terms for
efficient calculation of similarity measures during the map formation
step. Such document clusters are called contertual groups. For each
contextual group, separate maps are generated. To obtain more in-
formative maps, one needs to balance the size of each cluster (during
initial contextual clustering). The number of documents presented
on the map cannot be too high, because the number of cells in the
graph (and the time required to create a map) would then to grow
adequately. On the other hand, a single map model should not hold
only a few irrelevant documents.

The constraints on the cluster size are obtained by recurrent di-
visions and merges of fuzzy document groups, created by a selected
algorithm (e.g., EM combined with ETC or Chow-Liu Bayesian net,
SVD, Fuzzy C-Means). In the case of Fuzzy-ISODATA algorithm,
there is an additional modification in the optimized quality criterion,
which penalizes imbalanced splits (in terms of cluster size).

In the first step, the whole document set is split into a few (2-5)
groups. Next, each of these groups is recursively divided until the
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number of documents inside each group meets the required criteria.
After such a process, we obtain a hierarchy represented by a tree of
clusters. In the last phase, the groups which are smaller than a pre-
defined constraint are merged with the closest group. The similarity
measure is defined as a single-linkage cosine angle between both the
clusters centroids.

The crucial phase of contextual document processing is the division
of terms space (dictionary) into - possibly overlapping - subspaces. In
this case, it is important to calculate the fuzzy membership level,
which will represent the importance of a particular word or phrase
in different contexts (and implicitly, the ambiguity of its meaning).
The estimation of fuzzy within-group membership of the term myq is
calulated as:

e (fra - mac)

mig =
fa- ZdeG mda

where fg is the number of documents in the cluster G, mgyq is the
degree of document d membership in group G, fiq is the number of
occurrences of term ¢ in document d.

Finally, the vector-space representation of a document is modi-
fied to take into account the document context. This representation
increases the weights of the terms which are significant for a given
contextual group, and decrease the weights of insignificant terms. In
the boundary case, insignificant terms are ignored, which leads to re-
duction in the representation space dimensionality. To estimate the
significance of a term in a given context, the following measure is
applied:

(7.6)

Wiaq = fta - Mua - log (f—G) (7-7)
Je g
where f;4 is the number of occurrences of term ¢ in document d, m;q
is the degree of membership of term ¢ in group G, fg is the number
of documents in group G, f; is the number of documents containing
term ¢.
The main idea behind the proposed approach is to replace a single
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model (growing neural gas, an immunological net or hierarchical SOM
maps) by a set of independently created contextual models, and to
merge them together into a hierarchical model. The training data for
each model is a single contextual group. Each document is represented
as a standard referential vector in the term-document space. However,
the tfidf measure of vector components is replaced by w;yq.

To visually represent the similarity relation between contexts (rep-
resented by a set of contextual models), an additional "global" map is
required. Such a model becomes a root of contextual maps hierarchy.
The main map is created in a manner similar to the previously created
maps, with one distinction: an example in training data is a weighted
centroid of referential vectors of the corresponding contextual model:

=3 () (73)

ceM;

Finally, cells and regions in the main map are labeled with key-
words selected according to the following contextual term quality mea-
sure:

QtG = ln(l + ftG’) . (1 - |ENtG - 05|) (79)

where E'N;c denotes normalized entropy of the term frequency within
the group.

The learning process of the contextual model is to some extent
similar to the classic, non-contextual learning. However, it should be
noted that each constituent model (and the corresponding contextual
map) can be processed independently. In particular, it can be distrib-
uted and calculated in parallel. Also a partial incremental update of
such models appears to be much easier to perform in terms of model
quality, stability and time complexity. The possibility of incremen-
tal learning stems from the fact that the very nature of the learning
process is iterative. So if new documents arrive, we can consider the
learning process as having been stopped at some stage, and being
resumed now with all the documents. We claim that it is not nec-
essary to start the learning process from a scratch either in the case
when the new documents "fit" the distribution of the previous ones
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or when their term distribution is significantly different. This claim is
supported by the experimental results presented in Section 8.2.1. In
Section 8.2.2, we present some remarks on the scalability issues of the
contextual approach.



Chapter 8

Experimental Results

To evaluate the effectiveness of the overall incremental map formation
process, we compared it to the map formation "from scratch". In
this section, we describe the overall experimental design, the quality
measures used and the results obtained.

The architecture of our system supports comparative studies of
the clustering methods at the various stages of the process (i.e. initial
document grouping, initial topic identification, incremental clustering,
model projection and visualization, identification of topical areas in
the map and its labeling). In particular, we have conducted series
of experiments to compare the quality and stability of the GNG and
SOM models for various model initialization methods, winner search
methods and learning parameters [40]. In this chapter we only focus
on evaluation of the GNG winner search method and the quality of
the resulting incremental clustering model with respect to the topic-
sensitive learning approach.

8.1 Quality Measures for Document Maps

Various measures of quality have been developed in the literature, cov-
ering diverse aspects of the clustering process. The clustering process
is frequently referred to as "learning without a teacher", or "unsu-
pervised learning", and is driven by some kind of similarity measure.
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The term "unsupervised" does not completely reflect the real nature
of learning. In fact, the similarity measure used is not something "nat-
ural", but reflects rather the intentions of the teacher. So we can say
that clustering is a learning process with a hidden learning criterion.
The criterion is intended to reflect some esthetic preferences, like: uni-
form split into groups (topological continuity) or appropriate split of
documents with known a priori categorization. As the criterion is
somehow hidden, we need tests to tell if the clustering process really
fits the expectations. In particular, we have accommodated for our
purposes and investigated the following well known quality measures
of clustering [66, 6, 30]:

e Average Map Quantization: average cosine distance between
each pair of adjacent nodes. The goal is to measure topological
continuity of the model (the lower this value, the "smoother"
the model):

1

1
AvgMapQ = W%ZN B Z c(n,m) (8.1)

where N is the set of graph nodes, E(n) is the set of nodes
adjacent to node n, and c¢(n,m) is the cosine distance between
nodes n and m.

e Average Document Quantization: average distance (accord-
ing to the cosine measure) for the learning set between the doc-
ument and the node it has been classified into. The goal is to
measure the quality of clustering at the level of a single node:

AngocQ:ﬁqgv |D(1n)| Z c(d,n) (8.2)

deD(n)

where D(n) is the set of documents assigned to node n.
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Both measures take values in the interval [0, 1]; the lower values
correspond to "smoother" inter-cluster transitions and more "com-
pact" clusters. To some extent, optimization of one of the measures
entails increase in the other one. Still, experiments reported in [40]
show that the GNG models are much smoother than SOM maps while
the clusters are of similar quality.

The two subsequent measures evaluate the agreement between the
clustering and the a priori categorization of documents (i.e. a partic-
ular newsgroup in case of newsgroups messages).

e Average Weighted Cluster Purity: average "category pu-
rity" of a node (node weight is equal to its density, i.e. the
number of assigned documents):

AvgPurity = ﬁ Z mazx. (|De(n)]) (8.3)

neN

where D is the set of all documents in the corpus and D.(n) is
the set of documents from category c assigned to the node n.

e Normalized Mutual Information: quotient of the total cat-
egory and the total cluster entropy by the square root of the
product of category and cluster entropies for the individual clus-
ters:

Dc(n D
NMI = Z"GN Zcec |D.(n)| log (%)

(S 12001 109 (Z52)) (Soec 1) 100 (1))
(8.4)

where N is the set of graph nodes, D is the set of all documents
in the corpus, D(n) is the set of documents assigned to node n,
D, is the set of all documents from category ¢ and D.(n) is the
set of documents from category c assigned to node n.
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Again, both measures take values in the interval [0,1]; the higher
the value, the better agreement between clusters and a priori cate-
gories.

8.2 Growing Neural Gas

8.2.1 Incrementality Study

Model evaluation were executed on 2054 documents downloaded from
5 newsgroups with quite well separated main topics (antiques, comput-
ers, hockey, medicine and religion). Each GNG network was trained
for 100 iterations with the same set of learning parameters, using pre-
viously described winner search method.

In the main case (depicted with the black line), the network was
trained on the whole set of documents. This case was the reference
one for the quality measures of adaptation, as well as the comparison
of the winner search methods.

Figure 8.1 presents the comparison of a standard global winner
search method with our own CF-tree based approach. The local search
method is not taken into consideration since, as it has already been
mentioned that it is completely inappropriate in case of unconnected
graphs. Obviously, the tree-based local method is invincible in terms
of computation time. The main drawback of the global method is
that it is not scalable and depends on the total number of nodes in
the GNG model.

At first glance the results seemed surprising. On the one hand, the
quality was similar, on the other - global search appeared to be worse
of the two! We have investigated it further, and it has turned out
to be the aftermath of process divergence during the early iterations
of the training process. We shall explain it later, on the example of
another experiment.

In the next experiment, in addition to the main reference case,
we considered another two cases. During the first 30 iterations, the
network was trained on 700 documents only. In one of the cases (light
grey line), documents were sampled uniformly from all five groups, and
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in the 33rd iteration another 700 uniformly sampled were introduced
to training. After the 66th iteration, the model was trained on the
whole dataset.

In the last case (dark grey line) initial 700 documents were selected
from two groups only. After the 33rd iteration of training, documents
from the remaining newsgroups were gradually introduced in the order
of their newsgroup membership. It should be noted here that in this
case we had an a priori information on the categories of documents.
In the general case, we are collecting fuzzy category membership in-
formation from a Bayesian Net model.

As expected, in all cases the GNG model adapts quite well to topic
drift. In the global and the topic-wise incremental case, the quality of
the models were comparable, in terms of the Average Document Quan-
tization measure (see Figure 8.5), Average Weighted Cluster Purity,
Average Cluster Entropy and Normalized Mutual Information (for the
final values, see Table 8.1). Also the subjective criteria, such as visu-
alization of both models and the identification of topical areas in the
SOM projection map, were similar.

Table 8.1: Final values of model quality measures

Cluster Cluster
Purity Entropy NMI
non-incremental 0.91387 0.00116 0.60560
topic-wise incremental | 0.91825 0.00111 0.61336
massive addition 0.85596 0.00186 0.55306

The results were noticeably worse for massive addition of docu-
ments, even though all the covered topics were present in the training
from the very beginning and should have occupied their own, spe-
cialized areas in the model. However, as can be noticed on the same
graph, a complex mixture of topics can pose a serious drawback, es-
pecially in the first training iterations. In the global reference case,
the attempt to cover all topics at once leads the learning process to a
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local minimum and to subsequent divergence (what, in fact, is quite
time-consuming, as one can notice in Figure 8.3).

As we have previously noticed, the above-mentioned difficulties ap-
ply also to the case of global winner search (Figure 8.2). As a matter
of fact, the quality of the final models in case of using the incremen-
tal approach is almost the same for global search and CF-tree based
search (Cluster Purity: 0.92232 versus 0.91825, Normalized Mutual In-
formation: 0.61923 versus 0.61336, Average Document Quantization:
0.64012 versus 0.64211).

Figure 8.4 presents the average number of GNG graph edges tra-
versed by a document during a single training iteration. It can be
seen that massive addition causes temporal instability of the model.
Also, the above mentioned attempts to cover all topics at once in case
of a global model caused much slower stabilization of the model and
extremely high complexity of computations (Figure 8.3). The last rea-
son for such slow computations is the representation of GNG model
nodes. The referential vector in such a node is represented as a bal-
anced red-black tree of term weights. If a single node tries to occupy
too big portion of a document-term space, too many terms appear in
such a tree and it becomes less sparse and - simply - bigger. On the
other hand, better separation of terms which are likely to appear in
various newsgroups and increasing "crispness" of topical areas dur-
ing model training leads to highly efficient computations and better
models, both in terms of the previously mentioned measures and a
subjective human reception of the results of search queries.

The last figure, 8.6, compares the change in the value of the Aver-
age Map Quantization measure, reflecting "smoothness" of the model
(i.e. continuous shift between related topics). In all three cases the
results are almost identical. It should be noted that the extremely low
initial value of the Average Map Quantization is the result of model
initialization via broad topics method [39], shortly described in Section
7.5.
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8.2.2 Scalability Issues

To evaluate scalability of the proposed contextual approach (both in
terms of space and time complexity), we built a model for a collection
of million documents crawled by our topic-sensitive crawler starting
from several Internet news sites (cnn, reuters, bbc).

The resulting model consisted of 412 contextual maps, which means
that the average density of a single map was about 2500 documents.
The experimental results shown in this section are presented in a series
of box-and-whisker graphs, which allows us to present a distribution
of a given evaluation measure (e.g. time, model smoothness or quanti-
zation error) over all 412 models, measured after each iteration of the
learning process (horizontal axis). The horizontal line represents the
median value, the area inside the box represents 25% - 75% quantiles,
the whiskers represent extreme values and each dot represents outlier
values.

Starting with an initial document clustering/context initialization
via hierarchical Fuzzy-ISODATA (see Section 7.6), followed by GNG
model learning (see Section 6.5) and GNG-SOM projection (see Sec-
tion 7.5), the whole cycle of map creation process took 2 days. It
is an impressing result, taking into account that Kohonen and his
co-workers reported processing times in order of weeks [44]. Tt should
also be noted that the model was built on a single personal computer!.
As it has been stated before, a contextual model construction can be
easily distributed and parallelized, which would lead to even shorter
execution times.

The first observation is the complexity of a single iteration of GNG
model learning (Figure 8.7), which is almost constant, regardless of
the increasing size of the model graph. It confirms the observations
from Section 8 concerning the efficiency of the tree-based winner search
methods. One can also observe the positive impact of the homogeneous
distribution of term frequencies in the documents grouped to in a
single map cell. Such homogeneity is - to some extent - acquired by
the initial split of a document collection into contexts. Another way of

'Pentium IV HT 3.2 GHz, 1 GB RAM
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the processing time reduction can be the contextual reduction of vector
representation dimensionality, described in the previous section.

Figure 8.8, presents the dynamics of the learning process. The
average path length of a document is the number of shifts over graph
edges when documents are moved to a new, optimal location. It can be
seen that model stabilizes quite fast; actually, most models converged
to final state in less than 30 iterations. The fast convergence is mainly
due to the topical initialization. It should also be noted here that the
proper topical initialization can be obtained for well-defined topics,
which is the case in contextual maps.

Figure 8.9 presents the quality of the contextual models. The fi-
nal values of the average document quantization (Figure 8.9) and the
map quantization (Figure 8.10) are low, which means that the result-
ing maps are both "smooth" in terms of local similarity of adjacent
cells and accurately represent documents grouped in a single node.
Moreover, such low values of the document quantization measure have
been obtained for a moderate size of GNG models (the majority of the
models consisted of only 20-25 nodes - due to their fast convergence -
and represented about 2500 documents each).

8.3 Artificial Immune Systems

8.3.1 Immune Network Quality

Beside the clustering structure represented by cells, an idiotypic net-
work should also be treated as a meta-clustering model. Similarity
between the individual clusters is expressed by graph edges, linking
the referential vectors in the antibodies. Thus, the quality of the
structure of the edges needs to be evaluated.

There is a number of ways for evaluating an idiotypic model struc-
ture. In this section we present the one which we have found to provide
the clearest interpretation. This approach is based on the analysis of
the edge lengths in the minimal spanning tree (MST) constructed over
the set of antibodies in each iteration of the learning process.
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8.3.2 Experimental Settings

The architecture of the BEATCA system supports comparative studies
of clustering methods at the various stages of the process (i.e., initial
document grouping, initial topic identification, incremental clustering,
graph model projection to a 2D map and visualization, identification
of topical areas on the map and their labeling). In particular, we
conducted series of experiments to compare the quality and stability
of the AIS, GNG and SOM models for various model initialization
methods, cell/antibody search methods and learning parameters [42,
41]. In this section we only focus on evaluation and comparison of the
immune models.

This study required manually labeled documents, so the experi-
ments were executed on the widely used 20 Newsgroups document
collection? of approximately 20 thousands newsgroup messages, par-
titioned into 20 different newsgroups (about 1000 messages each). As
a data preprocessing step in the BEATCA system, entropy-based di-
mensionality reduction techniques were applied [39], so the training
data dimensionality (the number of distinct terms used) was 4419.

Each immune model was trained for 100 iterations, using the pre-
viously described algorithms and methods: contexts extraction (Sec-
tion 7.6), agglomerative identification of redundant antibodies (Sec-
tion 7.4.2), robust construction of mutated antibodies (Section 7.4.3),
time-dependent parameters (Section 7.4.4) and CF-tree based anti-
body search method (Section 7.4.5).

8.3.3 Time-dependent Parameters Impact

In the first two series of experiments, we compared models built using
time-dependent parameters o4(t) and o4(t) with constant, a priori de-
fined values of o, and o4. As a reference case we took a model where
0s(t) variedd from the initial value of 0.05 up to 0.25, and o4(t) from
0.1 up to 0.4 (cf. Equation (7.4)).

First, we compared the reference model and the four models with a
constant o,. The parameter o, changed identically as in the reference

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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model. The values of 0,4 varied from the initial value in the reference
model (i.e., 0.1) up to the final value of 0.4 by step 0.1. The results®
are presented in Figures 8.11-8.14.

Figure 8.11 presents the variance of the edge length in the minimal
spanning tree built over the set of antibodies in the immune memory
in ¢ — th iteration of the learning process. At first glance, one can no-
tice te instability of this measure for high values of 04. Comparing the
stable values, we notice that the variance for the reference network has
the highest value. It means that the idiotypic network contains both
short edges, connecting clusters of more similar antibodies, and longer
edges, linking more distant antibodies, probably stimulated by differ-
ent subsets of documents (antigens). Such a meta-clustering structure
is obviously desirable and preferred over networks with equidistant
antibodies (and, thus, low edge length variance).

Comparing the network sizes, Figure 8.12, and the quantization
error, Figure 8.13, one can notice that for the highest values of oy,
the set of antibodies reduces to just a few entities on the other hand
- for the lowest values almost all antibodies (both universal and over-
specialized ones) are retained in the system memory. It is not sur-
prising that the quantization error for a huge network (e.g. o4 = 0.1)
is much lower than for smaller nets. Still, the time-dependent o,4(¢)
gives a similarly low quantization error for a moderate network size.
Also, both measures stabilize quickly during the learning process. The
learning time, Figure 8.14, is — to some extent — a function of network
size. Thus, for the reference model, it is not only low but very stable
over all iterations.

In the next experiment — dually — we compare the reference model
and another five models with constant o, (and varying o4). Ana-
logically to the first case, the values of o, varied from the starting
value (0.05) up to the final value in the reference model (0.25) by
step 0.05. The results are presented in Figures 8.15-8.18. We restrict
the discussion of the results to the conclusion that also in this case
a time-dependent parameter o4(t) had a strong, positive influence on

3This and the following figures show the average values of the respective mea-
sures over 20 contextual networks
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the resulting immune model.

A weakness of the approach seems to be the difficulty in selecting
the appropriate values of the parameters for a given dataset. We
investigated independently changes to the values of both parameters,
but it turn out that they should be changed "consistently"; that is,
the antibodies should not be removed too quickly, nor aggregated too
quickly. However, once found, there is a justified hope that for an
incrementally growing collection of documents the parameters do not
need to be sought anew, but rather gradually adapted.

8.3.4 Scalability and Comparison with Global
Models

Comparing hierarchical and contextual models described in Section
7.6, with a "flat", global model the most noticeable difference is the
learning time?. The total time for 20 contextual networks amounted to
about 10 minutes, against over 50 minutes for a hierarchical network
and almost 20 hours (sic!) for a global network. Another disadvantage
of the global model is the high variance of the learning time at a single
iteration as well as the size of the network. The learning time varied
from 150 seconds to 1500 seconds (10 times more!) and the final
network consisted of 1927 antibodies (two times more than for the
contextual model). It should also be noted that in our experimental
setting, each model (both the local and the global one) was trained
for 100 iterations, but it can be seen (e.g. Figure 8.22) that the local
model stabilizes much faster. Recalling that each local network in the
hierarchy can be processed independently and in parallel, it makes
the contextual approach robust and scalable® alternative to the global
immune model.

One of the reasons for such differences in the learning time is the
representation of antibodies in the immune model. The referential

4By learning time we understand the time needed to create an immune memory
consisting of the set of antibodies representing the set of antigens (documents).

SEspecially with respect to a growing dimensionality of data, which - empirically
- seems to be the most difficult problem for the immune-based approach
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vector in an antibody is represented as a balanced red-black tree of
term weights. If a single cell tries to occupy a "too big" portion of a
document-term vector space (i.e. if it covers documents belonging to
different topics), many terms which rarely co-occur in a single docu-
ment have to be represented by a single red-black tree. Thus, the tree
becomes less sparse and — simply — bigger. On the other hand, better
separation of terms which are likely to appear in various topics and
increasing "crispness" of topical areas during model training leads to
faster convergence and better models, in terms of the previously de-
fined quality measures. While the quantization error is similar for the
global and the contextual model (0.149 versus 0.145, respectively),
both the supervised measures — showing correspondence between doc-
uments labels (categories) and clustering structure — favor contextual
model. The final value of the Normalized Mutual Information was
0.605 for the global model and 0.855 for the contextual model, while
Average Weighted Cluster Purity was 0.71 versus 0.882, respectively.

One can also observe the positive impact of homogeneity of the
distribution of term frequencies in documents grouped to a single an-
tibody. Such homogeneity is - to some extent - acquired by initial split
of a document collection into contexts. Another cause of the learn-
ing time reduction is the contextual reduction of vector representation
dimensionality, described in the section 7.6.

It can be seen that model stabilizes quite fast; actually, most mod-
els converged to final state in less than 20 iterations. The fast conver-
gence is mainly due to topical initialization. It should also be noted
here that the proper topical initialization can be obtained for well-
defined topics, which is the case in contextual model.

We have also carried out experiments comparing presented immune
approach with SOM models: the flat (i.e. standard, global Kohonen’s
map) and our own variant of the contextual approach - the hierar-
chy of contextual maps (C-SOM). To compare the immune network
structure, with the static grid of the SOM model, we have built a
minimal spanning tree on the SOM grid. The results are summarized
in Figure 8.19. Again, the global model turned out to be of a lower
quality than both the contextual SOM and the contextual AIS model.
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Similarly to the global immune model, also in this case the learning
time (over 2 hours) was significantly higher than for the contextual
models. Surprisingly, the average edge in the contextual SOM model
was much longer than in case of the contextual immune network and
the standard SOM, which may be the result of the limitations of the
rigid model topology (2D grid). We defer the discussion of the edge
length distribution (Figure 8.20) to Section 8.3.6.

8.3.5 Contextual versus Hierarchical Model

The next series of experiments compared the contextual model with
the hierarchical one. Figures 8.22 and 8.23 presents the network sizes
and convergence (wrt Average Document Quantization measure) of
the contextual model (represented by the black line) and hierarchical
model (the grey line).

Although convergence to a stable state is fast in both cases and
the quantization errors are similar, it should be noted that the error
occurs for a noticeably smaller network in the contextual case (and in
a shorter time too, as mentioned in the previous section).

However, the most significant difference is the generalization ca-
pability of both models. For this experiment, we partitioned each
context (group of documents) into the training and test subsets (in
10:1 proportion). The training documents were used during the learn-
ing process only, while the quantization error was computed for both
subsets. The results are shown in Figure 8.23 — the respective learn-
ing data sets are depicted with black lines, while the test data sets
with grey lines. Nevertheless, the quantization errors for the learn-
ing document sets are similar, the difference lies in the test sets and
the hierarchical network is clearly overfitted. Again, there is no room
to go into a detailed study here, but it can be shown that this un-
desirable behavior is the result of the noised information brought by
the additional terms, which finally appears to be not meaningful in
the particular context (and thus is disregarded in contextual weights

wdtG) .
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8.3.6 Immune Network Structure Investigation

To compare the robustness of different variants of immune-based mod-
els, more profound investigation of the graph structure quality has
been carried out. In each learning iteration, for each of the immune
networks: contextual [Figure 8.25]|, hierarchical [Figure 8.26], global
|Figure 8.27] and MST built on SOM grid |Figure 8.21|, the distri-
butions of the edge lengths have been computed. Next, the average
length v and the standard deviation of the length s have been cal-
culated and edges have been classified into one of the five categories,
depending on their length. The first category consists of the edges no
longer that u — s, i.e. the shortest ones. The second category contains
edges with lengths in the interval (u — s, u — 0.5s], the next - "average
length" edges between u — 0.5s and u + 0.5s. The last two categories
contained longer edges: 4'h - edged shorter that v+ s and the last one
- longer than u + s.

Additionally, in Figure 8.24, we can see the average length of the
edges for the hierarchical and contextual immune networks (dashed
and solid black lines, respectively) and complete graphs antibodies of
both the models (cliques - depicted with grey lines). Actually, in both
cases a clustering structure has emerged, and the average length of
the edge in the immune network is much lower than in the complete
graph. However, the average length for the contextual network is
lower, whereas the variance of this length is higher which signifies a
more explicit clustering structure.

There are quite a few differences in the edge length distribution.
One can notice than in all models, the number of the shortest edges
diminishes with time. This is consistent with the intention of a gradual
elimination of the redundant antibodies from the model. However,
such an elimination is much slower in case of the global model, which
is another reason of slow convergence and high learning time. Also
in case of the SOM model, which has a static topology and where
no removal of inefficient cells is possible, we can see that the model
slowly reduces the number of redundancies, represented by too similar
referential vectors.

On the extreme end, the distribution of the dynamics of the longest
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edges is similar for the contextual and the global models, but different
in case of the hierarchical model. In particular, a hierarchical idiotypic
network contains many more very long edges. Recalling that the vari-
ance of the edge lengths has been low for this model and the average
length has been high, we can conclude that hierarchical model is gen-
erally more discontinuous. The same is true for the SOM model, which
is another indication of the imperfection of the static grid topology.



Chapter 9

User Interface

The presentation of document maps in our system is similar to that
one used in the WebSOM project, but it is enriched with our own
modifications.

There are a variety of modifications to the basic SOM topology,
having different clustering and visualization properties. In particu-
lar, we have applied Euclidean SOMs with quadratic and hexagonal
cells, projected on torus surface and presented in 2D. The well-known
problem of SOMs in an Euclidean space is a limited number of cell
neighbors (3,4 and 6 — for triangular, quadratic and hexagonal cells,
respectively). The SOM in hyperbolic spaces (HSOM) [50] is free from
such limitation (see Figures 9.4(a) and 9.4(b) for exemplary tessella-
tions). The only requirement is that (p—2)-(¢—2) > 4, where p is the
number of vertices in the polygon and ¢ is the number of neighbors
of each cell. In such a space, the document map is presented as part
of a hyperbolic plane, and then its projection into the unit circle is
computed (the type of projection determines the type of model, e.g.:
a Poincaré or a Klein one [51|). What makes HSOM the favored ap-
proach is the exponential growth of the number of cell neighbors with
the growing distance from the center of the circle. This not only influ-
ences presentation (the so-called “fisheye effect”), but also gives a more
accurate 2D approximation of (possibly complex) high-dimensional re-
lations between groups of documents.

At present, in our search engine map of documents can be presented
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Figure 9.4: Regular tessellations of the hyperbolic space: (a) triangu-
lar (b) hexagonal
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by a 2D map (see Fig. 7.1), following WebSOM’s paradigm [46], or
in 3D, by cylinder(see Fig. 9.1), sphere (see Fig. 9.2) or a torus
(see Fig. 9.3). Our basic concern was with boundary regions, where
within the original WebSOM approach the phenomenon of a too few
neighbors occurred. As suggested by the WebSOM authors and others,
we extended the map so that the left and the right boundaries were
connected, and did the same with the top and the bottom ones. This
junction is not visible in case of a planar map, but it is visible with
the rotating cylinder in the horizontal direction. Rotating sphere and
torus representations make the vertical junction visible too. Of course
the change in the intended presentation influences the clustering is
implemented in the WebSOM algorithm. Clustering of map regions is
also affected by this concept. In case of the spherical representation,
the distance measures in non-boundary regions are also affected.

Our further extension concerns use of a multi-map approach (maps
generated with various clustering algorithms, and hence explicating
different aspects of the data). When presenting the results of a query,
the most appropriate map is selected out of those available, so that
the documents obtained in response to a query form "well-formed"
clusters in such a map.

The interface has the form usual for a search engine. When the
user inputs his query, it is processed via a searcher on a system of
inverse lists. In the indexing process, typical inverse indexing lists
with Huffman encoding are created. Then the search is carried out
for terms starting with the one having the shortest list of relevant
documents.
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Related Works

Nowadays we have a rapid growth in the amount of written informa-
tion. Therefore we need a means of reducing the flow of information
by concentrating on the major topics in the document flow, including
the one on the World Wide Web. Grouping documents based on simi-
lar contents may be helpful in this context as it provides the user with
meaningful classes or clusters. Document clustering and classification
techniques help significantly in organizing documents in this way.

For years now, therefore, we have observed a growing research effort
around the so-called "Web Mining".

Web mining is generally understood as an application area of data
mining techniques aimed at extracting of information from the World
Wide Web. The field is oriented towards improvement of site design
and site structure, generation of dynamic recommendations, and im-
proving marketing. Inside the web mining research, there exist essen-
tially three main streams: web-content mining (around which the re-
search presented in this paper concentrates), web-(link)structure min-
ing and web usage mining.

Web content mining concentrates around the discovery of useful
information from the data contained in Web documents, including
text, images, audio, and video content. The main difficulty is that
on the one hand the Web content can be truly understood only by
humans, and on the other hand the size of this content is immense.

Two groups of methodologies are applicable here: Information re-
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trieval, oriented towards unstructured (free text) data, and data based
techniques, concerned primarily with structured and semi-structured
Web data.

The information retrieval methods treat the documents as "bags
of words", while the database oriented methods exploit the semi-
structured nature of HTML documents.

The database oriented methods attempt to find schemes (includ-
ing type hierarchies) for semistructured data, to identify frequent sub-
structures etc., by applying e.g. association rules or attribute oriented
induction.

The information retrieval methods seek to find keywords and
keyphrases, to discover grammatical rules, collocations, to predict
word relations, to classify and/or cluster text/hypertext documents
or named entities, to devise information extraction models (e.g. for
event detection and tracking), to learn ontologies, and to find patterns.

The methods used here include decision trees, kNN, rule learn-
ing methods, inductive logic programming, reinforcement learning,
support vector machines, self-organizing maps, but also Naive Bayes,
Bayesian networks, logistic regression and other statistical methods.

Recently, the importance of visual presentation of Web mining re-
sults has been increasingly appreciated. For recent results concerning
visual Web-structure mining, the reader may refer to [63], while with
respect to visual Web-usage mining he may consult e.g. [9].

As far as visual presentation of Web-content mining is concerned,
there have been several important projects in the recent years. The
early project SPIRE (Spatial Paradigm for Information Retrieval &
Exploration) [60] represented documents as "stars in the sky", where
the distance reflected word similarity and word pattern matching (with
severe limitations in the document set related to screen resolution).
The Themescape project (later also known as Aureka!), presented a
document collection as a typical topological map, where "hills" corre-
sponded to frequent terms ("themes")!. While Themescape was "flat"
(with presented through colors), the competing SpaceCast? project in-

thttp://www.micropatent.com /static/index.htm
2http://www.geog.ucsb.edu/ sara/html/research/spacecast /spacecast.html
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sists on an intrinsic 3D representation. Similar in spirit is the patented
VrInsight® project. Another interesting example is the project Island
of Music*, working with "music documents" (MP3 tunes), relying on
similarity of compositions based on some psychoacoustic approxima-
tions.

A prominent position among the techniques of Visual Web-content
mining is occupied by the WebSOM by Kohonnen and co-workers [43].
However, the overwhelming majority of the existing document clus-
tering and classification approaches rely on the assumption that the
particular structure of the currently available static document collec-
tion will not change in the future. This seems to be highly unrealistic,
because the interests of both the information consumer and of the
information producers change over time.

A recent study described in [33] demonstrated deficiencies of var-
ious approaches to document organization under non-stationary en-
vironment conditions of growing document quantity. The mentioned
paper pointed among others to weaknesses of the original SOM ap-
proach (which is to some extent adaptive itself) and proposed a novel
dynamic self-organizing neural model, the so-called Dynamic Adap-
tive Self-Organising Hybrid (DASH) model. This model is based on
an adaptive hierarchical document organization, supported by human-
created concept-organization hints available in terms of WordNet.

Other strategies, like that of |55, 23|, attempt to capture the move-
ment of topics, dynamically enlarge the document map (by adding new
cells, not necessarily in a rectangular map).

In this book we took a different perspective claiming that the adap-
tive and incremental nature of a document-map-based search engine
cannot be confined to the map creation stage alone, and in fact involves
all the preceding stages of the whole document analysis process.

In particular, already the crawler may have some impact on the
incrementality of the document clustering. As we have seen from our
experiments, topic-wise addition is easier to accept by the incremen-
tal processes, hence topic-sensitive crawling contributes to stable map

3http://www.cs.sandia.gov/projects/VxInsight.html
‘http:/ /www.oefai.at/ elias/music/index.html
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creation. Our indexer has also been designed in an incremental man-
ner. A special focus, however, has been the stage of document map
creation. We followed a carefully balanced way between hierarchical
and flat map design, between map rigidness and clustering structure
flexibility. Hierarchy helped us to go around complexity of document-
by-document comparisons. The flexible GNG and AIS helped to get
rid of the rigidity of WebSOM like flat map. But we recognized the
importance of the WebSOM rectangular map idea, so that finally the
GNG/AIS structure was projected to the WebSOM map.

Last not least we want to point at the fact that our contextual maps
concept gives rise in a natural way to emergence of abstract topical
concepts which are in other approaches bound to some predefined
structures (like Wordnet).
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Concluding Remarks

As indicated e.g. in [33], most document clustering methods, includ-
ing the original WebSOM, suffer from the inability to accommodate
streams of new documents, especially those involving a drift, or even
radical change of topic.

Though one could imagine that such an accommodation could be
achieved by "brute force" (learning from scratch whenever new doc-
uments arrive), there exists a fundamental technical obstacle to such
a procedure: the processing time required. However, the problem is
deeper and has a "second bottom": as the clustering methods like
those of WebSOM contain elements of randomness, any re-clustering
of the same document collection may lead to a radical change in the
view of the documents.

The results of this research are concerned with both aspects of
adaptive clustering of documents.

First of all, the whole process of document map formation has been
designed in an incremental way, which includes crawling, indexing and
all the stages of map formation (document grouping, document group
to WebSOM mapping and map region identification). Accordingle,
the Bayesian Network driven crawler is capable of collecting docu-
ments around an increasing number of distinct topics. The incremental
structures of the indexer adapt to the changing dictionary. The query
answering interface, in particular its query extension capability based
on the Bayesian network and GNG — derived dynamic automated the-
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saurus, also adapts to the growing document collection. Though the
proper clustering algorithms used in our system, like GNG [26, 27, 28|,
SOM [43, 22, 44], or fuzzy-k-means [4, 29|, are by their nature adap-
tive, nonetheless their tuning and modification was not a trivial task,
especially with respect to our goal of achieving a quality of the incre-
mental map comparable to that of the non-incremental one.

Second, special algorithms for topical map initialization as well
as for identification of document collection topics, based on GNG,
SVD and/or Bayesian networks, lead to stabilization of the overall
map. At the same time GNG detects the topic drift so that it may
be appropriately visualized, due to plastic clustering approach, as the
new emerging map regions. We should stress at this point that map
stabilization does not preclude obtaining different views of the same
document collection. Our system permits maintaining several maps of
the same document collection, obtained via different initializations of
the map, and, which is more important, automatically tells the user
which of the maps is the most appropriate for viewing the results of
his actual query.

The most important contribution of this report demonstrating,
that the whole incremental machinery not only works, but that
it works well. For the quality measures we have investigated, we
have found that our incremental architecture compares well to non-
incremental map learning both under the scenario of "massive ad-
dition" of new documents (many new documents, not differing in
their topical structure, presented in large portions) and the scenario
of "topic-wise-increment" of the collection (small document groups
added, but with newly emerging topics). The latter seemed to be the
most tough learning process within incremental learning, but appar-
ently the application of GNG prior to WebSOM allowed for cleaner
separation of new topics from those already discovered, so that the
quality (e.g. in terms of cluster purity and entropy) was higher under
incremental learning than under non-incremental learning.

The experimental results indicate that the real hard task for the
incremental map creation process is a learning scenario where the doc-
uments with new topical elements are presented in large portions. But
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also in this case the results have proved satisfactory.

A separate issue is the learning speed in the context of crisp and
fuzzy learning models. Apparently, separable and topically "clean"
models allow for faster learning, as the referential vectors of SOM are
smaller (i.e., contain fewer non-zero components).

From the point of view of incremental learning under SOM, a cru-
cial factor for the processing time is the global winner search for as-
signment of documents to neurons. We were capable to elaborate a
very effective method of mixing the global winner search with local
one, which does not deteriorate the overall quality of the final map
and at the same time comes close to the speed of local search.

Our future research will concentrate on exploring further adaptive
methods, like artificial immunological systems for more reliable extrac-
tion of context-dependent thesauri and adaptive parameter tuning.

Before closing this chapter, let us draw the attention of the Reader
of this book to an important contribution to the generally discussed
issues of Semantic Web. As a well-known definition states: "the Se-
mantic Web is an extension of the current web in which information
is given well-defined meaning (semantics), better enabling computers
and people to work in cooperation."!. In spite of considerable effort
everyone is in the meanwhile aware that except for narrow, restricted
domains the currently dominating approach of service definition via
input / output data types is insufficient for usable service description,
so informal human readable ones are indispensable. But the current
state of the development of information technology does not allow the
computer to grasp a meaning out of the human readable information
present on the Web, just because this meaning is not applicable to
computer "awareness". This deficiency can be bridged, however, if a
web-application is not designed to act upon the human-readable infor-
mation itself, but rather is designed to preprocess the information for
recipient human being in an intelligent way so that the human can be
supported in its decision making in particular through context-aware
presentation of information 2. Apparently, document maps seem to

thttp://www.w3.org/RDF /Metalog/docs/sw-easy
2http:/ /reasoningweb.org/2006 /Objectives.html
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be the most appealing for humans with respect to provision of context
awareness. Hence they would be of vital importance in the coming
era of semi-automatic application synthesis out of available elemen-
tary web services. Note that document clustering in the sense of a
map requires a considerable amount of reasoning (primarily statistical
inference) so that a map-based search engine can be truly called an
"intelligent service”.

Another aspect of the technologies we talked about is the
personalization of information systems. At the moment, a map-based
search engine can be truly used by a single user, who can tune it to his
needs. The crawler, driven by user query words, adjusts the content
of the document base to the user profile. As a side effect, the derived
Bayesian network classifier can be viewed as a reflection of the user
profile in the context of the Internet at large. This profile serves as a
query expansion support for the user queries. In our search engine,
the same document set, on user request, can be described by differ-
ent maps, as a result of application of different clustering methods, or
different clustering parameter sets. When the user issues a query, the
most appropriate map for presentation of retrieved documents will be
suggested to the user. Over time, the selected maps may constitute a
description of the personal profile of the user.
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