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In this paper new formulae for the computation of orbital periods and mean distances of secondary bodies from a 
primary central body are given as a function (i) of an integer orbit number, and (ii) of the mass of the primary. Not 
all orbits numbered by the consecutive integers are occupied by the secondaries; on the contrary, most of them remain 
empty. 

It has been found that the mass of the primary, for which the formulae are valid, must be greater than Mo = 

1.747MEarth. The mean primary/secondary distances and orbital periods agree surprisingly accurately with the real 
ones for all systems considered (Solar, Jovian, Satumian, Uranian and Neptunian, Table 7). 
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1 INTRODUCTION 

The mean distances of planets from the Sun increase in some deterministic manner. They were 
first described by the Titius-Bode rule 

,...2,1,,23.04.0 −∞=×+= ka k
k                                     (1) 

which is satisfied for all the planets except Neptune. But the Titius-Bode rule in its pristine form 
cannot be applied to the satellites of the planets. In the book of Nieto (1972) there is presented a 
comprehensive discussion of many generalizations of the Titius-Bode rule, including those valid 
for satellites systems. The generalizations: 
(i) are based on simple fitting of multi-parameter mathematical formulae to the real distances (e.g. 
the Blagg-Richardson formulation), or (ii) they are supported by some physical premises (as in 
electromagnetic and gravitational theories), (iii) A more modern approach, mostly developed after 
the publication of Nieto's book, 
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to an arrangement of primary/secondary mean distances must take into account the results of 
modelling of planet and satellite formation from primordial nebulae (e.g. see the papers of Cox and 
Lewis, 1980; Wetherill, 1980; Weidenschilling and Davis, 1985; Lissauer, 1995; and many others). 
However, in these works the central distances are rather the byproducts or even fixed parameters of 
an accretion theory to which a post-accretional system must converge. Alfven and Arrhenius (1976) 
simply rejected any physical significance of the Titius-Bode rule. 

In short: the regularities concerning planetary and satellite distances exist but their origins are 
not clear as yet. The orbit/orbit and spin/orbit resonances are the only classes of exceptions, which 
can be explained on the basis of celestial mechanics. Since none of the calculations mentioned 
above are similar to our approach we therefore believe that our method is worth presenting. In this 
paper the regularities concerning mean distances and orbital periods are described on the basis of 
one assumption that the ratio of the distances of the allowed neighbour planets from the Sun is a 
constant value. A similar assumption concerns the satellites orbiting a giant planet. Hereafter, the 
Sun or the giant planets are called primary bodies. Corresponding to that the planets or the 
satellites of the giant planets are called the secondary bodies. It has been found that the mean 
distances from primary to secondary obey the rule, which is valid for five systems: the planetary 
system, and the four giant-planet satellite systems. Therefore our approach is much more general 
than that of the Titius-Bode rule. Contrary to the Titius-Bode rule our calculations show that only 
some of the 'allowed' mean distances and corresponding orbital periods are occupied by the 
secondary bodies. The results are in good agreement with observations. 

2 THE RELATIONS BETWEEN MEAN DISTANCES (OR ORBITAL PERIODS) OF THE 
SECONDARY BODIES IN THE SOLAR SYSTEM 

Let us assume that in the Solar System the ratio of the 'allowed' mean distances ka  and 1+ka  

from the primary body with the mass M is a constant value: 

.1
M

k

k

a

a γ=+                                                                      (2) 

This formula presents only one, but essential, assumption of the paper. 
From equation (2) it follows that the mean distance of a secondary body with number k+n can 

be expressed by the mean distance with number k by the formula: 

 
n

Mknk aa γ=+                                                                    (3) 
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it follows that the orbital period corresponding to the orbit with number k + n is expressed by the 

formula: 

23n
Mknk TT γ=+                                                                  (5) 

which is the crucial one for the further considerations concerning regularities between central 

distances in the planetary system as well as in satellite systems. 

Let us describe in detail the calculations based on equation (5) applied to the planetary system. 

Similar calculations have been performed for the satellite systems of the giant planets. 

Let us denote the orbital periods of Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 

Neptune and Pluto as Tk, Tk+l, Tk+l+m, Tk+l+m+n, Tk+l+m+n+p, Tk+l+m+n+p+q, Tk+l+m+n+p+q+r,  

Tk+l+m+n+p+q+r+s and Tk+l+m+n+p+q+r+s+t , respectively. Here k is an optional integer and the other 

integers l, m, n, p, q, r, s, t are positive. After dividing equation (5) by Tk and taking logarithms of 

both sides we get: 
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where                                    )log(2
3

MM γβ =                                     (7)                                                       

In the eight equations (6.1)-(6.8) there are nine unknowns, namely eight positive integers l, m, 

n, p, q, r, s, t and a positive real Mβ - To determine all nine unknowns it is necessary to assume 

one of them is a parameter. We are looking for the smallest values of the unknown integers, thus it 

is convenient to assume one (for example l) of them as a parameter. If we start our calculations 

from  l=1 then Mβ  is simply given by equation (6.1); next, from equation (6.2) with the 

previously found Mβ we can derive m as the closest integer number to the computed real value of 

m. In the following step, we update the new value for Mβ  as the mean from equations (6.1) and 

(6.2) taking the previously calculated integers l and m. Next, the third unknown integer n can be 

determined from equation (6.3), etc. If these calculations give one of the consecutive unknown 

integers equal to zero then we must reject the previous results and start the calculations from the 

beginning with the new value l=2. If l=2 does not satisfy the condition that the consecutive 

unknown integers are positive we must repeat the calculations with l=3, etc. Indeed, in the case of 

the Sun and nine planets we have found that l=1 does not satisfy the required conditions; however 

the next value l=2 allows us to solve the set of equations (6) leading to positive integers: m=l, n=l, 

p=4, q=2, r=2, s=l and t=1. 
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Table 1. The coefficients Mβ  and their standard errors for the Sun, Jupiter, Saturn, Uranus and Neptune 

computed from orbital periods of their secondary bodies. 

Central  
body 

Number of secondary 
bodies (N) 

Number of pair of secondary  
bodies (N / 2) Mβ (robust mean) 

Sun 9 36 0.2159 ± 0.0117 

Jupiter 7 21 0.0907 ± 0.0054 
Saturn 10 45 0.0710 ± 0.0020 
Uranus 6 15 0.0378 ± 0.0010 
Neptune 6 15 0.0405 ± 0.0011 

From this moment the integers l, m,..., t are treated as known values. However, the value of Mβ  

computed in the last step as well as in the previous steps does not satisfy all of these equations 

simultaneously. Therefore Mβ  must be adjusted using an appropriate mathematical method. So it 

was computed as the robust mean (Press et al., 1992) using all the combinations of orbital periods 

of pairs of planets from all the planets. The robust estimate enables the elimination of big errors in 

Mβ  these errors are caused by the fact that one of the planets is not on the orbit corresponding to 

an integer number. The final result for Mβ  for the planetary system is shown in the first row of 

Table 1. Using the same algorithm the integer numbers l, m, n, p,... and the mean values of 

Mβ were computed for the satellite systems of Jupiter, Saturn and Uranus (Table 1, next three 

rows). It can be seen that the calculated Mβ for four different primary-secondary systems are in 

very good correlation with the logarithm of the central body mass M (Figure 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The Mβ computed by the robust method from orbital periods of the secondary bodies of the Sun, Jupiter, 

Saturn, Uranus andNeptune as a function of the central body mass M (in kilograms).                        Mβ = 3/2 z 

log(M / Mo), where z = 0.02725 and Mo = 1.044 x 1025 kg = 1.747MEarth.  
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Table 2. The observed and computed orbital periods and mean distances of planets and their comparison with Titius-
Bode mean distances. In this table, as well as in Tables 3-6, and in Figures 2-6, the orbital number equal to zero is 
assigned to the reference secondary body of the considered system; each time it is a secondary with the largest mass. 

 
Planet 
 

Orbit 
number 

Tcomp  Treal    acomp  areal  acomp  
Titius-Bode 

  (years) (years) (a.u.) (a.u.) (a.u.) 

 –9 0.136  0.264   
Mercury –8 0.223 0.241 0.368 0.387 0.4 
 –7 0.366  0.512   
Venus –6 0.602 0.615 0.713 0.712 0.7 
Earth –5 0.989 1.000 0.993 1.000 1.0 
Mars –4 1.626 1.880 1.383 1.524 1.6 
Hungaria* –3 2.672 2.6* 1.926 1.9*  
Asteroids** –2 4.391 4.28** 2.683 2.636** 2.8    

- –1 7.217  3.738   

Jupiter 0 11.862 11.862 5.203 5.203 5.2 

 1 19.50  7.246   

Saturn 2 32.04 29.46 10.09 9.537 10.0 

Chiron*** 3 52.66 50.7*** 14.05 13.7***  

Uranus 4 86.55 84.01 19.57 19.18 19.6 

Neptune 5 142.3 164.8 27.26 30.06  

Pluto 6 233.8 247.7 37.97 39.44 38.8 

 7 384.3  52.88   
 8 631.6  73.64  77.2 

 9 1038.0  102.6   

*Hungaria group of asteroids, according to Alfven and Arrhenius (1976).                                       

**The 'asteroids' orbital period Treal and mean solar distance areal are artificial, since they denote 
the geometrical averages for four asteroids, namely 1 Ceres, 2 Pallas, 3 Juno and 4 Vesta. This 
choice of asteroids follows that of Nieto (1972) and corresponds to some of the largest and most 
massive asteroids. Indeed, according to Tedesco et al. (1989) the diameters of 1 Ceres, 2 Pallas, 4 
Vesta, and 3 Juno are 913 km, 523 km, 501 km, and 244 km, respectively; according to Millis and 
Dunhem (1989) the masses of 1 Ceres, 2 Pallas, 4 Vesta are (5.9 ± 0.3), (1.08 ± 0.22) and (1.38 ± 
0.12) in units of   10-10 MSun.  
***Chiron data, according to French et al. (1989), are T = 50.7y,  a = 13.7 a.u., and eccentricity           

e = 0.38. The Chiron radius, according to Stern (1994), is in the range 83-150 km. Comparison of 

real Chiron parameters T, a with our calculated ones presents surprisingly good agreement. 

However, since Chiron's orbit is chaotic and subject to strong perturbations due to Saturn, there are 

two possibilities of an interpretation of this agreement: (i) it is rather accidental, or (ii) Chiron's 

orbital period and mean solar distance are 'as they are', because they are oscillating around the 

parameters predicted by our method. 
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Figure 2. The logarithm of the computed (dots) and observed (circles) orbital periods of the planets as a function of 
the orbit number. The 'mean asteroids', the Hungaria group of asteroids, and Chiron were not taken into account in 
the calculations by means of equations (6.1)-(6.8). Their 'real orbit numbers' were calculated to put them on a 
straight line, which is based on calculations for the nine planets. 

procedure for l, m, n, p,... calculations cannot be applied to the satellites of Neptune since the 
number of moons is very low comparing with the number of expected positions (Figure 6). The 

value of Mβ  for Neptune, in the first approximation, has been interpolated on the basis of its 

known mass put on the regression line (Figure 1 and Table 1 the bottom row). Next, for this 

known Neptunian parameter Mβ  the values of  l, m, n, p,..., and the final value of Mβ  were 

calculated. 

The correlation coefficient between Mβ computed as the robust mean and log(M) is equal to 

0.99994. When Mβ were computed as the mean arithmetic value then the correlation coefficient 

is smaller and equal to 0.99991. These correlation coefficients are significant at the 99.0% 

confidence level. From Figure 1 and the high correlation coefficients it can be seen that Mβ  is a 

straight line function of log(M) given by the formula: 

)log(
2
3

)log(
2
3

oM MzMz −=β                                      (8) 

where z and Mo are constants to be found. Taking into account equation (7) we find that this value 

of Mβ gives Mγ = 1; therefore this means that our fundamental starting equation (2) loses its 

sense if the primary body mass is less than Mo.  In practice, this means that we cannot apply our 

method to deduce regularities in primary/secondary distances in low-mass and few-member 

systems (e.g. Earth, Mars, Pluto, and the asteroid Ida). 

When the pair Mβ and M in equation (8) are replaced by the pairs Sunβ , SunM ; 

Jupiterβ , JupiterM ; Saturnβ , SaturnM ; Uranusβ , UranusM and Neptuneβ NepuneM  then 

five independent equations of the type of equation (8) can be created. Therefore, we have obtained 
a system of five equations with two unknowns  z and Mo. They were determined using a robust 
straight-line fit (Press et al., 1992) through a set of data points: z = 0.02725 and Mo = 1.044 x 
1025 kg = 1.747 MEarth. 

Comparison of the right-hand side of equations (7) and (8) shows that Mβ is a 
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Table 3. The observed and computed orbital periods and the mean distances of the Jovian satellites. 

Satellite 

 
Orbit number 

 
Tcomp 
(days) 

Treal  
(days) 

acomp 
(106 km) 

areal 
(I06 km) 

 -16 0.238  0.111  

Adrastea -15 0.295 0.2983 0.128 0.1290 
 -14 0.364  0.147  
Amalthea -13 0.451 0.489 0.169 0.1813 
 -12 0.558  0.195  
Thebe -11 0.690 0.675 0.225 0.2219 
 -10 0.853  0.259  
 -8 1.305  0.344  
Lo -7 1.615 1.769 0.397 0.4216 
 -6 1.997  0.457  
 -4 3.056  0.607  
Europa -3 3.780 3.551 0.699 0.6709 
 -2 4.676  0.806  
 -1 5.784  0.929  
Ganymede 0 7.155 7.155 1.070 1.070 
 1 8.851  1.233  
 3 13.54  1.637  
Callisto 4 16.75 16.689 1.887 1.883 
 5 20.72  2.174  

 

 

 

 

 

 

 

 

 

Figure 3. The logarithm of the computed (dots) and observed (circles) orbital periods of the Jovian satellites as a 
function of the orbit number
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function of the central body mass M: 
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Substituting Mγ  expressed by formula (9) into equations (3) and (5), the orbital period and mean 

distance of a secondary body with number k + n can be determined from the orbital period and 

mean distance with number k using the recursion formulae: 
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The orbit number k = 0 in equations (10) and (11) can be assigned for any secondary body 

arbitrarily chosen. In this paper the orbit number 0 was chosen for the secondary body having the 

largest mass. They are Jupiter, Ganymede, Titan, Titania and Triton for the Solar, Jovian, 

Saturnian, Uranian and Neptunian systems, respectively. The observed and computed orbital 

periods and mean distances of secondary bodies are listed in Tables 2-6. The logarithms of the 

computed and observed orbital periods of the secondary bodies are shown in Figures 2-6. The 

integer numbers are related to the computed orbital periods and mean distances. The numerical 

data for Tables 2-6 as well as for Figures 2-6 are z = 0.027246 and Mo = 1.0438 x 1025 kg = 

1.747MEarth. 

3 STATISTICAL VERIFICATION OF THE RESULTS 

From Figures 2-6 we can see that the calculated positions (described by integer numbers) of 

secondary bodies differ slightly from the real ones. Therefore, to verify the results some statistical 

analysis is necessary. To each observed orbital period of a secondary body a real orbital number 

can be attributed. This real number differs from a neighbouring integer by no more than 0.5. A 

simple statistical algorithm described below takes into account the absolute values of these 

differences. 

Equation (11) is a linear relation between orbital numbers and logarithms of orbital periods. 

Therefore, the difference between the logarithms of the computed and the nearest observed orbital 

period divided by the difference of the logarithms of neighbouring computed orbital periods is the 

absolute value of the difference between the real (in reality) and integer (in the model) value of an 

orbital number: 

)log(
)]log(),min[log(
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kk
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k TT

TTTT
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+=ε                                      (12) 

Here   T, Tk < T < Tk+1, is a real orbital period of a secondary body. According to this 

definition 0 < kε < 0.5. 
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Table 4. The observed and computed orbital periods and the mean distances of the Saturnian satellites. 

Satellite 

 
Orbit number 

 
Tcomp 
(days) 

Treal 
(days) 

acomp 
(106 km) 

areal 
(106 km) 

 -20 0.608  0.138  

Janus* -19 0.715 0.695 0.154 0.1514 
 -18 0.842  0.172  
Mimas -17 0.992 0.942 0.192 0.1855 
 -16 1.168  0.214  
Enceladus -15 1.375 1.370 0.239 0.2380 
 -14 1.619  0.266  
Tethys -13 1.906 1.888 0.297 0.2947 
 -12 2.245  0.331  
Dione -11 2.643 2.737 0.369 0.3774 
 -10 3.112  0.411  
 -9 3.665  0.459  
Rhea -8 4.315 4.518 0.511 0.5271 
 -7 5.081  0.570  
 -1 13.54  1.096  
Titan 0 15.945 15.945 1.222 1.222 
 1 18.78  1.363  
Hiperion 2 22.11 21.23 1.519 1.481 
 3 26.03  1.694  
 9 69.38  3.257  
lapetus 10 81.69 79.33 3.632 3.561 
 11 96.19  4.050  
 21 492.8  12.04  
Phoebe 22 580.3 550.4 13.42 12.95 
 23 683.3  14.96  

*Denote the coorbital satellites Janus and Epimatheus. 

 

 

 

 

 

Figure 4. The logarithm of the computed (dots) and observed (circles) orbital periods of the Saturnian satellites as a 
function of the orbit number. 
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Table 5. The observed and computed orbital periods and the mean distances of the Uranian satellites. 

Satellite 

 
Orbit number 

 
Tcomp 
(days) 

Treal 
(days) 

acomp 
(106 km) 

areal 
(106 km) 

 -29 0.707  0.0817  

1985U1* -28 0.771 0.7625* 0.0866 0.0860* 
 -27 0.841  0.0917  
 -22 1.300  0.122  
Miranda -21 1.413 1.413 0.130 0.1298 
 -20 1.541  0.137  
 -15 2.376  0.183  
Ariel -14 2.591 2.52 0.194 0.1912 
 -13 2.825  0.206  
 -10 3.663  0.245  
Umbriel -9 3.994 4.144 0.259 0.2660 
 -8 4.355  0.275  
 -1 7.984  0.411  
Titania 0 8.706 8.706 0.4358 0.4358 
 1 9.493  0.462  
 4 12.31  0.549  
Oberon 5 13.42 13.46 0.582 0.5826 
 6 14.64  0.616  

*Orbital period, central distance, and measured radius (77 ± 3) km of satellite 1985U1 Puck are 

according to Veverka (1991).  

 

 

 

Figure 5. The logarithm of the computed (dots) and observed (circles) orbital periods of the Uranian satellites as a 

function of the orbit number. 
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Table 6. The observed and computed orbital periods and the mean distances of the Neptunian satellites. 

Satellite 
 

Orbit number 
 

Tcomp 
(days) 

Treal 
(days) 

acomp 
(106 km) 

areal 
(106 km) 

 -32 0.296  0.0484  

1989N3 -31 0.325 0.333 0.0515 0.0525 
 -30 0.357  0.0549  
 -29 0.392  0.0584  
1989N4 -28 0.431 0.429 0.0621 0.0620 
 -27 0.473  0.0661  
 -26 0.519  0.0704  
1989N2 -25 0.570 0.554 0.0749 0.0736 
 -24 0.625  0.0797  
 -19 0.997  0.109  
1989N1 -18 1.095 1.121 0.116 0.1176 
 -17 1.202  0.123  
 -1 5.351  0.333  
Triton 0 5.875 5.875 0.3548 0.3548 
 1 6.450  0.378  
 43 325.2  5.153  
Nereid 44 357.0 360.1 5.484 5.513 
 45 391.9  5.836  

*Orbital periods, central distances, and radii 90, 75, 95, 200, 1352, and 170 km for satellites N3, 

N4, N2, N1, Triton and Nereid, respectively, are according to Stone and Miner (1989). 

 

 

Figure 6. The logarithm of the computed (dots) and observed (circles) orbital periods of the Neptunian satellites as a 
function of the orbit number. 
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Table 7. The computed mean value of errors >< ε , equation (13), of the orbit numbers of the primary body 
systems. 

 

>< ε  No System Number of 
secondary 
bodies This paper Titius-Bode 

1a    
1b 

1c 
1d  
2   
3     
4    
5 

planets, Neptune excluded        planets, 
Nepune excluded + averge asteroids        
all planets                                          all 
planets + average asteroids           
Jovian Satellites                     Saturnian 
Satellites                   Uranian Satellites    
Neptunian satellites                               
average value* for all secondary bodies 
of the five considered systems 
1d+2+3+4+5 

8                   
9               

9              
10              
7              
10             
6                  
6               

39               

                                 
0.108                        
0.102 

0.129                        
0.121                        
0.183                        
0.182                        
0.150                        
0.155 

0.157 ±  0.025 

0.043                                 
0.050                                 

-                                     -  
-                                      -  
-                                        
- 

-  

Note: The tests of accuracy of our results are based on formulae (12) and (13). Four modifications of an approach to 
a planetary system (la-Id) and four satellite systems (2-5) were considered. For all the systems >< ε  are 

considerably less than ][ >< εE =0.25 which corresponds to random numbers with a uniform distribution. For 

comparison, similar calculations of >< ε  for the Titius-Bode rule applied to a planetary system have been 
performed. In the case of a planetary system our method is less accurate than the Titius-Bode rule. However, in 
contrast to the Titius-Bode rule, it is valid for diverse subsystems of the Solar System. 
"The mean value of 39 random numbers with a uniform distribution is about 0.25 with standard deviation 0.04. So, 

our result 0.157 ± 0.025 is considerably outside the range for random numbers. 

The accuracy of a model can be measured by calculating the mean value of all of the epsilons 

(the mean value of the error of 'the real orbit number')  

∑>=< kN
εε 1

                                                            (13) 

where N is the total number of secondary bodies in the system, see Table 7. If kε of the secondary 

bodies were random numbers with a uniform distribution ranging from 0 to 0.5 then the expected 

mean value of them would be 25.0][ =>< εE . We can see in the case of all the systems 

considered that the value of >< ε  are considerably less than 0.25 (Table 7). This presents a strong 

argument that our values of logarithms of orbital periods of secondary bodies are not uniformly 

distributed random numbers. Thus, orbital periods and mean distances are not random either. 

Similar statistics has been performed for the mean distances of eight planets as well as eight 

planets plus an 'average asteroid' computed using the formulae of this paper and the Titius-Bode 

rule (Table 7); the Titius-Bode rule does not hold for Neptune at all. 
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The orbital periods of secondary bodies exceed the theoretical ones probably due to mutual 

gravitational attractions of these secondary bodies. If these mutual gravitational attractions were 

taken into account then the orbital period errors would probably be smaller, and this needs further 

investigations. 

4  CONCLUSIONS 

The results of this paper are based only on one simple assumption (2) that the ratio of mean 

distances attributed to the 'allowed' orbits of secondary bodies is a constant value for the 

considered primary/secondaries system. This constant value depends only on the mass of the 

primary body of the system. It has been found that our calculation method of central distances of 

secondaries can be valid for such systems in which the mass of the primary body exceeds Mo = 

1.747MEarth- Although this mass has been found with quite good accuracy, we cannot at present 

give a physical interpretation of Mo. The statistical analysis of the results shows rather clearly that 

the five subsystems of our Solar System obey the initial assumption and the orbits of secondaries 

are not randomly distributed. The calculations also reveal such mean distances or orbital periods 

corresponding to them, which are not occupied by planets or satellites. The orbits with mean solar 

distances of 73.64 and 102.6 a.u. (Table 2) represent the hypothetical Kuiper belt. 
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