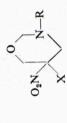
5-BROMO-5-NITROTETRAHYDRO-1,3-OXAZINES * 5-BROMO-5-NITROTETRAHYDRO-1,3-OKSAZYNY

by Hanna PIOTROWSKA, Tadeusz URBAŃSKI, and Wojciech SIENICKI


Institute of Organic Chemistry and Technology, Polytechnical University, Warszawa

Continuing our experiments on formation of tetrahydro-1,3-oxazine derivatives with the nitro group in position 5, we have prepared now 3-alkyl-5-bromo-5-nitrotetrahydro-1,3-oxazines (3). Compounds of this structure have shown interesting biological properties $^{1,2)}$. Our attempts to obtain 3 in reaction of 2-bromo-2-nitropropanediol-1,3 with 1,3,5-trialkylhexahydro-s-triazines failed. The decomposition of the starting materials occurred, and no product could be isolated from the reaction mixture. The synthesis of 3 was accomplished starting from corresponding 3-alkyl-5-hydroxyme-thyl-5-nitrotetrahydro-1,3-oxazines (1). Compounds 1 (R=CH₃, CH(CH₃)₂, C(CH₃)₃, CH₂C₆H₅) were prepared by the method described previously for 1, R=CH₂C₆H₅ 3) from 2-hydroxymethyl-2-nitropropandiol-1,3, formaldehyde and the corresponding amine.

Compounds 1 were treated with sodium methoxide to split off formaldehyde, and to convert 1 into sodium salt of the corresponding 3-alkyl-5-nitrotetrahydro-1,3-oxazine (2). Sodium salts 2 were then reacted with equimolar amount of bromine to produce 3, $R=CH_3$, $CH(CH_3)_2$, $C(CH_3)_3$, $CH_2C_6H_5$, in good yields. When R was benzyl or tert-butyl products 3 were crystalline solids. With other R (methyl, isopropyl) the products were liquid, and were isolated as solid hydrochlorides.

^{*} Part CVIII on Chemistry of Nitroparaffins. Part CVII: Piotrowska H., Roczniki Chem., 46, 2357 (1972).

Table 1—Tablica 1
Properties of compounds 1 and 3 and of their hydrochlorides
Własności związków 1 i 3 i ich chlorowodorków

								Ana	lysis —	Analysis — Analiza, %	%	
Š	Com-		×	Yield	M. p.	Empirical formula	Calcd	Calcd. — obliczono	czono	Four	Found — otrzy- mano	rzy-
ż	Nr Nr związku	eri B	107 107 115 4	%	O.	Wzór sumaryczny	υ	н	z	C	Н	z
1		T.	CHOH	32	102—103	C ₆ H ₁₂ O ₄ N ₂	40.9	6.9	15.9	41.1	7.0	15.9
- (1	5 5	CHOH	6	209-210(d)	C.H.,O,N,CI	1	1	13.1	1	1	13.3
7	1.HCl	CH3	CH ₂ OH	32	74—75	C,H,O,N,	47.1	7.9	13.7	47.2	7.9	14.0
3		CH(CH ₃) ₂	CH2OH	77	152 153(4)	D.N.O.H.D	I	1	11.6	1	1	11.5
4	1.HCl	CH(CH ₃) ₂	CH2OH	† !	132 133(4)	NO H U	49 5	83	12.8	49.7	8.4	12.9
2	1	C(CH ₃) ₃	CH2OH	11	14/—148	C91118 Q172	:		110		1	-
9	1.HCl	C(CH ₃) ₃	CH_2OH	94	178 - 179(d)	C9H19O4N2CI	6	"	11.0		2.0	10.6
7	3.HC	CH,	Br	09	154 - 155(d)	C ₅ H ₁₀ O ₃ N ₂ ClBr	6.77	8.0	10.7	1.67	5.5	0.01
0	3 HCI	CH(CH ₂),	Br	61	124 - 125(d)	C ₇ H ₁₄ O ₃ N ₂ ClBr	29.4	8.4	7.6	0.67	0.0	0.7
0 0	3	C(CH)	B	72	82—88	$C_8H_{15}O_3N_2Br$	36.0	5.7	10.5	36.2	2.8	10./
,		C(CII3)3	à	68	149—150(d)	C,H1,O,N,CIBr	1	1	9.5	1		9.4
10	3.HCI	C(CH3)3	4 4	65	51—52	C,H,O3N,Br	43,9	4.4	9.3	0.44	4.5	9.4
=	3	CH2C6H5	ī	3 6	166 166(4)	C H ON CIBr	1	1	8.3		1	8.5
12	3.HCl	CH2C6H5	Br	93	103-100(u)	111114031120111	-11		;			

Table 2—Tablica 2
Properties of compounds 4 and of their hydrochlorides
Własności związków 4 i ich chlorowodorków
Br NO₂
HO—CH₂—C—CH₂—NH—R

	% otrzvma	N H	4.2 11.1	era dia-	7.7 - 9.6 4.4 8.8		
	Analysis — Analiza, % obliczono Found—otrzymano	0	19.3 4	15.00 m		eriostalital eriosidesi eriosidesi eriosidesi	
		1	11.2	100	9.7		
	Analysis — Calcd. — obliczono	Н	4.0	5.5	1.3		
	Calcd	C	19.2	28.8	36.9		
Table 2—Tablica 2 Properties of compounds 4 and of their hydrochlorides Własności związków 4 i ich chlorowodorków Br NO ₂ HO—CH ₂ —C—CH ₂ —NH—R	Empirical formula	w zoi sumaryczny	$C_4H_{10}O_3N_2CIBr$ $C_6H_{14}O_3N_2CIBr$	$C_7H_{15}O_3N_2Br$ $C_7H_{16}O_3N_2ClBr$	$C_{10}H_{13}O_3N_2Br$ $C_{10}H_{14}O_3N_2CIBr$		
Table Operties of compounc Własności związkć B HO—CH2	M.p. T.t.	ပ္	143—144 136—137	73—74 150—151	60—61		
nitrotokabydro 1,2-oxezine	Yield	(6)	64	92	92		
	~		CH ₃ CH(CH ₃) ₂	C(CH ₃) ₃	CH ₂ C ₆ H ₅ CH ₂ C ₆ H ₅		
Received July 191	Compound	INF ZWIĄZKU	4·HCl 4·HCl	4 4·HCl	4 4·HCl		
	°Z Z	11	1 7 7	2 4	2 9		

Up ba hall T. Gurne D. Romaiki Chers, 28, 116 (1884).

Hydrochlorides of 3 are readily subject to ring opening, yielding hydrochlorides of 2-bromo-2-nitro-3-N-alkylaminopropanol (4). Two free bases 4, $R=C(CH_3)_3$, $CH_2C_6H_5$, were found to be crystalline. They were unstable in an alkaline medium and also decomposed on standing. When warmed with formaldehyde in ethanol they cyclized to tetrahydro-1,3-oxazines 3.

EXPERIMENTAL

3-Alkyl-5-hydroxymethyl-5-nitrotetrahydro-1,3-oxazines (1)

20 g (0.128 mole) of 2-hydroxymethyl-2-nitropropanediol-1,3, 32 g (0.4 mole) of $30^{\circ}/_{\circ}$ formalin and 2 g NaHCO3 were stirred at 15°C to dissolve the triol. Then 0.128 mole of the suitable primary amine was added slowly with stirring. The temperature rose to $40-45^{\circ}$ C. When the exothermic reaction ceased the mixture was warmed at 60° C for 3 hrs. The oily layer was separated, washed with water, treated with small amount of ethanol and left in refrigerator. The crystalline products were crystallized three times from ethanol. Hydrochlorides of 1 were prepared by adding ethereal hydrogen chloride to solution of 1 in ether. Yields and properties of compounds 1 and those of their hydrochlorides are collected in Table 1.

3-Alkyl-5-bromo-5-nitrotetrahydro-1,3-oxazines (3)

0.1 mole of corresponding oxazine 1 was added to sodium methoxide solution obtained from 2.3 g (0.1 mole) of Na and 20 cm³ of methanol and warmed to 40° C for 30 min. Then 120 cm³ of chloroform was added, the whole cooled to 0° C and 0.1 mole of bromine dissolved in 20 cm³ of chloroform added dropwise. The reaction mixture was washed with 5% NaHCO3, water, dried over anh. MgSO4, and the solvent evaporated. Compounds 3, R = CH3 and CH(CH3)2, were isolated in the form of hydrochlorides which were crystallized from ethanol. Compounds 3, R = C(CH3)3 and CH2C6H5, were crystallized from ethanol. Yields and properties of compounds 3 are collected in Table 1.

2-Bromo-2-nitro-3-N-alkylaminopropanols (4)

2 g of corresponding 3-alkyl-5-bromo-5-nitrotetrahydro-1,3-oxazine (3) or its hydrochloride was refluxed for 2 hrs in 100 cm 3 of $80^{\circ}/_{\circ}$ ethanol and 4 cm 3 ccnc. HCl. The solvents were removed in vacuo, and the residue crystallized from ethanol yielding hydrochloride of 4.

Free solid bases 4, $R = C(CH_3)_3$, $CH_2C_6H_5$ were obtained from hydrochlorides by cautious neutralization with $5^0/_0$ NaHCO₃. They crystallized from ethanol. Yields and properties of compounds 4 and those of their hydrochlorides are collected in Table 2.

Received July 15th, 1972.

REFERENCES

- Orłowska B., Mordarski M., Gürne D., Urbański T., Arch. Immunol. Ther. Exper., 15, 404 (1967); ibid., 15, 728 (1967).
- 2. Mordarski M., Chylińska B., Urbański T., ibid., 18, 679 (1970).
- 3. Urbański T., Gürne D., Roczniki Chem., 28, 175 (1954).

STRESZCZENIE

3-Alkilo-5-bromo-5-nitrotetrahydro-1,3-oksazyny (3, R = CH₃, CH(CH₃)₂, C(CH₃)₃, CH₂C₆H₅) otrzymano z odpowiednich 3-alkilo-5-hydroksymetylo-5-nitrotetrahydro-1,3-oksazyn (1) działaniem metoksylanem sodu i bromowaniem powstałych w tej reakcji

soli sodowych 3-alkilo-5-nitrotetrahydro-1,3-oksazyn (2).

Związki 3, R = CH₃, CH(CH₃)₃ wydzielono jako krystaliczne chlorowodorki. Bromonitrooksazyny 3 ulegają łatwo otwarciu pierścienia w środowisku kwaśnym z utworzeniem chlorowodorków 2-bromo-2-nitro-3-N-alkiloaminopropanoli (4). Własności otrzymanych zwiazków zebrano w tablicach 1 i 2.

Instytut Chemii i Technologii Organicznej Politechniki, Warszawa