

On the Anti-Tubercular Properties of Some Derivatives of Benzoxazine-1,3

by

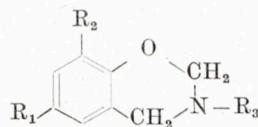
T. URBAŃSKI, D. GÜRNE, Z. ECKSTEIN and S. ŚLOPEK

Communicated by T. URBAŃSKI at the meeting of May 16, 1955

In 1951, T. Urbański and S. Ślopek published a paper [1] on the anti-tubercular properties of a number of nitroparaffin derivatives, and particularly of derivatives of 5-nitro-tetrahydro-1,3-oxazine [2]-[7].

One of the compounds — 5-nitro-5-ethyltetrahydro-1,3-oxazine hydrochloride (designated as *T 41*) — showed an action similar to that of streptomycin against experimental TB in mice. However, a toxic action was observed upon prolonged administration of the product. The toxic action may be produced by the presence of a nitro-group, and this led us to look for less toxic derivatives of 1,3-oxazine and to subject them to examination as anti-tubercular agents.

Thus, a number of derivatives of 4,4,6-trimethyl-tetrahydro-1,3-oxazine were recently prepared by T. Urbański and B. Chylińska [8]. (A number of compounds belonging to this group were originally obtained by M. Kohn [9].)


As shown by S. Ślopek, some of these compounds possess a moderate, although unquestionably bacteriostatic, action *in vitro* against *Mycobacteria*.

Continuing further this line of research, the authors of the present paper prepared a number of derivatives of benzoxazine-1,3, which form a group of compounds known since 1900 [10]-[13] and which have recently been examined by a number of authors, particularly Burke and his coworkers [14]-[18], from the point of view of the reactions leading to phenol-formaldehyde resins.

The following are the benzoxazine-1,3 derivatives prepared by the authors of the present paper (Table I).

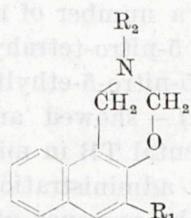

Products (1) and (2) have been described by Burke. The rest are new to the literature. The derivatives of naphtoxazine are shown in

TABLE I

No.	Name	R ₁	R ₂	R ₃	Free bases m. p. °C.	Hydrochloride m. p. °C.	Analysis		References
							Calculated	Found	
							% N	% Cl	
1	T 339	-Br	-	-C ₆ H ₁₁	92-93	240-243			[6]
2	T 346	-CH ₃	-	-CH ₂ C ₆ H ₅	79-80	110-112			[6]
3	T 340	-Br	-	-CH ₂ C ₆ H ₅	85-87	182-184	4.1	10.4	4.2 10.1
4	T 348	-Br	-	-C ₂ H ₅	-	171-172	5.0	16.6	5.2 17.0
5	T 375	-CH ₃	-	-C ₆ H ₁₁	30-32	210-212	6.1	12.7	6.4 12.3
6	T 379	-	-OCH ₃	-C ₆ H ₁₁	54-56	150-153	5.6	12.5	5.8 12.3

TABLE II

No.	Name	R ₁	R ₂	Free bases m. p. °C.	Hydrochloride	Analysis		References
						Calculated	Found	
				% N	% N			
1	T 356	H	-CH ₃	67-68	190-193			[6]
2	T 378	H	-C ₆ H ₄ COOH	215	-			[6]
3	T 380	-COOMe	-CH ₂ C ₆ H ₅	106-107	-	4.0	4.3	

TABLE III

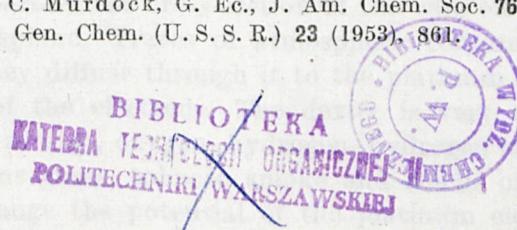

Name	Bacteriostatic concentration			Lethal dose DL ₅₀ per os
	Myc. 297	Smegm.	H ₃₇ Rv	
T 339	3.9	7.8	7.8	3 g./kg.
T 346	31	31	31	-
T 356	7.8	15.5	15.5	-
T 340	3.9	7.8	3.9	3 g./kg.
T 348	62	31	15.5	-

Table II. Compounds (1) and (2) have also been described by Burke. Table III gives the bacteriostatic concentrations of some of the compounds *in vitro* against saprophytic *Mycobacteria*, which have been determined by one of us (S. Ślopek).

INSTITUTE OF ORGANIC SYNTHESIS, POLISH ACADEMY OF SCIENCES

REFERENCES

- [1] T. Urbański and S. Ślopek, *Nature* **163** (1951), 562.
- [2] E. L. Hirst, J. K. N. Jones, S. Minahan, F. W. Ochyński, A. T. Thomas, T. Urbański, *J. Chem. Soc.* (1947), 924.
- [3] T. Urbański and E. Lipska, *Roczniki Chem.* **26** (1952), 182.
- [4] T. Urbański and D. Gürne, *Roczniki Chem.* **28** (1954), 175.
- [5] T. Urbański and J. Kolesińska, *Roczniki Chem.* **29** (1955).
- [6] T. Urbański and H. Piotrowska, *Roczniki Chem.* **29** (1955).
- [7] Z. Eckstein, W. Sobótka, T. Urbański, *Roczniki Chem.* **29** (1955).
- [8] T. Urbański, B. Chylińska, *Roczniki Chem.* (in the press).
- [9] M. Kohn, *Monatsh.* **25** (1904), 817, 850.
- [10] M. Betti, *Gazz. chim. ital.* II, **30** (1900), 310; I, **31** (1901), 377; I, **33** (1903), 17; *J. Chem. Soc.* **80** (1901), 81, 611; **84** (1903), 510.
- [11] M. Betti, A. Toricelli, *Gazz. I.*, **33** (1903), 1; *J. Chem. Soc.* **84** (1903), 480.
- [12] M. Betti, V. Foa, *Gazz. I.*, **33** (1903), 27; *J. Chem. Soc.* **84** (1903), 511.
- [13] N. Ahmed, N. G. Hemphill, F. E. Ray, *J. Am. Chem. Soc.* **56** (1934), 2403.
- [14] W. J. Burke, *J. Am. Chem. Soc.* **71** (1949), 609.
- [15] W. J. Burke, M. J. Kolbezen, C. W. Stephens, *J. Am. Chem. Soc.* **74** (1952), 3601.
- [16] W. J. Burke, R. J. Reynolds, *J. Am. Chem. Soc.* **76** (1954), 1291.
- [17] W. J. Burke, K. C. Murdock, G. Ee., *J. Am. Chem. Soc.* **76** (1954), 1677.
- [18] K. G. Mizuez, *J. Gen. Chem. (U. S. S. R.)* **23** (1953), 861.

