Reactions of Aromatic Amines with Cyanguanidine. Formation of Derivatives of Amidineurea and Their Reaction with Aniline

harming by the hire

T. URBANSKI, B. SKOWRONSKA-SERAFIN, and H. DABROWSKA

Presented by T. URBANSKI at the meeting of June 21, 1954

By means of the method described previously [1], consisting in boiling the corresponding aromatic amines with eyanguanidine in presence of hydrochloric acid, the following derivatives of N_1 -amidine- N_2 -phenylurea were prepared (Table I):

TABLE I

K. BORSUK, A	Compound	Name	X	Y	m. p.
X NH-CO-NH-C-NH ₂	I the I	T 222	Cl	н	143—144° C.
	II	T259	Br	H	172—173° C.
	III	T261	NH_2	H	300° C. (hydrochloride)
	IV	T221	SO ₃ H	H	267—269° C.
ŇH	V	T285	SO,NH,	H	212—213° C.
	VI	T325	H	OH	220-222° C. (sulphate)

The compound V was formed from the hydrochloride of p-sulphanilamide, in aqueous medium, without addition of hydrochloride acid, thus in conditions differing from those of preparation of other analogous compounds.

To complete the previous paper [1], the mechanism of the reaction between the derivatives of N₁-amidine-N₂-phenylurea (A) and aniline has been examined. It was now found that in the first instance an asymmetric urea derivative (B) and guanidine were formed. This, on further boiling in aniline, formed symmetric diphenylurea (carbanilide) and the corresponding amine (C). The first stage of the reaction was very rapid and sometimes the product (B) could not be isolated.

$$\begin{array}{c} X & X \\ \hline C_6H_5NH_2 \\ \hline NH-CO-NH-C-NH_2 & NH-CO-NH \\ \hline (A) & NH & (B) \\ \hline \end{array} \\ \begin{array}{c} C_6H_5NH_2 \\ \hline \end{array} \\ X \\ \hline \end{array} \\ \begin{array}{c} X \\ NH_2 \\ \hline \end{array} \\ \begin{array}{c} X \\ NH_2 \\ \hline \end{array} \\ \begin{array}{c} X \\ NH_2 \\ \hline \end{array} \\ \begin{array}{c} X \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ \end{array} \\ \end{array}$$

When repeating the reaction between N_1 -amidine- N_2 -(p-carboxyphenyl)-urea (i. e. X = COOH, Y = H) and aniline, we confirmed the mechanism described above and have stated that no decarboxylation of the compound (A) or (B) had occurred, contrary to the suggestion reported previously [1]. By interrupting the reaction in the early stage, it was possible to isolate compound (B) (X = COOH). Prolonged boiling in aniline led to formation of carbanilide and p-aminobenzoic acid.

Products I—VI have been examined in vitro from the viewpoint of their bacteriostatic action against Mycobacteria by S. Ślopek from the Silesian School of Medicine (Table II):

TABLE II

Compound	Name	Inhibiting concentration mg. $^{0}/_{0}$				
		Myc. 279	Myc. smegmatis	Myc. H ₃₇ Rv		
171 2	T 222	4	65 X 4 H	15		
II 100	T 259	,B1	80% 1 111	31		
III	T 261	125	125	125		
IV	T 221	31	89 7 62 7	62		
a) .0 V.ce - ds	T 285	62	125	-		
VI	T325	125	125	125		

Department of Organic Technology, Institute of Technology, Warsaw Institute of Tuberculosis, Warsaw

REFERENCES Anadosm add [1] maged subsvent add stellamon of

[1] Urbański T., Skowrońska-Serafin B., Dąbrowska H., Bull. Acad. Polon. Sci., Cl. III, 1 (1953), 74.

strine (C). The first stage of the reaction was ver

19,111