

On ESR Signals of Amber *)

by

Tadeusz URBAŃSKI

Presented on May 30, 1977

Summary. The pattern of ESR signals of amber containing Mn^{2+} differs from that of other samples. Although the pattern was expected, the fact points to the possible use of ESR as a quick method for distinguishing between some samples of amber.

Continuing the work on the properties of amber [1-4] the author tried to find out a criterion which could help establish the geographic origin of the samples. The examination of the ESR signal was chosen as a method which could possibly differentiate ambers of various origin. The following samples were examined.

- 1) Amber from Toczka, district of Gliwice, Upper Silesia (from the collection of Dr. Klette).
- 2) Amber from Peninsula of Taigonus, Syberia, USSR (from the collection of Dr. Goeppert, Mineralogical Museum of the University of Wrocław).
- 3) Dark amber from USSR (origin unknown).
- 4) Light amber from USSR (origin unknown).

For comparison two more samples were examined which can be considered as younger forms of naturally occurring resinous polymers, viz.:

- 5) Colophony,
- 6) African Copal.

The registered signals are depicted in Figs. 1-6.

The spectra in Figs. 2 and 3 are characterized by the presence of signals typical of the Mn^{2+} cation.

Indeed, according to the analysis carried out at the Institute of the History of Material Culture, sample (2) contains ca. 0.01 % Mn and a number of other cations (such as Na, Ca, Mg, Al, Fe, Cr, etc.). The presence of Mn^{2+} should account for the registered pattern of the signals.

From the examination of the samples it can be concluded that in particular cases when amber contains some mineral cations, such as Mn^{2+} , it can be distinguished by the pattern of its ESR signal.

*) Contribution to the Chemistry of Amber. Part VI.

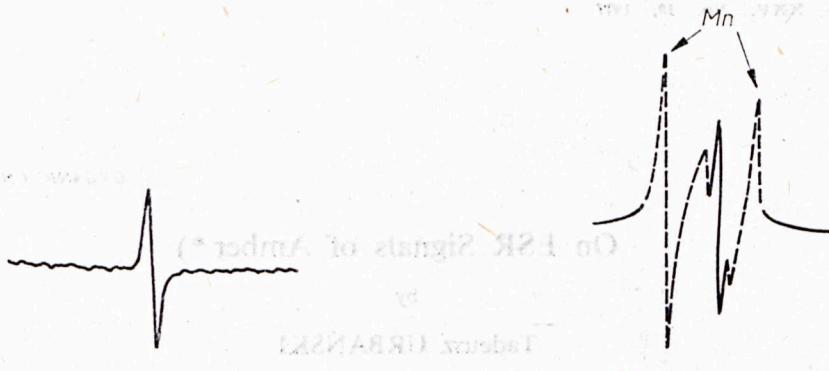


Fig. 1

Fig. 2



Fig. 3

Fig. 4

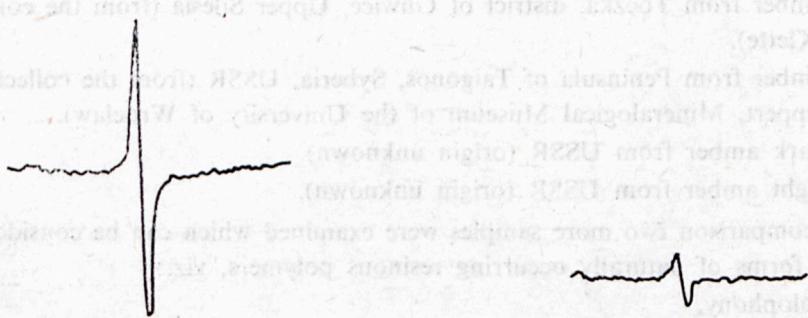


Fig. 5

Fig. 6

Experimental

The ESR measurements were carried out in a Jeolco JES-ME3X apparatus at the Institute of Physical Chemistry of the Polish Academy of Sciences.

The author is much indebted to Dr. (Mrs.) A. Chodkowska for carrying out ESR measurements, and to Professor T. Dziekoński of the Institute of the History of Material Culture for supplying samples (1) and (2) and for the financial help.

REFERENCES

- [1] T. Urbański, *Nature*, **216**, 577 (1967).
- [2] —, *Proc. Roy. Soc. London (A)*, **325**, 377 (1971).
- [3] T. Urbański, S. Benbenek, S. Malinowski, *Bull. Acad. Polon. Sci., Sér. Sci. Chim.*, **19**, 227 (1971).
- [4] T. Urbański, T. Glinka, E. Wesołowska, *ibid.*, **24**, 625 (1976).

Т. Урбаньски, О сигналах ЭСР янтаря

Содержание. Форма сигнала ЭСР янтаря содержащего Mn^{2+} отличается от других образцов. Конечно, можно было предвидеть эту разницу, тем не менее найденный факт свидетельствует о возможности быстрого идентификации некоторых образцов янтаря при помощи описанного метода.