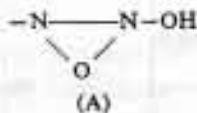
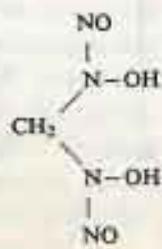

Ultraviolet and Infrared Spectra and Structure of "Isonitramines" (Nitrosohydroxylamine Derivatives)

by

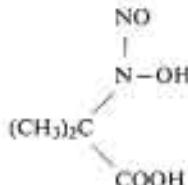
M. PISKORZ and T. URBAŃSKI


Presented by T. URBAŃSKI on August 2, 1963

"Isonitramines" are a relatively little-known group of compounds. The first representative of this group of compounds, methylenedioniisonitriline (I), was prepared by Traube [1] by acting with nitric oxide on acetone in strongly alkaline medium followed by hydrolysing of the intermediate compound:



Similar products were prepared from methyl isopropyl ketone, acetophenone, mesityl oxide.


Originally Traube assigned the structure (A) to the isonitramine group

In his later work he found [2] that nitroso derivatives of β -substituted hydroxylamines are identical with isonitrosamines. He did not, however, draw any conclusions from this fact. MacDonald and Masson [3] were the first to suggest the nitrosohydroxylamine structure of methylenedioniisonitriline:

Also Gomberg [4] found that isonitramineisobutyric acid possesses the structure:

i. e., it is a nitrosohydroxylamine derivative. Hantzsch [5] suggested two structures for isonitramines: (A) and (B), the latter having two tautomeric forms:

In the meantime, the work of Angeli [6] introduced a new idea as regards the structure of azoxy compounds. This author supplied evidence of the now generally accepted [7] unsymmetrical structure of these compounds, and suggested that isonitramines possess the structure of nitrosohydroxylamine derivatives (Bb), thus resembling unsymmetrical azoxy compounds.

Hantzsch and Strasser [8] eventually accepted the nitrosohydroxylamine structure of the isonitramine group, but the problem called for revision as R. N. Jones and Thorn [9] found no absorption band of the nitroso group in the ultraviolet spectrum of methylenediiisonitramine. Haszeldine and Jander [10] came to the same conclusion.

UV spectra

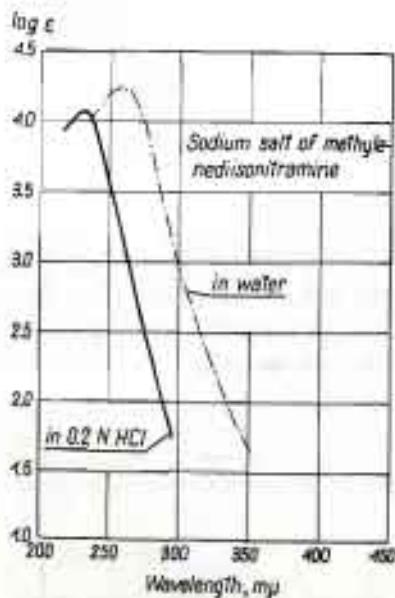


Fig. 1

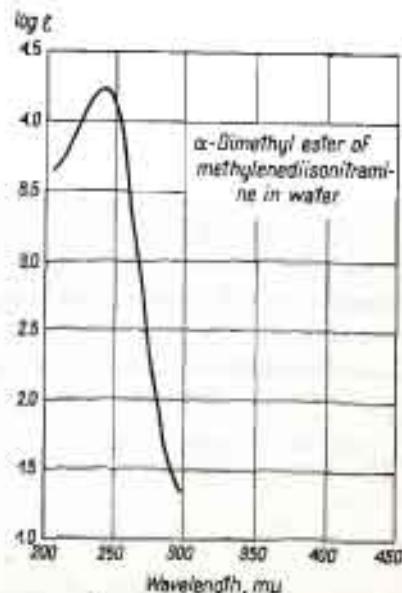


Fig. 2

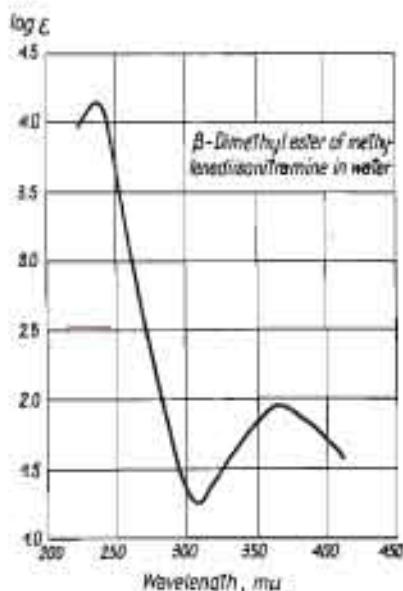


Fig. 3

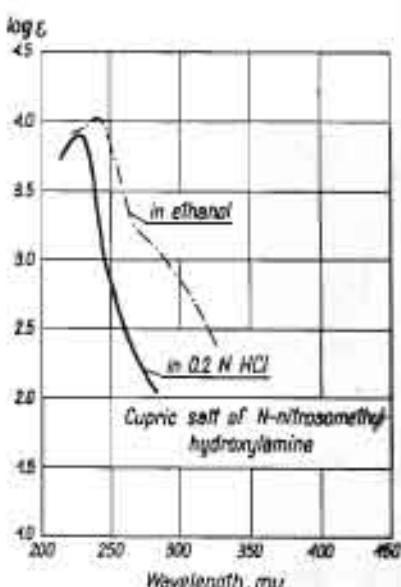
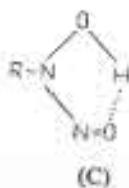



Fig. 4

Carmack and Leavitt [11] as well as Haszeldine and Jander [10] tried to explain this discrepancy in terms of an internal hydrogen bond (formula (C)) which would obliterate the NO absorption band:

The work of Kortüm and Finekh [21] should also be mentioned. They compared ultraviolet and visible spectra of two isomers: methyl-nitriline and methyl-N-nitrosohydroxylamine. However, the spectra did not provide comparable results as they were taken in acid and basic medium, respectively.

The authors of the present paper prepared a number of salts of methylenediisonitriline and of methylenedinitriline and compared their explosive properties [13]. These two groups of compounds were found to differ considerably in this respect. It was also established that no isomerization of isonitriline to nitriline and vice versa, occurred when the *pH* of both types of compounds was varied at different temperatures.

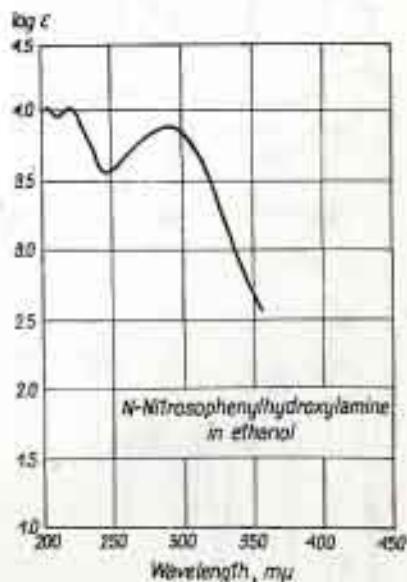


Fig. 5

IR spectra

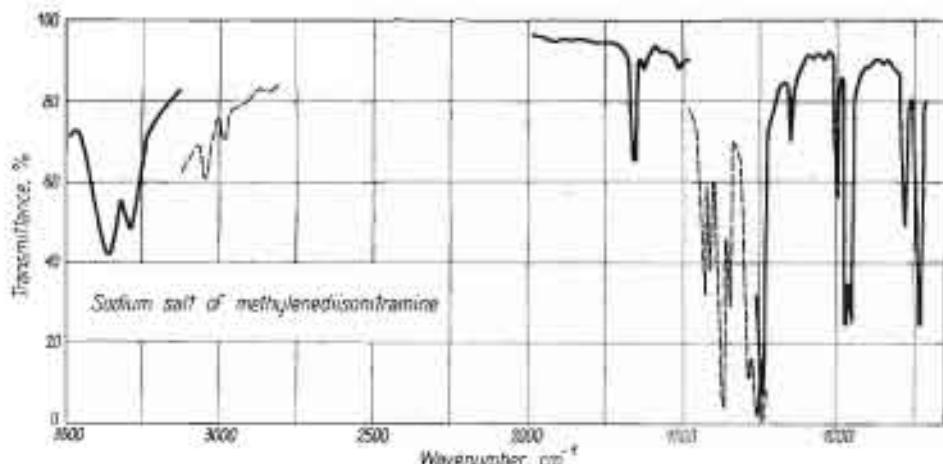


Fig. 6

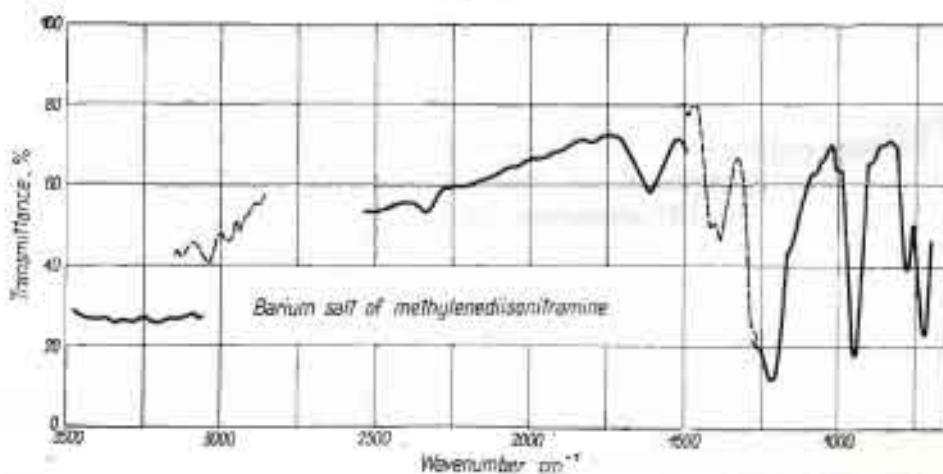


Fig. 7

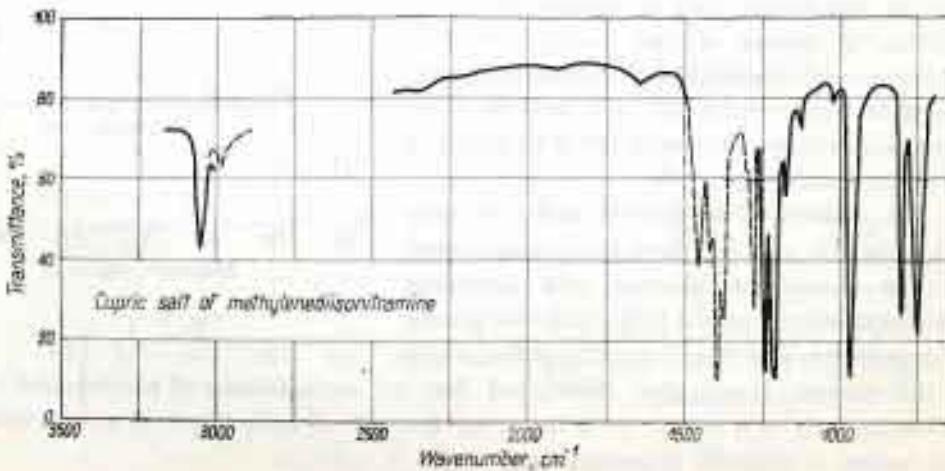


Fig. 8

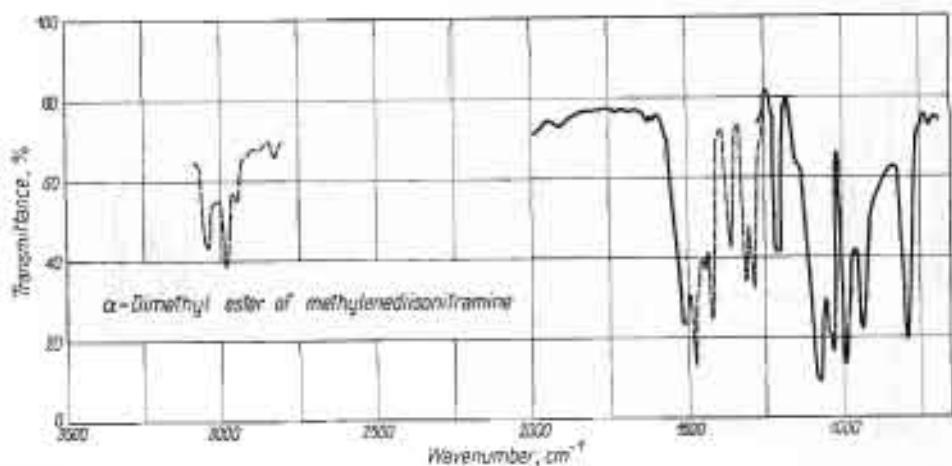


Fig. 9

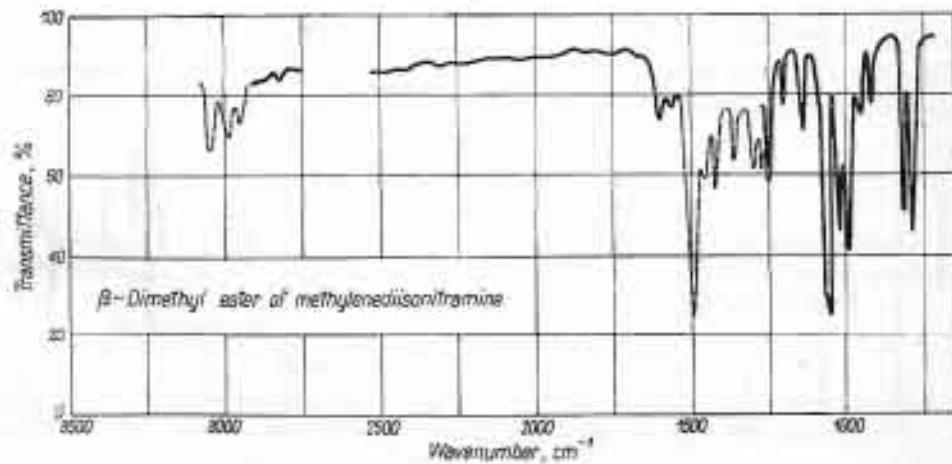


Fig. 10

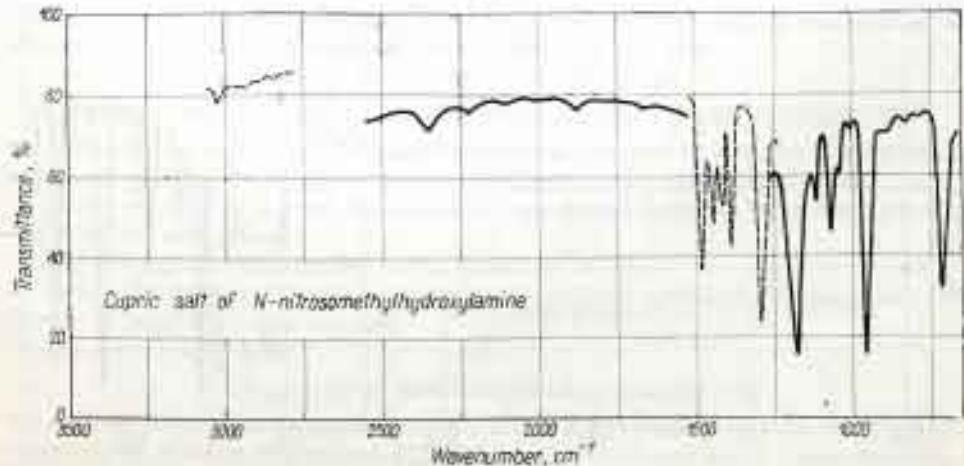


Fig. 11

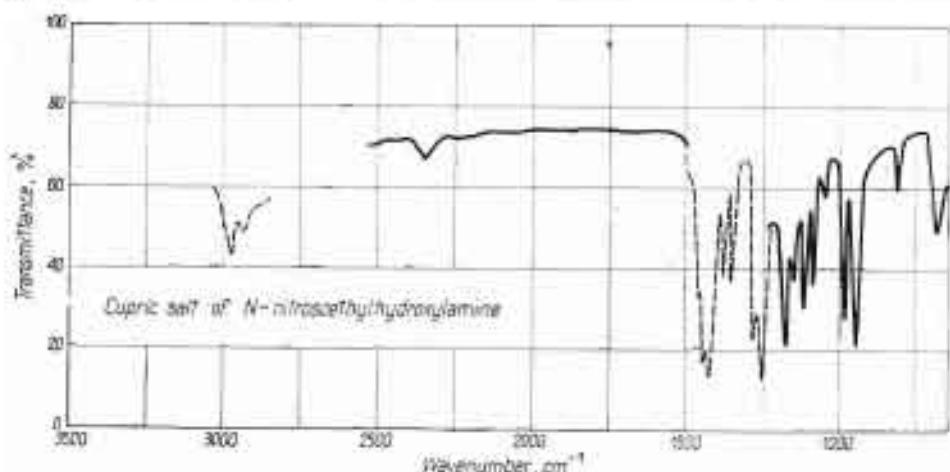


Fig. 12

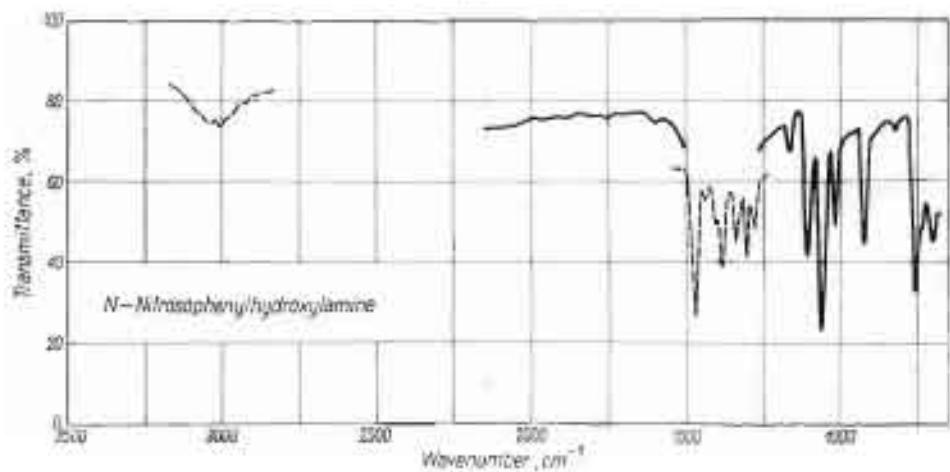


Fig. 13

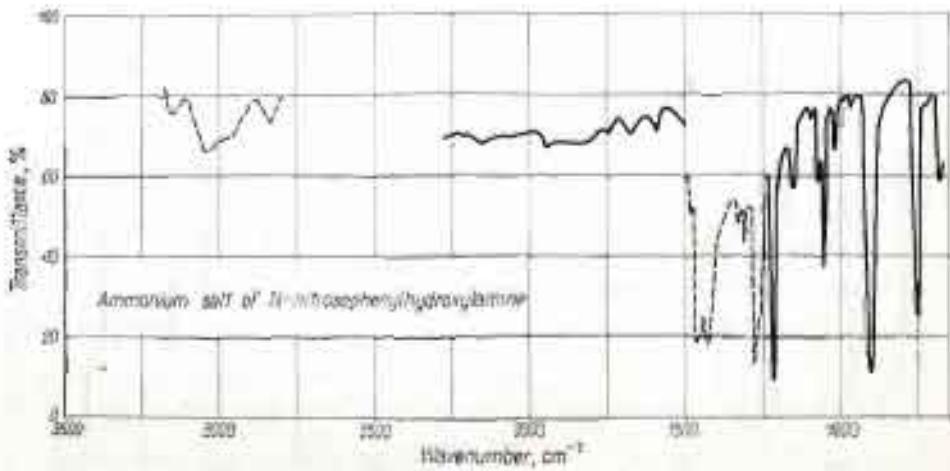


Fig. 14

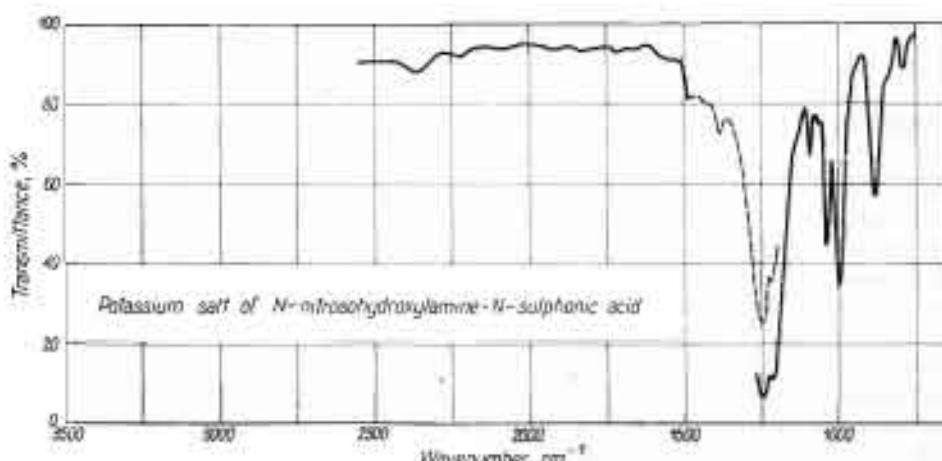


Fig. 15

The present paper deals with ultraviolet and infrared absorption spectra of isonitramines as compared with the spectra of nitramines [14] and nitrosamines [15]. The aim of this work was to find new experimental facts concerning the structure of isonitramines.

Experimental

Sodium salt of methylenediiisonitramine (I)

was prepared according to Traube [1] and purified by dissolving in a small amount of water and precipitating the salt by the addition of ethanol. After repeated purification the salt was analysed.

For $\text{CH}_2\text{O}_4\text{N}_4\text{Na}_2 \cdot \text{H}_2\text{O}$: calculated: Na, 23.3%; found: Na, 23.05%.

Barium salt of methylenediiisonitramine (II)

was prepared from an aqueous solution of the sodium salt by acting upon it with aqueous barium chloride. The precipitate of barium salt was crystallized several times from hot water.

For $\text{CH}_2\text{O}_4\text{N}_4\text{Ba} \cdot \text{H}_2\text{O}$: calculated: Ba, 47.5%; found: Ba, 47.3%.

Cupric salt of methylenediiisonitramine (III)

was prepared from an aqueous solution of the sodium salt by acting upon it with aqueous cupric sulphate. The precipitate of cupric salt was washed with hot water.

For $\text{CH}_2\text{O}_4\text{N}_4\text{Cu}$: calculated: Cu, 31.1%; found: Cu, 31.2%.

Dimethyl esters (α and β) of methylenediiisonitramine (IV) and (V), respectively

A mixture of α - and β -esters was prepared according to Traube [1] by acting with methyl iodide solution in ether on the silver salt of methylenediiisonitramine suspended in ether.

β -Ester (V) (soluble in ether) was purified by crystallization from hot water. Light yellow crystals, m.p. 74°, were obtained.

For $\text{C}_3\text{H}_8\text{O}_4\text{N}_4$: calculated: N, 34.1%; found: N, 34.15%.

α -Ester (IV) (insoluble in ether, soluble in hot alcohol) was crystallized from hot ethanol. White crystals of m.p. 134° were obtained.

Found: N, 34.05%.

Cupric salt of N-nitrosomethylhydroxylamine (VI)

was obtained according to Sand and Singer [16] by acting with nitrogen oxide on methylmagnesium iodide in ether followed by acidifying with dilute sulphuric acid and adding cupric hydroxide suspended in water. The cupric salt was crystallized from hot ethanol.

For $\text{C}_2\text{H}_6\text{O}_4\text{N}_4\text{Cu}$: calculated: Cu, 29.5%; found: Cu, 29.8%.

TABLE I

Substance	Solvent	λ_{\max} m μ	$\lg \epsilon_{\max}$	λ_{\min} m μ	$\lg \epsilon_{\min}$	λ shoulder m μ	$\lg \epsilon$
Sodium salt of methylenediaminonitrime (I)	water 0.2 N HCl	258 232	4.26 4.13				
α -Dimethyl ester of methylenediaminonitrime (IV)	water	242	4.27				
β -Dimethyl ester of methylenediaminonitrime (V)	water	237 370	4.14 1.98	312	1.24		
Cupric salt of N-nitrosomethylhydroxylamine (VI)	ethanol 0.2 N HCl	239 226	4.05 3.90			265	3.24
N-Nitrosophenylhydroxylamine (VIII)	ethanol	222 294	4.03 3.88	212 245	3.94 3.56		

Cupric salt of N-nitrosoethylhydroxylamine (VII)

was prepared according to Sand and Singer [16] from ethylmagnesium iodide in the same way as N-nitrosomethylhydroxylamine.

For $C_4H_{10}O_4N_4Cu$: calculated: Cu, 26.1%; found: Cu, 26.2%.

N-Nitrosophenylhydroxylamine (VIII)

was obtained according to Wohl [17] by acting with sodium nitrite on phenylhydroxylamine in sulphuric acid medium. White crystals, m.p. 59°, were obtained by crystallization from benzene.

The ammonium salt of N-nitrosophenylhydroxylamine (IX)

was prepared according to Marvel [18] by acting with *n*-butyl nitrite on the ether solution of phenylhydroxylamine saturated with dried ammonia, in excess of ammonia. It was purified by crystallization from ethanol.

For $C_6H_{10}O_2N_3$: calculated: N, 27.1%; found: N, 26.8%.

Potassium salt of N-nitrosophenylhydroxylamine-N-sulphonic acid (X)

was obtained according to Rasching [19] by acting with nitrogen oxide on aqueous potassium sulphite solution. The salt was purified by crystallization from dilute potassium hydroxide.

For $O_5N_3SK_2$: calculated: N, 12.8%; found: N, 12.6%.

Spectra

The UV absorption spectra were determined with a Unicam SP-500 spectrophotometer and the infrared absorption spectra — with a Hilger H-800 double-beam spectrophotometer with sodium chloride optics. The substances were used in form of Nujol mulls, and, in the region of absorption of Nujol, as suspensions in trichlorobromomethane.

The spectra are recorded in Figs. 1—15 and Tables I and II. Absorption in Nujol and trichlorobromomethane are denoted by continuous and dotted lines, respectively.

Discussion

Ultraviolet absorption spectra (Table I, Figs. 1—5)

The sodium salt of methylenediiisonitriline (I) in 0.2 N hydrochloric acid gave a spectrum similar to that of methylenedinitriline (max. at 232 m μ) [14]. However, in aqueous solution a strong bathochromic shift occurs with a slight increase of the intensity of the absorption maximum at 258 m μ . A very similar phenomenon was observed with cupric salt of N-nitrosomethylhydroxylamine (maximum at 226 and 239 m μ , respectively) (VI), thus suggesting a similarity of the structure of these two compounds. Moreover, the spectrum of compound (VI) shows a shoulder at still longer waves (265 m μ).

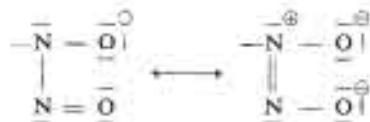
The α - and β -dimethyl esters of methylenediiisonitriline (IV) and (V), respectively) give similar maxima (242 and 237 m μ , respectively). In addition the β -ester shows a broad maximum at 370 m μ which seems to characterize nitroso-compounds: This would confirm the N-nitrosohydroxylamine structure of the isonitriline group. However, the difference between the structure of α - and β -esters remains unexplained.

The spectrum of N-nitrosophenylhydroxylamine is obscured by the presence of the aromatic ring.

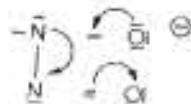
Infrared absorption spectra (Table II, Figs. 6—15)

A characteristic feature of isonitrilines (dimethyl esters of methylenediiisonitrilines, (IV) and (V), and N-nitrosophenylhydroxylamine, (VIII)) are the respective strong bands: 1512, 1495 and 1462 cm. $^{-1}$ and 1316—1297, 1274—1250 and 1284 cm. $^{-1}$.

They are very much similar to the bands present in the spectra of nitrosamines described by Haszeldine and Jander [10] and in one of our papers [15]. They should therefore, be assigned to N = O stretching vibrations.


A third strong band appeared for the same compounds at 1041, 1057 and 1062 cm. $^{-1}$, respectively.

A similar band was found in the spectra of nitrosamines [10], [15] and was assigned to N—N stretching vibrations. The same seems to be applicable to the isonitriline group.


As regards the spectra of salts of methylenediiisonitriline and the derivatives of N-nitrosomethylhydroxylamine, three characteristic strong bands appear in the regions: 1286—1246 cm. $^{-1}$, 1242—1174 cm. $^{-1}$ and 980—910 cm. $^{-1}$.

It seems that they should be assigned: the first two to N—O, and the last one — to N—N stretching vibrations.

Their lower frequency could possibly be explained by the resonance structure of the anion suggested by Haszeldine and Jander [10]:

or by its strongly polarized mesomeric structure:

A conclusion may be drawn from our experiments that the infrared spectra seem to confirm the N-nitrosohydroxylamine structure (B) of the isonitramine group.

TECHNICAL MILITARY COLLEGE, WARSAW
(WOJSKOWA AKADEMIA TECHNICZNA, WARSZAWA)

REFERENCES

- [1] W. Traube, Ber., 27 (1894), 1507, 3291.
- [2] —, Ann., 300 (1898), 81.
- [3] G. W. MacDonald and O. Masson, J. Chem. Soc., 65 (1894), 944.
- [4] M. Gomberg, Ann., 300 (1898), 59.
- [5] A. Hantzsch, Ber., 31 (1898), 177.
- [6] A. Angel, Ber., 29 (1896), 1885; 59 (1926), 1401, Gazz. Chim. Ital., 46 II, (1916), 67.
- [7] J. Urbański and T. Urbański, Roczn. Chem., 33 (1959), 669.
- [8] A. Hantzsch and E. Strasser, Ber., 64 (1931), 656.
- [9] R. N. Jones and G. D. Thorn, Canad. J. Research., B 27 (1949), 828.
- [10] R. N. Haszeldine and J. Jander, J. Chem. Soc., (1954), 691.
- [11] V. Carmack and J. J. Leavitt, J. Am. Chem. Soc., 71 (1949), 1221.
- [12] G. Kortüm and B. Finckh, Z. phys. Chem. B 48 (1941), 32.
- [13] M. Piskorz and T. Urbański, Biul. WAT No. 8/84 (1959), 112.
- [14] —, Bull. Acad. Polon. Sci., Sér. sci. chim. 11 (1963), 617.
- [15] —, ibid., 11 (1963), 609.
- [16] J. Sand and F. Singer, Ann., 329 (1903) 193.
- [17] A. Wohl, Ber., 27 (1894) 1432.
- [18] C. S. Marvel, *Organic synthesis*, Ed. A. H. Blatt, Vol. 1, p. 171, Wiley, New York.
- [19] F. Raschig, Ann., 241 (1887), 161.

TABLE II

Infrared spectra

Medium	Substances									
	(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)	(X)
Nujol	3513 m 3340 m 3269 m 3042 w									3156 w 3028 w
CCl ₃ Br	2980 w 2976 w 2938 w 2845 vw	2988 w 2978 m 2948 w 2826 w	3050 m 3038 m	3072 w 3014 w	2981 w 2948 w 2825 vw	2934 vw 2972 m 2926 w	3000 w 2844 w			
Nujol	1658 w 1613 m(b)		1620 w 1512 s		1604 w 1571 w			1595 vw 1588 vw		
CCl ₃ Br	1427 m 1410 m 1368 vs 1348 s 1286 s 1262 vs 1242 vs	1485 vw 1420 sh 1388 m	1450 m 1415 sh 1394 s 1372 m 1293 sh 1276 m	1482 vs 1448 sh 1430 s 1366 m 1316 m 1297 m	1495 s 1455 sh 1420 w 1362 w 1301 w 1274 m 1250 m	1474 s 1436 m 1410 m 1377 m 1283 s 1281 s 1253 vs	1462 sh 1438 vs 1420 vs 1377 m 1353 m 1281 s 1253 vs	1462 s 1438 w 1443 sh 1422 s 1396 sh 1380 s 1335 m 1300 m 1284 m 1260 sh	1482 sh 1455 s 1443 sh 1422 s 1384 w 1335 w 1315 w 1270 s 1260 sh 1246 vs	
Nujol		1226 vs 1212 sh 1150 w 1080 vw 1042 vw 998 m 966 s 956 s 899 sh 856 vw 811 sh 776 m 731 s	1236 m 1203s (b) 1166 w 1118 w 1085 sh 1045 sh 1014 m 960 vs 869 sh 795 s 776 m 750 s 730 s	1210 m 1146 sh 1137 w 1085 vs 1050 sh 1041 s 998 vs 941 s 888 sh 807 m 783 m 726 vw 707 s	1201 w 1174 vs 1118 w 1113 s 1080 m 1066 m 1042 sh 1005 vw 953 vs 945 s 920 m 837 vw 806 w 783 vw 692 m		1174 s 1150 m 1113 s 1112 s 1080 m 1062 s 1042 sh 1018 m 980 s 945 s 920 m 843 vw 824 vw 763 s 709 m	1164 w 1164 w 1112 s 1099 w 1062 s 1042 sh 1018 m 985 vw 945 s 910 vs 880 m 843 vw 824 vw 759 s 731 sh	1219 vs 1158 w 1099 w 1063 vw 1051 m 1024 w 995 s 837 sh 788 w	1217 sh 1092 w 1063 vw 1033 m 995 s 880 m 837 sh 788 w

(I) — Sodium salt of methylenediisonitriline,
 (II) — Barium salt of methylenediisonitriline,
 (III) — Cupric salt of methylenediisonitriline,
 (IV) — α -Dimethyl ester of methylenediisonitriline,
 (V) — β -Dimethyl ester of methylenediisonitriline,

(VI) — Cupric salt of N-nitrosomethylhydroxylamine,
 (VII) — Cupric salt of N-nitrosoethylhydroxylamine
 (VIII) — N-Nitrosophenylhydroxylamine,
 (IX) — Ammonium salt of N-nitrosophenylhydroxylamine,
 (X) — Potassium salt of N-nitrosohydroxylamine-N-sulphonic acid.