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Abstract 
 

This dissertation is focused on the semi-analytical finite-difference time-domain (FDTD) 

modeling of electromagnetic radiation and scattering problems. A combination of analytical 

and numerical methods  may lead to decreased computational effort at no cost to the accuracy 

of the obtained results. 

 

Chapter 3 deals with electromagnetic modeling of periodic structures using the FDTD method 

supplemented with periodic boundary conditions, derived from the analytical Floquet 

theorem. A developed algorithm is then applied to the analysis of one-, two-, and three-

dimensional eigenvalue problems of periodic structures. As an extension of the algorithm’s 

applicability to deterministic problems, methods and computational models for the analysis of 

a diffraction of plane wave obliquely incident on periodic structure are introduced and 

investigated. For the purpose of final evaluation of the introduced methods, models with a 

Gaussian beam incident on a periodic structure are introduced and validated. 

 

Chapter 4 of this dissertation depicts the author’s consideration on the possibility of applying 

the FDTD method to the modeling of imaging phenomenon, which is widely used in optical 

microscopes. A coupling of the FDTD method with the algorithms based on approximate 

methods dedicated to optical diffraction modeling is introduced and validated. The elaborated 

method leads to increased accuracy of the overall modeling of an optical path in modern 

microscopes. 

 

Chapter 5 is focused on the transformation of electromagnetic fields in a near zone of 

axisymmetrical structures. The method introduced and derived by the author of this 

dissertation enables a significant reduction in computational effort of the already existing 

FDTD schemes for axisymmetrical problems which have no common symmetry axis for all 

the consituent elements, such as off-axis feeded Cassegrain antenna. 
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Streszczenie 
 

Praca poświęcona jest częściowo analitycznemu modelowaniu elektromagnetycznemu 

zagadnień promieniowania oraz dyfrakcji fali elektromagnetycznej metodą różnic 

skończonych w dziedzinie czasu (ang. finite-difference time-domain). Kombinacja metod 

analitycznych z metodami numerycznymi może prowadzić do zmniejszenia nakładów 

obliczeniowych bez dodatkowych kosztów w postaci zmniejszonej dokładności 

otrzymywanych wyników obliczeń. 

 

Rozdział 3 rozprawy dotyczy modelowania elektromagnetycznego struktur periodycznych 

metodą różnic skończonych w dziedzinie czasu, uzupełnioną o periodyczne warunki 

brzegowe wyprowadzone z analitycznego twierdzenia Floquet'a. Algorytm ten zastosowany 

jest następnie do analizy problemów własnych jedno-, dwu- oraz trójwymiarowych struktur 

periodycznych. W ramach problemów deterministycznych, wprowadzone i opisane są także 

metody i modele obliczeniowe dyfrakcji fali płaskiej padającej pod dowolnym kątem na 

strukturę periodyczną. W celu weryfikacji opisanych dotychczas metod, wprowadzone zostają 

modele do obliczeń padania fali elektromagnetycznej o przestrzennym rozkładzie Gaussa na 

strukturę periodyczną. 

 

Rozdział 4 rozprawy przedstawia rozważania autora na temat możliwości zastosowania 

metody różnic skończonych w dziedzinie czasu do modelowania zjawiska obrazowania, 

szeroko stosowanego w mikroskopach optycznych. Zaproponowana i zweryfikowana została 

możliwość sprzężenia metody różnic skończonych w dziedzinie czasu z algorytmem opartym 

na aproksymacyjnych metodach modelowania dyfrakcji optycznej. Opracowana metoda 

pozwala na zwiększenie dokładności modelowania toru optycznego we współczesnych 

mikroskopach. 

 

Rozdział 5 poświęcony jest przekształceniu pola elektromagnetycznego w strefie bliskiej dla 

problemów osiowosymetrycznych. Metoda - wyprowadzona i zweryfikowana przez autora 

pracy - pozwala na znaczne zwiększenie efektywności obliczeń elektromagnetycznych 

struktur osiowosymetrycznych, takich jak antena typu Cassegrain, której poszczególne 

elementy nie posiadają wspólnej osi symetrii. 
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Chapter 1 
 

 

Introduction 
 

 

1.1 Motivation and Objectives 
 

During the last several years computer aided design (CAD) has become an essential tool in 

the engineering practice as well as in the research and development (R&D) activities. It is 

hard to imagine a professional design work without specialized software applications 

supported with modern computing units. It is mainly an outcome of dynamic growth that can 

be observed in many branches of science, but also a result of an increasing complexity of 

modern devices. Old-fashioned cut-and-try techniques were found highly ineffective, so in the 

recent years a lot of effort has been focused on the development of numerical methods and 

algorithms to apply in various scientific disciplines. 

 

The subject of this thesis concerns CAD modeling of electromagnetic (EM) phenomena. In 

particular, the dissertation is focused on one of the most recognized numerical methods         

in electromagnetics, namely the finite-difference time-domain (FDTD) method,         

originally introduced in electromagnetics by Kane Yee in 1966. Some details about the FDTD 

method will be recalled in Chapter 2. It should be emphasized, however, that an increasing 

confidence in EM modeling stimulates growing market requirements, which are often   

beyond computational capabilities of the state-of-the-art computer platforms. In consequence,             

a lot of effort is continuously undertaken by many scientists to solve or at least alleviate     

that mismatch. One of the possible solutions to the huge demand of computational speed    

and effectiveness lies in investing in more powerful processing units. On the other hand,  

there can be observed an increasing popularity of hybrid EM modeling, which combines 

different modeling methods, enabling a reduction in computational effort for specific          

EM problems. Some of these approaches may be called partially analytical, in reference        

to the algorithms that combine classical numerical methods, like FDTD, FEM, MoM, etc., 

with analytical formulae. This dissertation addresses some of partially analytical methods 

coupled with the FDTD method. 
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The motivation of this thesis follows from the demand to extend the applicability of the 

FDTD method to the analysis of radiation and scattering problems, which were formerly 

highly ineffective, or even impossible to handle without deterioration of accuracy. The 

following thesis is posed and will be proven: 

 

The partially analytical FDTD methods can substantially speed up the 

computation of electromagnetic radiation and scattering problems without 

deterioration of accuracy. 

 

In this dissertation, three auxiliary statements will also be addressed and confirmed: 

 

1. Electromagnetic modeling of plane wave scattering from periodic 

structures can be made computationally more effective by applying FDTD 

with Floquet theorem (CL-FDTD) and a number of specialized models for 

excitation and parameter extraction. 

 

2. Approximate optical modeling of lens imaging systems based on a Fresnel 

diffraction theory can be successfully supported with the rigorous FDTD 

modeling, improving modeling accuracy. 

 

3. The alternative partially analytical method of near-to-near field 

transformation for axisymmetrical problems, requiring less 

computational efforts than the direct integration technique, can be 

developed. 

 

The study presented in this dissertation extends computational capabilities of the FDTD 

method for new domains of problems, introducing simplified computational models based on 

analytical transformations or approximate assumptions. 

 

1.2 Thesis Overview 
 

Chapter 2 presents a brief outline of the FDTD method, emphasizing its major advantages 

over the other modeling methods, but also pointing out its inherent limitations. 
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Chapter 3 covers the issue of the FDTD modeling of periodic structures. Implementation of 

1D, 2D and 3D periodic boundary conditions (PBC) is presented and its applicability for 

analysis of eigen-problems is studied. Next, modeling of a plane wave scattering from 

periodic structures using the FDTD algorithm with PBC is investigated. A near-to-far 

transformation is adapted in the periodic FDTD algorithm to extract a radiation/scattering 

pattern of an infinite periodic problem in a finite FDTD model. Extended studies of selective 

frequency properties of PBC are covered. A waveguide model in the classic FDTD algorithm 

is also studied as an alternative for the periodic FDTD algorithm to the analysis of plane wave 

scattering from periodic structures. Finally, a Gaussian beam illumination of an infinite 

periodic structure is discussed to show the prospective limitations of the periodic FDTD 

approach. 

 

Chapter 4 presents original study by the author of this thesis on the applicability of the FDTD 

method to modeling of an imaging phenomenon, which plays an important role in optical 

microscopes when a target's size becomes comparable to operating wavelengths. The issue of 

the potential application of the FDTD method coupled with a particular approximate optical 

approach to enhance capabilities of the overall algorithm of the far-field microscope imaging 

is then addressed. 

 

Chapter 5 is focused on the near-to-near (NTN) transformation technique for the 

axisymmetrical problems, originally developed by the author of this thesis. 

 

1.3 Original Contribution 
 

This thesis presents the author’s original contribution in the following areas: 

- development, implementation and evaluation of 2D and 3D periodic boundary 

conditions in 3D CL-FDTD algorithm (Chapter 3); 

- development, implementation and evaluation of 1D and 2D periodic boundary 

conditions in V2D CL-FDTD algorithm (Chapter 3); 

- development, implementation and evaluation of plane wave source in a 3D CL-

FDTD algorithm (Chapter 3); 

- development, implementation and evaluation of near-to-far transformation in a 3D 

CL-FDTD algorithm (Chapter 3); 
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- investigation of practical frequency bandwidth of the CL-FDTD algorithm (Chapter 

3); 

- evaluation of a waveguide model for plane wave scattering from periodic structures 

in the classic FDTD algorithm (Chapter 3); 

- development, implementation and evaluation of V2DS CL-FDTD algorithm 

(Chapter 3); 

- development, implementation and evaluation of a waveguide model of the plane 

wave scattering from periodic structures in CL-FDTD algorithm (Chapter 3); 

- simulations of a Gaussian beam illumination of an infinite periodic structure 

(Chapter 3); 

- development, implementation and evaluation of a hybrid FDTD-Fresnel algorithm 

applicable to the modeling of wide-field microscope tools (Chapter 4); 

- development, implementation and evaluation of a hybrid FDTD-Fresnel algorithm 

applicable to the modeling of confocal microscope tools (Chapter 4); 

- derivation, development and evaluation of near-to-near transformation for 

axisymmetrical structures (Chapter 5). 
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Chapter 2 
 

 

Finite-Difference Time-Domain –  
Overview of the Method 

 

 

2.1 Principles of the Method 
 

Electromagnetism is a notion that bonds time-varying electric and magnetic fields together 

into inseparable quantities. Yet, up to the middle of the 19th century, scientists recognized 

both electric and magnetic fields as independent of each other. Afterwards, at the time when 

electricity and magnetism started to be extensively studied, Ampere’s and Faraday’s laws 

were the first that strictly related the motion of both physical quantities. After the unification 

of the contemporary understanding of electromagnetism made by James Clerk Maxwell, he 

proposed a set of 20 differential equations with 20 variables that linked all electric and 

magnetic components together. Eventually, by applying vector notation, all these formulae 

have been reduced to the following elegant set of 5 vector differential equations with 5 vector 

quantities: 
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where 

 

 H - magnetic field, 

E - electric field, 

J - electric current density, 

B - magnetic flux density, 

D - electric flux density, 

ρ - electric charge density, 

ε0 - free-space permittivity, 

µ0 - free-space permeability. 

 

The Ampere’s (Eq.2.1) and Faraday’s (Eq.2.2) formulae are known as electrodynamics 

equations, as they describe time-varying properties of an electromagnetic field. Gauss laws 

(Eq.2.3,4), which refer to static magnetic and static electric fields, respectively, consider these 

fields as separated from each other. 

 

The time-dependent Maxwell’s curl equations (Eq.2.1,2) were set into a finite difference 

scheme originally by Kane Yee in 1966 [1]. The special arrangement of electric and magnetic 

field components proposed by Yee is commonly called a Yee cell (see Fig.2.1). Such 

distribution of electromagnetic (EM) components allows solving the Maxwell’s curl equations 

in the following discretized form, with second-order accuracy: 
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where 

 

 ∆t  - time step, 

 n  - time step index, 

 ∆x, ∆y, ∆z - Yee cell dimensions, 

 (i,j,k)  - Yee cell indices. 

 

 
Fig.2.1. Yee cell. 

 

The above set of discrete equations is the basis for the finite-difference time-domain (FDTD) 

computational scheme. As it can be noticed, electric and magnetic field components are 

computed in consecutive time instants, every half of a time step ∆t, forming a so-called 

leapfrog time-stepping algorithm. The FDTD algorithm does not explicitly enforce the Gauss 

laws; nevertheless, as it has been pointed out in [2], the FDTD formulae are divergence-free 

with respect to D and B fields (compare Eq.2.3,4). It indicates that the FDTD algorithm, in its 

original form, is dedicated to the modeling of charge-free problems. 
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Relation between the spatial grid size and the time step are relevant to stability of the FDTD 

method. To keep the algorithm stable, a so-called Courant stability criterion must be satisfied: 

 

3≥r  (2.12) 

 

where 
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is a stability coefficient. 

 

For the specified spatial grid, the time step has to be small enough to maintain the algorithm 

stable. Otherwise, an extensively large time step might result in the numerical speed of the 

FDTD algorithm being slower than the physical velocity of the considered EM wave, 

producing a runaway of a numerically propagating amplitude at the wavefront. 

 

Another inherent property of the FDTD method related to the spatial discretization refers to 

the numerical dispersion, which results in limited accuracy of the FDTD algorithm. It is the 

reason why the phase velocity of a numerically propagated wave differs from the physical 

velocity of a wave and this discrepancy is frequency-dependent. In principle, inaccuracy due 

to the numerical dispersion is inversely proportional to the square of the spatial grid size. The 

rule of thumb is to set at least 10 FDTD cells per wavelength to keep the numerical dispersion 

below about 1.5%, though it is often required to set even more than 20-30 cells per 

wavelength. 

 

Regarding computational capabilities, the FDTD method requires A*N4 floating point 

operations, where N stands for the number of Yee cells along one side of the considered cube. 

Since each Yee cell consists of 6 EM components, the total number of variables stored in 

operating memory is approximately 6*N3. For instance, assuming that each EM component 

occupies 4 bytes, the cube comprising 100x100x100 FDTD cells requires at least 24MB, 

though an additional memory is needed for post-processing variables and some environmental 

data. However, refinement of the FDTD spatial grid by 2 requires 23 = 8 times more operating 
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memory, i.e. 192MB. Additionally, the algorithm time step reduces twice, so the total 

computation time increases 24 = 16 times. Thus, it can be easily noticed that a reasonable 

manipulation of the FDTD cell size can save a lot of computational resources. The 

aforementioned example indicates that the trade-off between accuracy and simulation time 

plays an important role in EM modeling with the FDTD method. 

 

The basic FDTD algorithm can be enhanced with additional tools that extend its scope of 

applicability, such as: 

1. Absorbing boundary conditions (ABC). 

 

The FDTD model with ABC applied at the outer boundaries allows 

considering the problem of EM radiation out to a free-space, truncating the size 

of the model. Two types of ABC are commonly known: Mur [3] and perfectly 

matching layer (PML) [4]. There are several versions of each of the ABC 

algorithms. A major property of the Mur ABC is that it can be accurately 

matched to a wave incoming at a particular direction, by changing the effective 

permittivity of the Mur absorption. Absorption of a wave incoming at angles 

different than the matched one is deteriorated to some extent. Consequently, it 

may happen that propagation of an electromagnetic wave at grazing angles can 

produce instability of the Mur ABC algorithm in resonant structures. 

Implementation of the so-called Mur superabsorption [5] can substantially 

alleviate the problem since the superabsorption is much less sensitive to 

variation of an incidence angle. As regards PML, it introduces additional 

unphysical quantities and encompasses a few FDTD layers, shrinking the 

effective volume of a scenario. However, the advantage of PML is that it is not 

so much angle-dependent and can be placed close to radiating sources without 

the risk of instability. 

 

2. Mode excitation. 

 

It is possible to introduce a surface that excites a particular distribution of 

electric and magnetic tangential field components. Usually, it refers to the 

modes excited in rectangular/cylindrical waveguides or TEM lines but it can be 

also applied in arbitrarily shaped waveguides with inhomogeneous filling [6]. 
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Furthermore, if an algorithm that extracts scattering parameters at each           

of the ports applied in a circuit is implemented, power distribution between  

the modes can be monitored [7],[8]. 

 

3. Total-field/scattered-field (TF/SF) sources. 

 

Such sources have different properties than the mode sources. Originally,   

they have been developed to excite an obliquely incident plane wave        

inside a limited volume [9], called a total field (TF) region. If no         

scattering objects are placed within the TF region, there will be                       

no field radiation outside the considered volume, called the scattered field (SF) 

region. On the other hand, if there is an obstacle inside the TF region,         

only the scattered part of an EM wave outside the TF box in the SF region    

will be observed. This is a very useful technique in antenna analysis. It can    

be also used to excite other waves, like a Gaussian beam [10] or a lens source 

[11]. 

 

4. Near-to-far (NTF) transformation 

 

A near-to-far transformation is a post-processing that monitors EM fields at a 

specified surface (usually a cube surrounding a radiating object) and calculates 

their contribution to the far field radiation at a given direction. It is widely 

applied in antenna design [12],[13]. 

 

5. Conformal mesh. 

 

In a conformal mesh approach, the FDTD mesh is adapted to a curved 

geometry of objects without any loss of accuracy. The original FDTD    

scheme works with a simple rectangular representation of geometry,               

so curves are discretized in a staircase shape. It results in worse            

accuracy unless a very fine mesh is applied. By contrast,                                

the conformal approach maintaining rectangular FDTD grid takes into   

account an arbitrary shape of media boundaries without an increased 

computational effort [14]. 
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6. Media types. 

 

The FDTD method allows considering various media types, such as 

isotropic/anisotropic, lossless/lossy, dispersive/nondispersive, linear/nonlinear. 

Nonlinearity can be naturally treated in FDTD since it is a time-domain 

approach. However, some types of nonlinearity may be bound to problems of 

stability [15]. In the literature one can find applications to the Kerr and Raman 

phenomenona [16], as well as to diodes and transistors [17],[18]. Regarding 

dispersion, special models have to be applied to represent dispersion 

characteristics of the considered materials. Among the most common 

dispersive models Debye, Drude, and Lorentz can be recalled [19]. Once the 

specialized models are implemented, an FDTD simulation can provide results 

in the whole spectrum range after a single simulation run. 

 

7. Periodic boundary conditions (PBCs). 

 

Among the useful types of boundary conditions, such as electric, magnetic, and 

absorbing, there are also PBCs, which allow modeling of infinite periodic 

structures with only one period defined. PBCs are usually applied at the 

opposite sides of a model to loop tangential field quantities. There are a few 

types of the PBC FDTD algorithms, e.g. sin/cos [21], complex looped [22], or 

split-field [23]. 

 

This is a brief review of the FDTD method and its major capabilities. Now, some strong and 

weak points of the method will be pointed out. 

 

2.2 Advantages and Limitations 
 

Among the major advantages of the FDTD method, the following can be mentioned: 

 

1. Intuitive understanding of the algorithm execution. 

 

A time-domain approach enables watching instantaneous electromagnetic 

wave propagation inside the scenario during the simulation. In some cases, it 
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may be required to have such a possibility in order to better understand the 

properties of the considered circuit and to find the sources of potential 

problems. 

 

2. Inherently wideband analysis. 

 

Unlike some other numerical methods, e.g. FEM or MoM, the FDTD method 

is, by definition, a wideband approach, providing a solution for a specified 

spectrum after a single simulation run, practically without any additional 

computation effort [24]. 

 

3. Unconditional stability. 

 

Provided that the Courant stability criterion is satisfied, the FDTD      

algorithm is unconditionally stable. Additionally, the algorithm is                  

not sensitive to computer round-off errors, which, due to a central           

difference approach, are statistically suppressed. 

 

4. Lack of spurious solutions. 

 

Some modeling methods bring the risk of spurious solutions,                        

that are nonphysical in their nature and hard to distinguish from                     

the physical ones. By contrast, the FDTD method, in its original form,             

is free of that risk [25]. 

 

However, as each modeling method applicable in electrodynamics, the FDTD method has 

some drawbacks and limitations. The most significant ones are the following: 

 

I. Inherent dispersion of the algorithm (already mentioned above). 

 

The finite size of an FDTD cell size results in a shift of frequency 

characteristics. Although that effect can be reduced by applying                  

finer meshing of the structure, the cost is in a larger demand for computational 

resources [2]. 
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II. Long computation of high-Q structures. 

 

Since energy in high-Q structures dissipates slowly, the time-domain approach 

requires adequately longer simulation time to obtain a stable result. There are 

methods that alleviate that problem applying specialized signal processing 

techniques, e.g. Prony's method [26],[27]. The analysis of high-Q structures is 

still challenging, due to finite resolution of the algorithm in time and space. It 

may be noted, however, that similar problems will appear in most of the other 

methods of analysis. 

 

III. Approximation of a complex geometry. 

 

When the object’s  geometrical details are very fine, as compared to the 

wavelength, and these details cannot be neglected, the FDTD cell size has to be 

reduced significantly below the size restricted by the dispersion limit. Thus, 

computation time increases substantially. There are at least two methods which 

can, in many cases, alleviate this problem: conformal meshing [14] and 

subgridding [28]. 

 

To summarize, a brief outline of the FDTD method has been presented. Major properties of 

the method have been pointed out, together with its inherent limitations. Subsequent chapters 

will be focused on the original contribution of the author of this thesis to the study and the 

development of the FDTD algorithm partially supported with analytical methods. 
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Chapter 3 
 

 

FDTD Modeling of Electromagnetic 
Diffraction from Periodic Structures 

 

 

3.1 Introduction 
 

This Chapter presents the work and the original contribution of the author of this dissertation 

to the development of partially analytical FDTD algorithms (see definition in Chapter 1), 

dedicated to the modeling of electromagnetic (EM) diffraction from periodic structures. The 

Chapter will be mainly focused on the extensions of the Complex Looped FDTD (CL-FDTD) 

algorithm [22], which belongs to the class of algorithms based on a complex computational 

grid. A few modeling approaches will be considered to indicate their different capabilities. 

 

Section 3.2 reviews state-of-the-art FDTD modeling of periodic problems, with emphasis on 

its applicability to scattering problems. Section 3.3 describes, in a more detailed way, the 

procedure of looping periodic boundary conditions (PBCs) in the CL-FDTD algorithm 

extended by the author to 2D and 3D periodicity. Section 3.4 presents the applicability of the 

CL-FDTD algorithm to electromagnetic modeling of resonant properties of periodic 

structures. In particular, it is shown how to extract eigenvalues and corresponding 

eigenfunctions of structures with 1D, 2D, and 3D periodicity. In Section 3.5, scattering of an 

EM wave from a periodic structure is investigated. For that purpose, several modeling 

scenarios are introduced, depending on the specific requirements imposed on the EM analysis. 

Several issues are taken into account, such as angle of incidence (perpendicular or oblique), 

polarization (TE or TM), beam shape (plane wave or Gaussian beam), diffraction orders 

(specular reflection or higher diffraction orders) and, finally, the size of a model (finite or 

infinite). In the first step, the approximate approach of an infinite periodic structure obliquely 

illuminated by an infinite plane wave will be addressed to point out the major advantages and 

disadvantages of the CL-FDTD algorithm. Two types of simulation models will be 

considered. The first one refers to an obliquely propagating traveling plane wave. The author 

adapted a near-to-far (NTF) transformation in the CL-FDTD algorithm to apply it for the 
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detection of existing diffraction orders (not only specular one). The second model is based on 

a waveguide approach with PBCs. As it will be shown, it is dedicated to the analysis of 

diffraction phenomena when only specular reflection is feasible. Finally, the last Section of 

this Chapter concentrates on a Gaussian beam illumination of periodic structures. For that 

purpose, the FDTD algorithm without periodic boundary conditions will be applied assuming 

the model with a large, but still finite, number of periods of the structure. 

 

3.2 State-of-the-art in FDTD Modeling of Periodic 
Structures 

 

Early studies on the FDTD algorithms dedicated to the analysis of periodic structures were 

strongly related to the development of the modeling methods for vector two-dimensional 

(V2D) or guiding problems. The class of V2D problems has been originally addressed in [29], 

where it has been pointed out that guiding circuits with the shape invariant along a specified 

dimension can belong to the V2D class. According to [29], assigning this specified dimension 

as the z-axis, the field inside such a circuit can be decomposed in the following way: 

 

( ) ( ) ( )ϕβ += ⊥⊥ ztyxEtzyxE zcos,,,,,


 (3.1) 

( ) ( ) ( )ϕβ += ⊥⊥ ztyxHtzyxH zsin,,,,,


 (3.2) 

( ) ( ) ( )ϕβ += ztyxEtzyxE zzz sin,,,,,


 (3.3) 

( ) ( ) ( )ϕβ += ztyxHtzyxH zzz cos,,,,,


 (3.4) 

 

where ⊥ in the subscript denotes tangential components (x,y) and βz represents the phase 

constant. 

 

It has also been shown that the V2D FDTD algorithm can be expressed using complex 

notation in the condensed and expanded nodes [30]-[35]. These studies prepared the 

background for the future development of the first FDTD algorithms dedicated to the 

modeling of periodic structures. The authors of these papers proposed a 2D version of the 

FDTD algorithm for full-wave analysis of guiding structures, where the phase constant βz of a 

propagation mode is imposed inside the algorithm in the following manner: 
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( ) ( ) hj zetzyxEthzyxE ∆−
⊥⊥ =∆+ β,,,,,,


 (3.5) 

( ) ( ) hj zetzyxHthzyxH ∆−
⊥⊥ =∆+ β,,,,,,


 (3.6) 

 

where ⊥ in the subscript denotes tangential components (x,y). 

 

Due to that kind of approach, an FDTD model might be reduced – like in the V2D FDTD 

method [6] – to one FDTD layer, representing structure’s cross-section with all six 

electromagnetic components taken into account. In consequence, the method allows both E 

and H modes to appear simultaneously in one simulation run. 

 

The concept of a constant phase shift in the frequency domain was adapted in [20] and [21] to 

the FDTD modeling of periodic structures, though the latter one misses all the mathematical 

formalism. It is indicated that the length of the model can be reduced to a single period with 

periodic boundary conditions imposed at the edges of the model. However, in order to deal 

with that fact, according to Eq.3.5,6, a complex phasor has to be introduced in the time 

domain. 

 

The authors of [21] proposed to carry on two simulations of the same structure, 

simultaneously. The first FDTD grid is excited with a sine, whereas the other one with a 

cosine. Hence, sin/cos is a common name of the method. After each iteration of the algorithm, 

both grids are coupled at PBCs (see Eq.3.5,6). Such an approach allows carrying on the time-

domain simulation of a periodic structure despite the complex form of the Floquet theorem 

applied at the PBCs. However, it should be pointed out that the definition of the two FDTD 

grids results in a doubled memory occupation and at least the same level of decrease in the 

speed of the algorithm. 

 

Another significant step forward in better understanding and development of the FDTD 

algorithms dedicated to periodic problems was published in [20], and extended in [22]. 

Although [21] presented quite similar approach with spatial complex notation applied directly 

in the time domain, [22] provides all methodology in a systematic and comprehensive way, 

using mathematical formalism of the Floquet theorem. 
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The authors of [22] studied propagation of an EM wave along a periodic structure. Assuming 

that the structure is periodic along the z-axis, they concluded that in order to satisfy the 

Floquet theorem, the following periodic boundary conditions must be imposed: 

 

( ) ( ) ψjetzyxEtLzyxE ,,,,,, ⊥⊥ =+


 (3.7) 

( ) ( ) ψjetLzyxHtzyxH −
⊥⊥ += ,,,,,,


 (3.8) 

 

where ⊥ stands for the components transverse to periodicity, and Lz0βψ =  is a fundamental 

Floquet phase shift per period L. 

 

Since the complex-looped FDTD (CL-FDTD) method introduced in [20] does not introduce 

the changes inside the FDTD algorithm executed on both real and imaginary FDTD grids, it 

allows propagation of an EM plane wave at an arbitrary incidence angle without the risk of 

unstable behavior of the algorithm. However, a major drawback is that the method is 

frequency selective. Thus, in order to analyze illumination of a structure at a particular angle 

of incidence within a specified spectrum, several simulations must be executed independently. 

 

Almost in the same time, some other articles concerning that issue were published but the 

authors referred to a slightly different application, namely to the perpendicular (broadside) 

illumination of a periodic structure [36]. In this specific case, EM fields are looped at periodic 

boundaries in a simple manner with a zero phase shift (compare Eq.3.5,6), which is invariable 

with frequency. Thus, a broadband advantage of the FDTD method is maintained, though the 

applicability is definitely limited to only one illumination angle. 

 

Now, let us consider another approach to the FDTD modeling of periodic structures, 

commonly called "split-field update technique". This method was originally introduced in 

[23], but the major interest appeared a few years later - [37],[38],[39],[40]. The aim of this 

algorithm is to cope with the oblique incidence of a pulse-driven plane wave onto a periodic 

structure. Looping of field quantities at the periodic boundaries is not trivial for the oblique 

incidence since the knowledge about the field values in different time instants is needed. To 

overcome this issue, the authors of the "split-field update technique" proposed to exchange 

the classic EM field quantities: 
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zjkyjkxjk zyxeEE −+= 0


 (3.9) 

zjkyjkxjk zyxeHH −+= 0


 (3.10) 

 

with the new ones: 

 

zjkyjkxjk zyx eEeEP −−− == 0


 (3.11) 

zjkyjkxjk zyx eHeHQ −−− == 0


 (3.12) 

 

where (kx, ky, kz) is the propagation vector of an incident plane wave. 

 

In the newly created P&Q domain the wave is normally incident along the z-axis. Application 

of PBCs becomes trivial since there is no phase shift of P and Q quantities in the xy-plane. 

The original Maxwell curl equations have to be transformed to the new P&Q domain and a 

new leapfrog FDTD algorithm has to be applied. The advantage is that in contrast to the 

sin/cos [21] or CL-FDTD [22] methods, "split-field update technique" operates on one grid. 

Thus, memory requirements and computational effort are about twice less. Nevertheless, a 

time step in this algorithm decreases with increasing incident angle and simulation becomes 

unstable for grazing angles. 

 

While further developing the sin/cos and CL-FDTD algorithms, A.Aminian and Y.Rahmat-

Samii proposed an extension, called Spectral FDTD (SFDTD) [41]. In principle, [41] is an 

extension of [22] to the excitation of a wideband traveling plane wave with a constant phase 

shift along periodicity. In consequence, an incident angle varies with frequency. Thus, for 

each frequency, the structure is scanned at a different angle of incidence. 

 

The last issue discussed in this Section refers to the FDTD modeling of a finite-size source 

over an infinitely periodic structure such as, for instance, a point source located above a 

periodic grating or a Gaussian beam illuminating a periodic structure. The article published by 

R.Qiang et al. [42] should be mentioned here, as it seems to be the first publicly available 

study of this issue in relation to the FDTD method. It has been further explained in [43]. The 

authors apply the expansion of an arbitrary EM source into a series of plane wave sources 
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with a varying propagation vector. Thus, the original finite-size source is substituted with an 

integral of plane wave sources. In the literature, two names of that approach can be found: 

spectral expansion [43], or array scanning method (ASM) [44]. Such an approach may be 

very useful if the considered problem requires too much operating memory than can be 

provided. In such a case, one simulation of the scenario consisting of many periods of the 

analyzed structure can be substituted with a dozen or more periodic simulations with plane 

wave illumination of a varying incidence angle. 

 

To summarize, the FDTD modeling of periodic problems has been developed since late 

1980’s and much has been done so far. The next Chapter will be focused on the author’s 

contribution to the CL-FDTD algorithm, especially in terms of scattering problems. Section 

3.3 presents periodic boundary conditions (PBCs) implemented in all three spatial 

dimensions. Section 3.4 shows applicability of PBCs to EM modeling of eigenvalue periodic 

problems. Section 3.5 focuses on application of the enhanced CL-FDTD algorithm to the 

modeling of EM wave scattering from periodic structures. 

 

3.3 Periodic Boundary Conditions 
 

Periodic boundary conditions for the CL-FDTD algorithm have been originally proposed in 

[20] and specified for the structure periodic along the z-axis. Nevertheless, since the authors 

of [20] did not emphasize the implementation details of a looping mechanism, this issue will 

be discussed first to avoid ambiguity. Fig.3.1 depicts the operation scheme of the PBC 

algorithm, assuming that L is a period of the structure along the z-axis. Appropriate equations 

for the PBC are given in [20] and in [22]. 

 

First of all, it can be noticed that, in comparison to the scenario with perfect electric conductor 

(PEC) boundaries, one additional sublayer has been added and two others have been 

modified, respectively: 

- first sublayer: Hx, Hy; 

- second sublayer: Ex, Ey, Hz; 

- last sublayer: Ex, Ey. 

 

The whole circuit, including the modified second sublayer with Ex, Ey, Hz, is updated at each 

iteration of the leapfrog FDTD algorithm, whereas the boundary sublayers (the first and the 
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last) are updated with the PBC looping algorithm. Consequently, the last sublayer with Ex, Ey 

components follows from the corresponding components from the second layer shifted by the 

complex coefficient exp(-jψz), whereas the first sublayer with Hx, Hy is coupled to the last but 

one sublayer with the phase shift of the opposite sign exp(+jψz). 

 

 
Fig.3.1. Periodic boundary conditions along the z-axis in the CL-FDTD algorithm. 

 

It should be clearly pointed out that the term ‘FDTD grid’ refers, in fact, to the grid of 

complex numbers. It indicates that each EM component in the CL-FDTD algorithm is 

composed of a real and an imaginary part. In practice, both the real and the imaginary grids 

are computed independently and coupled at the PBCs. However, similarly to the interpretation 

of complex notation applied in the time domain, each part of the complex FDTD grid contains 

description of physical properties of the modeled problem. Typically, the real part is 

considered in a physical interpretation. Since benchmark examples have already been 

discussed in [22], now a description of the PBCs along the x-axis will be presented, which has 

been developed and verified by the author of this thesis. 

 

Fig.3.2 depicts the operation scheme of the PBC loop along the x-axis. Comparing to the 

scenario with PEC boundaries, one additional sublayer has been added and two others have 

been modified, respectively:  

- first column: Hy, Hz; 

- second column: Ey, Ez, Hx; 

- last column: Ey, Ez. 
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The electric components Ey, Ez are looped forward and the magnetic Hy, Hz backward, in a 

similar manner as it has been shown for the periodicity along the z-axis. 

 

 
Fig.3.2. Periodic boundary conditions along the x-axis in the CL-FDTD algorithm. 

 

Looping the PBCs along the y-axis looks very similar to the aforementioned periodicity along 

the x-axis, so its detailed description is skipped here. Hence, a problem of 2D periodicity in 

the xy-plane will now be considered. This time two parameters are applied, i.e. phase shifts 

along the x- and the y-axis: 

 

( ) ( ), ,, , , , , , xj
y z x y zE x L y z t E x y z t e ψ−+ =
 

 (3.13) 

( ) ( ), ,, , , , , , xj
y z y z xH x y z t H x L y z t e ψ= +
 

 (3.14) 

( ) ( ), ,, , , , , , yj
x z y x zE x y L z t E x y z t e ψ−+ =
 

 (3.15) 

( ) ( ), ,, , , , , , yj
x z x z yH x y z t H x y L z t e ψ= +
 

 (3.16) 

 

Fig.3.3 illustrates the looping mechanism composed of the individual PBCs along the x- and 

y-axis with some slight changes. Additional Hx, Hy and Ez components, which were not 
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needed in the case of 1D periodicity along the x- or y-axis, are indicated with 4 thick circles in 

Fig.3.3. These surplus components are necessary to properly model periodicity at the corners 

of the circuit. Both the additional electric field components Ez at the bottom-right and top-left 

corners are updated from the same value at the bottom-left corner, but with different phase 

shifts. Similarly, the additional magnetic field component Hx at the bottom–left corner is 

updated backward from the corresponding component at the top-left corner. The last of the 

additional magnetic field components Hy located at the bottom-left corner is also updated 

backwards from the corresponding components in the bottom-right corner. The electric 

component Ez at the top-right corner of the circuit is not needed since it does not contribute to 

any other EM component of the circuit. 

 

 
Fig.3.3. Periodic boundary conditions in the xy-plane in the CL-FDTD algorithm. 

 

The rest of 2D periodic boundary conditions are quite straightforward and will not be 

discussed here. Regarding 3D periodic boundary conditions, it is composed of those for xy- 

and z-periodicity as shown in Figs.3.1,3. Implementation details are given in Appendix 1. 

Next Section will be focused on the applicability of the CL-FDTD algorithm to the 

investigation of resonant modes in periodic structures. 
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3.4 Eigenvalue Periodic Problems 
 

Eigenvalue problem is a notion often used not only in the formalism of linear algebra, but also 

in the engineering practice. However, before concentrating on the eigenvalue problem in 

electrodynamics, some algebra terms will be reminded. 

 

Let us assume that F is a linear operator. A scalar λ is said to be the eigenvalue of F if there is 

a nonzero vector r that satisfies the following equation: 

 

rrF  λ=  (3.17) 

 

Vector r that satisfies the above equation is called the eigenvector of operator F, whereas a 

whole set of eigenvalues is sometimes called the spectrum of operator F. In practice, Eq.3.17 

informs that operator F does not change the direction of vector r, but only rescales it by λ. 

Depending on the scientific discipline concerned, vector r may be understood as a space, 

function, resonant mode, quantum state etc., whereas λ denotes a scalar number, resonant 

frequency or energy level of quantum state. 

 

In particular, in electrodynamics operator F is often understood as a D’Alembert operator 

2
22

t∂
∂−∇ , and vector r as a resonant mode of an investigated circuit. In consequence, the 

eigenvalue indicates a resonant frequency or a propagation constant. 

 

A procedure of collecting eigenmodes and eigenfrequencies during EM simulation with the 

CL-FDTD algorithm often proceeds as follows: 

1. define a periodic structure and specify a fundamental phase shift per period; 

2. excite the circuit with a wideband pulse; 

3. execute the Fourier transform of the circuit impulse response (e.g. electric current 

injected by the source) and search for the resonances that indicate eigenfrequencies; 

4. run another simulation with a sinusoidal excitation at one of the found 

eigenfrequencies to observe the eigenmode field distribution. 
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The aforementioned procedure is generally applicable to various kinds of eigenproblems’ 

searching. In the further investigation, two types of problems will be considered. The first 

concerns 3D eigenvalue periodic problems, whereas the second refers to eigenvalue periodic 

problems in the structures that belong to the already mentioned V2D class [6]. This analysis 

will be useful in the modeling of a plane wave scattering from infinite periodic structures. 

 

3.4.1 3D Eigenvalue Periodic Problems 
 

Some practical examples of 3D eigenvalue periodic problems will now be considered, in 

order to verify the accuracy of the method. A trivial scenario composed of an empty air region 

terminated with a perfect electric conductor (PEC) along the y- and z-axis and with PBCs 

imposed along the x-axis will be considered first. Dimensions of the air cube are 50mm x 

20mm x 10mm. The aim is to find the modes that can appear in such a waveguiding structure 

with no phase shift along the periodic side (ψx = 0 rad). Thus, let us put an excitation point 

inside the volume and drive an Ez component with a delta pulse on the real FDTD grid. It is 

quite easy to predict that the eigenmode should be observed at f = 7.5GHz. Fig.3.4 shows a 

spectrum of the injected current with some resonances indicated. Indeed, the first mode is at f 

= 7.49GHz, but other eigenfrequencies can also be observed. It follows from the fact that the 

imposed phase shift per period xxx Lβψ =  is satisfied not only for the fundamental 

propagation constant 0xβ , but also for other modes usually called spatial harmonics satisfying 

the following relation: 

 

x
xxn L

n πββ 2
0 ±=  (3.18) 

 

Fig.3.5,6 show distribution of the relevant electric and magnetic components for the modes at 

f = 7.49GHz and 9.6GHz, respectively. It can be observed that there is no field variation along 

periodicity (x-axis) at the first frequency, whereas electric (magnetic) field has a sine (cosine) 

shape along the y-axis, due to the imposed PEC boundaries. Actually, the snapshots of these 

components indicate it is a resonant mode E010. Regarding the second frequency, exactly one 

period is distributed along periodicity (x-axis) and the field distribution resembles E210 mode. 
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Fig.3.4. Spectrum of the current injected into an empty air cube 

(ψx = 0 rad, 50mm x 20mm x 10mm). 

 

 
Fig.3.5. Distribution of Ez (left) and Hx (right) components in the xy-plane 

of the real FDTD grid at f = 7.49GHz (ψx = 0 rad, 50mm x 20mm x 10mm). 
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Fig.3.6. Distribution of Ez (left), Hx (right) and Hy (bottom) components in the xy-plane 

of the real FDTD grid at f = 9.6GHz (ψx = 0 rad, 50mm x 20mm x 10mm). 

 

Let us now consider an example with a 2D periodicity. Recently, there has been                      

a wide and still growing interest in the so-called photonic crystals (PhCs), as they                

are a specific arrangement of dielectric media resembling a solid crystal, but                          

in a different scale. In practice, most of PhCs find their application within                              

an optical spectrum as structures with 2D periodicity. Thus, let us consider                           

the following example of the PhC composed of a rectangular lattice of infinitely long      

GaAs rods (εr = 11.56) with a radius r = 1µm and a lattice constant a = 10µm [45]              

(see Fig.3.7). The aim is to extract a photonic bandgap (PBG) diagram for TM polarization   

in the first irreducible Brillouin zone1

 

. The model is reduced to one rod only                       

with PBCs imposed at the lateral boundaries, whereas due to the TM polarization                 

the model is truncated in the xy-plane to one FDTD layer between PEC boundaries. 

                                                
1 See Appendix 2. 
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Fig.3.7. Rectangular lattice of GaAs rods (left) and its CL-FDTD model (right). 

 

Fig.3.8 illustrates the distribution of electric and magnetic field components of the 

fundamental mode observed at f = 23.08 GHz, for the Floquet phase shifts equal to ψx = ψy = 

π/2 rad. It can be clearly seen that the symmetry axis of both distributions is inclined by 450 

from x-axis, what exactly corresponds to the equal Floquet phase shifts along both periods. 

 

   
Fig.3.8. Envelope of electric (left) and magnetic (right) field components 

on the real FDTD grid at f = 23.08 THz (ψx = ψy = π/2 rad). 

 

Extraction of the whole PBG diagram requires performing several simulations for various 

phase shifts ψx and ψy within the first irreducible Brillouin zone. Fig.3.9 shows the obtained 

PBG diagram for TM polarization and it is clearly visible that there is a relatively narrow 

bandgap for a/λ = 0.42 ... 0.49 (f = 12.7 … 14.8 THz). It indicates that the considered 
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photonic crystal is opaque for a TM-polarized wave within that spectrum range, regardless of 

the direction of the EM wave in the xy-plane. A comparison of the obtained PBG diagram 

with the one obtained in [45] shows a good agreement. However, the results after [45] are not 

shown in Fig. 3.9 to maintain legibility of the Figure. 

 

  
Fig.3.9. PBG diagram (left) in the first irreducible Brillouin zone (right) 

of the PhC lattice shown in Fig.3.7. 

 

This time, a 3D rectangular photonic crystal lattice composed of silica balls (εr = 2.25) of a 

radius r = 0.15µm uniformly distributed in the vacuum will be considered (see Fig.3.10). A 

lattice constant is equal to a = 1µm. Let us assume that the aim is to find the fundamental 

mode with zero phase shifts along three axes (ψx = ψy = ψz = 0 rad). It should be emphasized 

that searching for the Floquet modes in a relatively large circuit might be a rather difficult 

task. It stems from the fact that location as well as polarization of an excitation source has an 

impact on its coupling with the searched modes. Thus, it is recommended to run a few 

simulations for different positions of the source and for various polarizations. It should 

significantly reduce the risk of missing some of the modes. Nevertheless, all of these efforts 

may still be insufficient since the point source may not be able to pump energy effectively 

into the circuit and, in consequence, long computing time will be needed to distinguish 

eigenfreqeuncies on the spectrum of the impulse response. Therefore, sometimes it is 

recommended to use a matrix of point sources to increase the coupling of the source with the 
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circuit and, in consequence, speed up the simulation. To find the Floquet modes, 5 x 5 x 5 

matrix of Ez sources is set near one of the corners of the model. The rest of the procedure 

follows in a similar manner as in the previous example. Fig.3.11,12 show the distribution of 

electric and magnetic components in the xy- and xz-planes for the mode found at f = 590 THz. 

Symmetrical distribution of the EM components can be noticed with the electric field 

concentrated inside the balls and the magnetic field focused on the balls’ rim. Such 

distribution satisfies the imposed phase shifts per period. 

 

 
Fig.3.10. Photonic crystal lattice (a = 1µm) made of silica balls (εr = 2.25, r = 0.15µm)           

located in a vacuum. 

 

   
Fig.3.11. Electric (left) and magnetic (right) field components in the xy-plane at f = 590 THz. 
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Fig.3.12. Electric (left) and magnetic (right) field components in the xz-plane at f = 590 THz. 

 

The goal of the next example is to evaluate 3D periodic boundary conditions implemented in 

the CL-FDTD algorithm. It will be validated against the plane wave expansion method as one 

of the computational techniques for the analysis of dispersive properties of photonic crystals 

[46]. The example is taken from [47], where the authors consider a three-dimensional body 

centered cubic (bcc) lattice2

 

 processed in a dielectric material with a relative permittivity εr = 

25. Let us set the lattice constant to a = 0.6 µm. The bcc shape is made using an air cube with 

a side length 0.75a, cut in its center and in each corner of a dielectric bulk (see Fig.3.13). 

 
Fig.3.13. Single cell of the rectangular body centered cubic lattice (εr = 25, a = 0.6µm). 

                                                
2 See Appendix 2. 
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The cell size in the CL-FDTD model of the considered bcc lattice is set to 20nm.         

Periodic boundary conditions are applied along three Cartesian axes. The procedure             

for PBG diagram collection is exactly the same as recalled during the analysis                        

of the structure shown in Fig.3.8. Special care must be taken with the location                        

of the excitation source. Its improper location may result in weak coupling                         

with some of the lattice modes. Therefore, the analysis has been performed twice,               

with  different locations of the point source in order to double-check whether                        

all the modes were found. Fig.3.14 shows the obtained PBG diagram of the bcc lattice.          

It may be noticed that a complete band gap occurs for a/λ = 0.374…0.382.             

Comparison against the results from [47] shows a good agreement, though it was not plotted 

to maintain legibility of the Figure. 

 

 
Fig.3.14. PBG diagram (left) in the first irreducible Brillouin zone (right) 

of the body centered cubic lattice shown in Fig.3.13. 

 

To summarize this Section, periodic boundary conditions introduced in the CL-FDTD 

algorithm along the three Cartesian axes enable the investigation of Floquet modes                

in periodic structures. Author’s contribution includes the extension of PBCs presented           

in [20] for 1D to 2D and further 3D periodicity. Presented examples confirm the validity       

of the implemented algorithms. 
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3.4.2 V2D Eigenvalue Periodic Problems 
 

The issue of electromagnetic problems belonging to V2D class has been briefly addressed at 

the beginning of Chapter 3.2. The V2D FDTD algorithm is often useful for preliminary 

computation at input and output ports of the circuit. The obtained solution can further be 

coupled to a whole 3D circuit as an excitation source, or a load matched to the particular 

mode. Such an approach significantly simplifies the analysis as well as the understanding of 

the phenomenon of wave propagation in the waveguiding structures. In general, the procedure 

is as follows: 

 

1. Wideband simulations are performed for all input and output ports defined in the 

circuit. For that purpose, each port – understood as the cross-section layer of the 

waveguide feed or load – is modeled as a V2D circuit and the distribution of the 

propagating mode is searched for a fixed longitudinal phase constant βf assumed by 

the user. In case of typical waveguides such as the rectangular one, dispersive 

behavior of the modes is analytically known, so the whole procedure for the mode 

searching can be fully automated, like in QuickWave-3D software package [48]. 

2. Once the frequency associated with the particular mode is found, the V2D port is 

excited with a sinusoidal signal to determine the distribution of electromagnetic 

components tangential to the port plane, commonly called "mode template". 

3. Afterwards, the original 3D circuit is excited with the already pre-processed mode 

template multiplied by the user-defined time-varying signal (sinus, pulse, Gauss, etc.). 

4. Eventually, during the simulation run, a scattering matrix is iteratively calculated at 

the reference planes shifted a few FDTD cells into the circuit with respect to the 

considered ports. 

 

The advantage of using the aforementioned procedure is the possibility to excite and scan 

each waveguide mode independently. Thus, one may analyze and control the power 

distribution on all modes and between them. 

 

The goal of this work is not to investigate the mode template generation in its classical form 

since it was thoroughly developed some years ago [6]. The aim is rather to show that the 

mode template computation may be extended to V2D FDTD circuits with periodic boundary 
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conditions applied. As it will be further shown, it will be a useful tool in the modeling of EM 

wave scattering from periodic structures. 

The algorithm of looping periodic boundary conditions is exactly the same as for 3D FDTD 

circuits (see Chapter 3.2). Let us first consider 22mm x 10mm rectangular air-box set in the 

xy-plane and discretized with 0.5mm FDTD cell size, assuming that the modes with zero 

longitudinal phase constant (βf = 0 rad/mm) and zero phase shift per period along the x-axis 

(ψx = 0 rad) are searched for. The model is terminated with PEC boundaries along the y-axis. 

Such boundary conditions clearly indicate that the only possible propagation is along 

periodicity, that is x-axis. Thus, exciting the circuit with Ey polarized point source, the 

associated Hz magnetic field component can be expected. 

 

 
Fig.3.15. Spectrum of the electric current injected into a rectangular air-box 

(ψx = 0 rad, βf = 0 rad/mm). 

 

Due to the chosen source polarization and the boundary conditions imposed on the circuit, the 

first propagating mode can be expected to be of TEM kind operating at the wavelength equal 

to the period of the circuit, that is λ0 = 22 mm (f0 = 13.64 GHz). Indeed, spectrum of the 

impulse response of the considered scenario, shown in Fig.3.15, confirms with 0.15% 

accuracy the theoretical prediction, whereas field distribution of relevant components snapped 

at this frequency ensures that this is a TEM mode propagating along the x-axis (see Fig.3.16). 

Similarly, the next mode is supposed to propagate at f1 = 27.27 GHz corresponding to the 
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wavelength twice shorter than the circuit period, i.e. λ1 = 11 mm. Obviously, it also satisfies 

periodic boundary conditions but with a phase shift ψx = 0 + 2π. The discrepancy between the 

obtained result and theoretical calculation is somewhat larger than for the previous mode and 

amounts to 0.33% – apparently due to inherent dispersion of the FDTD algorithm increasing 

with frequency. 

 

   

   
Fig.3.16. Snapshots of the electric Ey (left column) and magnetic Hz (right column) components 

at both f1 = 13.62GHz (top row) and f2 = 27.18GHz (bottom row) modes indicated in Fig.3.15. 

 

Such a canonical example was introduced to test validity of the V2D FDTD algorithm 

coupled with periodic boundary conditions. Yet, it is still needed to be verified how it will 

operate for a nonzero longitudinal phase constant. Let us consider the same geometry, but this 

time the objective is to obtain an oblique propagation of Ey polarized plane wave at α = 600 

angle counted from the longitudinal z-axis. The operating frequency is equal to f = 20 GHz. 

The well-known relation: 

 
2222
zyx ββββ ++=  (3.19) 
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can be used to determine both the longitudinal phase constant βf and the phase shift per period 

ψx. In the considered case, there is no phase variation along the y-axis, so βy = 0 rad/mm. The 

longitudinal phase constant βf used in the V2D FDTD algorithm corresponds directly to βz, 

whereas the fundamental phase shift per period is given by ψx = βx Lx. Thus, knowing the 

frequency and the incident angle, it can be determined that: 

 

( ) mmradzf 20944.0cos === αβββ  (3.20) 

( ) radLL xxxx 9807.7sin === αββψ  (3.21) 

 

 
Fig.3.17. Spectrum of the electric current injected into a rectangular air-box 

(ψx = 7.9807 rad, βf = 0.20944 rad/mm). 

 

Fig.3.17 indicates resonance at the frequency f = 19.98 GHz (λ = 15.01 mm), which is 0.1% 

lower than anticipated. The distribution of the electric field component Ey at that frequency is 

shown in Fig.3.18. The measured wavelength along the x-axis is equal to λx = 17.4 mm, so by 

applying Eq.3.21, it can be derived that the angle of incidence equals to α = 59.60. In fact, 

major contribution to the obtained discrepancy of 0.67% follows from the uncertainty of the 

wavelength measurement due to finite discretization of the FDTD model. Dispersion of the 

FDTD algorithm is at least one order of magnitude smaller since 30 FDTD cells per 

considered wavelength have been applied. 
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Fig.3.18. Snapshot of the electric component Ey at f1 = 19.98GHz 

for the mode indicated in Fig.3.17. 

 

The analysis presented above confirms the possibility of using periodic boundary conditions 

in a V2D FDTD model. The investigation of this will be recalled again in the next Chapter, 

when modeling of the scattering from periodic structures will be addressed. 

 

3.5 FDTD Modeling of Scattering from Periodic 
Structures 

 

The next issue has been under thorough investigation by the author of this dissertation during 

his studies and concerns the phenomenon of electromagnetic wave diffraction on a periodic 

structure. In principle, this is no longer an eigenvalue problem but a deterministic one since 

the structure is exposed to an independent external source of EM radiation. The author’s 

interest in this subject results from the recent dynamic development of sophisticated 

metrology methods based on the diffraction phenomenon, where the FDTD method has found 

its application. As an example, let us recall here a scatterometry technique [49] commonly 

applied to the measurement and control of characteristic features during the lithography 

process of integrated circuits (IC) of large-scale integration (LSI). Another example refers to 

the frequency selective structures (FSS) exploited as selective-angle antennas or reflective 

surfaces [50]. Let us point out an advantage of the CL-FDTD algorithm in the modeling of the 

aforementioned scattering problems. Solutions for some practical scenarios will be shown in 

comparison to the other numerical methods, such as Finite Element Method Time-Domain 

(FETD) [51] or Rigorous Coupled Wave Analysis (RCWA) [52]. 
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In general, the problem of electromagnetic wave scattering from a periodic structure may be 

split into four separate cases: 

1. infinite structure and infinite spot, 

2. finite structure and infinite spot, 

3. infinite structure and finite spot, 

4. finite structure and finite spot. 

 

To be precise, the assumption imposed in the fourth case is always true                                   

in the real problems, but often leads to impractically large requirements                                 

for computer resources. Therefore, other approaches may be some interesting               

alternatives provided that the achieved speedup is not at the cost of accuracy                          

of the final solution. For the purpose of this thesis, all mentioned                              

approaches will be addressed to assess their computational capabilities and                                                 

a range of applicabilities, except the third one since it has already been investigated in 

[42],[43]. 

 

Let us first specify some useful notions. Fig.3.19 illustrates a definition of two polarizations 

which will be exploited in the modeling of scattering phenomenon: 

- TE (σ) with an electric field transverse to an incidence plane, 

- TM (π) with a magnetic field transverse to an incidence plane. 

 

It should be emphasized that the aforementioned notation of an EM wave polarization used 

for the scattering problems, often applied in the scatterometry, differs from the definition 

known in the analysis of eigenvalue and waveguiding problems. 

 

Both incident (αinc) and reflection (αm) angles are measured from the normal (see the dashed 

line in Fig.3.19). It is often assumed in the analysis of diffraction gratings, such as               

the one shown in Fig.3.19, that the angles on the left-hand side of the normal                        

are positive, whereas those on the right-hand side are negative. Let us recall that                     

if a ray illuminates a periodic structure at a particular angle of incidence it may be       

reflected not only at the specular angle α0 = -αinc, also called 0th diffraction order.            

There may also occur non-evanescent higher diffraction orders (m = 1, 2…).                          

A reflection angle of the mth diffraction order can be determined reminding that, in general: 



 54 

( )
β

β
α mx

m =sin  (3.22) 

 

where βx m denotes the phase constant component along the x-axis of the mth diffraction order. 

 

Then, following Eq.3.18, a Bragg condition can be obtained: 

 

( ) ( )
L

mminc
λαα =+ sinsin  (3.23) 

 

provided that β ≥ βx m. 

 

   
Fig.3.19. TE (left) and TM (right) polarization of an incident wave. 

 

It will be later shown that the aforementioned equation may be derived directly from the 

Floquet theorem. Eq.3.23 refers to the 1D case and indicates that higher diffraction orders can 

appear when the operating wavelength λ is short enough and becomes comparable with the 

fundamental period of the structure L. Moreover, as the angle of incidence increases, more 

diffraction orders may be observed. Let us recall, as an example, scattering of light ray from a 

solid crystal bulk. Only specular reflection can be observed since the lattice constant (L < 

0.5nm) is of the order of magnitude smaller than the shortest wavelength in the visible 

spectrum region (λ > 400nm). However, when using X-ray with the wavelengths comparable 
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to the lattice constant of a crystal, higher diffraction orders will be observed. Observation of 

these higher diffraction orders is often used to determine the lattice constant of crystals. 

 

In Section 3.5.1, an approximate case will be considered, namely an infinitely periodic 

structure illuminated with an unbounded plane wave at a particular angle of incidence (AOI) 

and of a specified polarization. A few FDTD models, useful in analysis of that case. will be 

proposed. Subsequently, Section 3.5.2 will be focused on a more realistic case, that is, on the 

illumination of a periodic structure with a Gaussian beam. Obtained solutions will be cross-

compared with the ones obtained for the infinite case. 

 

3.5.1 Plane Wave Illumination of Periodic Structures 
 

3.5.1.1 Plane Wave Source over Infinitely Periodic Structure 
 

To begin with, let us make a remark that although illumination of an infinitely periodic 

structure with an unbounded plane wave is a rather unrealistic problem, this kind of approach 

is often successfully exploited for at least two reasons. Firstly, due to limited capabilities of 

state-of-the-art computing machines, periodic structures are often too large to be directly 

modeled in an efficient way. Secondly, sometimes the illumination area (spot) covers tens or 

even hundreds of the fundamental periods of the structure. An approximation of such a 

problem by an infinitely periodic structure illuminated with an unbounded plane wave leads to 

a relatively small error. It will be shown under what circumstances such an approximate 

approach may be reasonably employed. 

 

The objective is to generate a purely traveling plane wave, exposing an infinitely long 

periodic structure at a particular angle of incidence. The method that generates the plane wave 

has to be properly coupled to the periodic boundary conditions implemented in the CL-FDTD 

algorithm. First, let us consider a structure periodic only along the x-axis (see Fig.3.20). 

Complex notation of an incident plane wave is given as follows: 
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Fig.3.20. Oblique incidence of a plane wave in the xy-plane 

on the structure periodic along the x-axis. 

 

Eq.3.24 indicates that in order to obtain a purely traveling plane wave, an imaginary FDTD 

grid has to be excited in quadrature to the real one. Thus, the following delay between the 

excitation of both grids has to be imposed: 

 

0

0

4
1

4 f
T

t ==∆  (3.25) 

 

In consequence, on both grids the plane waves shifted by the quarter of wavelength should be 

observed. Fig.3.21 shows the proposed FDTD model of plane wave generation in a scenario 

with periodic boundary conditions. The model is truncated with Mur superabsorption at the 

top and at the bottom. Below the top superabsorption, there is a wall defined along the whole 

length of the model, where the plane wave is supposed to be excited downwards. 

Furthermore, below the plane wave wall (PLW) in a total field region, another wall is set, 

sometimes called a “Huygens surface”, where near to far (NTF) field transformation is to be 

performed. It allows watching both incident and scattered rays. In QuickWave-3D 

commercial software package [48] used for that analysis, the direct Fourier transform (DFT) 

is applied instead of the fast Fourier transform (FFT), commonly used for the NTF 

transformation. As a result of that kind of approach, the user can easily control convergence 

of the solution as the simulation continues. If the aim is to consider the TE (TM) polarization, 
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the FDTD model can be reduced to one layer of cells placed between PEC (PMC) boundaries. 

Such a simplification of the model is allowed only if both the geometry of the structure, and 

an EM field are invariable in the direction perpendicular to the incidence plane. 

 

The appropriate value of the Floquet phase shift per period imposed at the PBCs has to be 

synchronized with the excited plane wave. It can be easily noticed that the following 

assumption has to be satisfied: 

 

( )LkLk incxx αψ sin==  (3.26) 

 

  
Fig.3.21. FDTD model for an oblique plane wave incidence 

on the structure periodic along the x-axis. 

 

In order to evaluate the considered model, let us assume that the aim is to generate a plane 

wave at f = 10 GHz, incident at α = 300, in the L = 40 mm long vacuum box. At this stage, no 

obstacles are placed inside the model to observe undisturbed plane wave propagation, so only 

incident ray is expected to appear in the far field scattering pattern obtained by the NTF 

transformation. According to Eq.3.25, an imaginary FDTD grid has to be excited with a delay 

equal to dt = 0.025 ns with respect to the real FDTD grid. As regards periodic boundary 

conditions (see Eq.3.26), the Floquet phase shift per period has to be set to ψx = 4.188 rad. 

Eventually, a traveling plane wave can be generated in the model, shown in Fig.3.21. Fig.3.22 



 58 

shows the electric field distribution on both the real and imaginary FDTD grids snapped at the 

same time instant. Looking carefully on both snapshots, it can be noticed that the plane waves 

are indeed shifted by the quarter of the wavelength with respect to each other. Nevertheless, it 

should be emphasized that the CL-FDTD method is frequency selective, in a sense that a 

wideband excitation will not produce a traveling plane wave in the whole band due to the 

unsatisfied Floquet phase condition for the frequencies different than the matched one. This is 

the main limitation of the method. More discussion of these issues will be presented later in 

this thesis. 

 

    
Fig.3.22. Plane wave illumination at the real (left) and imaginary (right) FDTD grids       

at f = 10GHz, incident at αinc = 300, snapped at the same time instant. 

 

Now, in order to evaluate the diffraction of a plane wave from a periodic structure we can 

place it inside the proposed model. However, one should be aware that – according to 

Fig.3.21 – reflection coefficient is extracted with the aid of the NTF transformation. Thus, 

there is still the issue, how to understand the scattering pattern obtained from NTF 

computation. In principle, a far-field radiation beam of an infinite plane wave is of Dirac delta 

shape since the angle of incidence of such infinite beam is exactly defined. However, due to 

the fact that an NTF surface is exactly equal the length of the FDTD model, calculated beams 

will be significantly broadened. From a mathematical point of view, obtained beam is a 

convolution of a window function and the Dirac delta. In that case, the window function 
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reflects the spatial length of the NTF surface applied in the model shown in Fig.3.21. 

Therefore, it should be determined whether a finite length of the NTF surface disturbs the 

extraction of incident and reflected beams in the scattering pattern. 

 

Let us assume that the aim is to excite a plane wave at a particular frequency f, incident at the 

angle αinc, in the periodic model of length L. Following Eq.3.26, a proper Floquet phase shift 

per period ψx can be set. Thus, a generated plane wave has the following form (compare 

Eq.3.24): 

 

( ) ( )yxtj yxeyxE 00, ββω −−=
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 (3.27) 

 

where 

 

( )incx αββ sin0 =  (3.28) 

( )incy αββ cos0 −=  (3.29) 

 

The far-field scattering pattern is calculated at the NTF level in the following way: 
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Substituting Eqs.3.27-29 to Eq.3.30 and solving the given integral, the following formula can 

be obtained: 
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Eventually, it can be noticed from Eq.3.31,32 that zeros of the far-field scattering pattern are 

obtained if and only if the following relation is satisfied: 

 

( ) ( )
L

minc
λαα =+ sinsin  (3.33) 

 

where m = ±1, ±2, … 

 

In principle, the above formula states a Bragg condition and enables us to evaluate higher 

diffraction orders (compare Eq.3.23). It proves that the incident beam in the scattering pattern, 

though broadened, does not disturb values at higher diffraction angles since they appear 

exactly at the minima of the incident beam extracted using NTF transformation. The same 

investigation may be performed to make sure that the higher diffraction rays do not interfere 

with each other as well. To conclude, it has been formally proven that as long as NTF 

transformation is computed over a length equal to the multiple of the fundamental period of 

the structure, only discrete points in the scattering pattern which satisfy Eq.3.33 are calculated 

without any interference. Moreover, increase of NTF length L results in narrower beams and 

raising maxima. In consequence, NTF transformation executed in CL-FDTD model provides 

– within numerical accuracy of the method – exact values of the far-field electric field 

intensities at both incident and reflected angles. 

 

To confirm the considerations carried out above, let us look at the angular scattering pattern 

processed by NTF transformation, shown in a logarithmic scale in Fig.3.23, and obtained for 

the empty air region already considered in Fig.3.22. The allowed diffraction angles are 

marked with vertical dashed lines. The angular variable φ used in the figures below is the 

azimuth angle in the xy-plane counted counterclockwise from the x-axis. It can be expected 

that an illumination beam appears at φ = 3000, what corresponds to αinc = 300, using the notion 

defined in Fig.3.20. It can be also noticed that, although the center of the incident beam is not 

exactly at 3000, all minima fit exactly to the angles of potentially allowed higher diffraction 

orders. In particular, there is a significant minimum at φ = 600, which corresponds to a 

specular reflection angle. If any obstacle is put inside the model, another beam centered at φ = 

600 will appear, but it will surely not disturb the value of the incident beam at φ = 3000. 
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Consequently, reflection coefficient, understood as the ratio of electric field intensities at 600 

and 3000 angles, will be calculated correctly. 

 

 
Fig.3.23. Scattering pattern shown in a logarithmic scale for the plane wave 

incident at αinc = 300 (φinc = 3000) in an empty air region (f = 10GHz, L = 40mm). 

 

 
Fig.3.24. Scattering patterns for the plane wave incident at αinc = 300 in an empty air region 

with a varying length L (f = 10GHz, L = N*40mm). 
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Table 3.1. Maximum electric field intensities of the incident beams shown in Fig.3.24. 

N |E| @ φ = 3000 [ mW ] ∆φ3dB 

1 0.608 42.2 

2 1.223 21.8 

4 2.454 10.9 

 

Fig.3.24 illustrates what happens when NTF transformation is performed over one, two and 

four periods of the structure. Table 3.1 presents the maximum electric field intensities of 

incident beams with a growing number of structure periods and the corresponding 3dB beam 

widths. It confirms that the width of a beam is inversely proportional, and its height linearly 

varies with the length of NTF transformation surface. As anticipated before in this Chapter,the 

beam finally converges to the Dirac delta. 

 

Let us now consider EM plane wave scattering from a particular periodic structure. Fig.3.25 

shows the geometry of the scenario. It is a periodic set of crosses made of perfect electric 

conductor (PEC) buried in a dielectric (ε1 = 2.56 ε0). Fundamental period is equal to d = 100 

mm. The objective is to expose the structure to a plane wave, incident at αinc = 300 within a 

range of d/λ0 = 0 ... 1 and, afterwards, extract a specular reflection coefficient. 

 

 
Fig.3.25. Dielectric coated PEC cross-shaped grating (d = 100 mm, ε1 = 2.56 ε0). 
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To speed up the simulation, the sinusoidal excitation is substituted with a narrowband pulse of 

finite duration centered at the considered frequency. Fig.3.26 shows the results of a number of 

FDTD simulations, marked with blue dots plotted on a red curve, obtained with the finite 

element time domain (FETD) method [53]. The simulation step amounts to dt = 1.667 ps, 

with FDTD grid size of a = 1 mm, whereas the simulation speed reaches 2000 iter/sec, 

resulting in the single simulation time of about tp = 2.5 sec3

 

. Total simulation time depends on 

the number of simulation points, but computational effort is very similar the one obtained 

with the FETD method. A distinct resonance can be observed at d/λ0 = 0.83. It refers to the 

frequency for which the thickness of a dielectric slab (75mm) is close to the wavelength of a 

plane wave propagating downwards: 
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Fig.3.26. Specular power reflection from the dielectric-coated PEC cross-shaped grating 

(d = 100 mm, αinc = 300) compared with the FETD method. 

 

                                                
3 Intel Core™2 Duo CPU 3.00GHz, 4094MB RAM, 64-bit Windows Vista Business. 
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It seems to be a full-wave resonance. Similarly, what can be easily verified, there is a half-

wave resonance at d/λ0 = 0.5. However, even with a very long computation and much finer 

meshing, it was not be possible to detect the resonance near d/λ0 = 0.61. Supposedly, it was a 

spurious solution of the benchmarking FETD method which appeared in [53]. 

 

 
Fig.3.27. Angular scattering pattern in power scaling 

for the dielectric-coated PEC cross-shaped grating (d = 100 mm, αinc = 300, f = 1.2GHz) 

obtained in one (red) and ten (blue) periods model. 

 

Table 3.2. Values taken from the angular scattering pattern shown in Fig.3.27. 

N |E|2 @ φ = 600 [ 2mW ] |E|2 @ φ = 3000 [ 2mW ] RP 

1 0.037417 0.160685 0.23286 

10 3.778596 16.220854 0.23295 

 

Let us now observe the angular scattering pattern (ASP) for d/λ0 = 0.4, obtained using      

NTF transformation performed in two models which consist of one and ten            

fundamental periods of the considered grating structure. Fig.3.27 clearly indicates               

that for the one-period model (the red curve and the left scale) – due to a relatively            
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short length of the model – ASP is substantially broadened, so it is hard to distinguish 

incident and reflected beams. Nevertheless, comparison with the ten-period case                 

(the blue curve and the right scale) shows that, though the shape of ASP                              

may be somewhat confusing, it provides accurate values at the diffraction angles (compare 

Eq.3.33). 

 

The values presented in Table 3.2 indicate that the difference between the specular         

power reflection coefficients obtained in both short and long models is about 0.01%,     

mainly due to the discrete FDTD meshing. Moreover, it can be also noticed that                   

the intensities of incident and reflected beams are ten times higher in the model         

consisting of ten periods of the structure, which is a direct consequence of ten times wider 

domain of integration. 

 

Now, let us return to the issue of narrowband properties of the plane wave excitation      

model implemented in the CL-FDTD algorithm. As it has been mentioned earlier,  

undisturbed traveling plane wave in a periodic structure can be obtained only for                     

a discrete frequency. In consequence, to obtain a reflection coefficient in the specified 

spectrum range, as shown in Fig.3.26, several simulations have to be run                               

for consecutive frequency points. Let us look for the possibilities of alleviating such               

a strict condition. The considered dielectric-coated PEC cross-shaped grating will be        

excited with a wideband pulse and the reflection coefficient will be extracted in the vicinity of 

the matched frequency, in order to assess the reflection coefficient error introduced by 

imperfect plane wave excitation. 

 

Fig.3.28 presents the simulation results obtained for the dielectric-coated PEC                 

cross-shaped grating at a few frequency sub-bands. Most of all, it can be noticed                 

that discrepancies are not systematic, so it is hard to draw general conclusions                  

about inaccuracy. Nevertheless, it can be concluded that the deviation from                          

the matched frequency by more than about 2-3% is not acceptable if accuracy of                  

the obtained result is expected to be less than 5%. In consequence, there is not much        

room to maneuver, especially when considering a real electromagnetic design, where           

the aim is usually to achieve accuracy much below 1%. It brings us back to the starting point, 

that is, to the single frequency approach. 
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Fig.3.28. Specular reflection (blue curve), as shown in Fig.3.26, compared with a wideband data 

collection (red curve) matched only at a single frequency marked with dots. 

Figures in the right column show relative discrepancy between both curves in the left column. 
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Now, let us consider another example of 1D periodic structure, showing a little different 

scope of potential applicability for the CL-FDTD algorithm. This time, a so-called poly-to-

active stack [54], composed of two diffraction gratings and processed in different layers on a 

silicon wafer during a lithography process of integrated circuits (IC), will be considered (see 

Fig.3.29). These kinds of stacks are exploited as test targets in a scatterometry technique [49], 

applied to control accuracy and precision of the lithography process. 

 

  
Fig.3.29. Cross-section view of a poly-to-active stack. 

 

In principle, scatterometry is a very interesting method, which is very useful when the 

dimensions of features processed with the lithography are much below the resolution limit of 

imaging techniques. The idea of scatterometry is to expose a target to a ray of bright light 

incident at a particular angle and, afterwards, to collect the spectrum of reflection coefficient 

(usually specular one), which is supposed to contain information about the geometry of the 

illuminated target. It may be the width of a line or a trench, the shift (overlay) between layers 

processed on a wafer, etc. However, to increase the signal to noise ratio (SNR) of the 

scatterometry technique, the target is usually periodically repeated to enhance the gain of the 

reflected ray. Thus, the length of the target is of the order of tens of microns – depending 

mainly on the diameter of the illumination spot. In the example below, a TE polarized plane 

wave (see Fig.3.19) incident at the angle of 250, on a target with the fundamental period 

(pitch) of 320nm, will be investigated. The width of the lines and the trenches, sometimes 
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denoted as the critical dimension (CD), is equal to 160 nm. Material properties have been 

obtained by private communication with KLA-Tencor Israel [55]. They cannot be disclosed 

here, however, similar data may be found in professional literature [56]. For the purpose of 

this analysis, an incidence plane is supposed to be perpendicular to the trenches. Moreover, 

since the aim is to investigate incident light of the spectrum from 500 up to 700 nm, according 

to Eq.3.23, only a specular reflection is allowed. 
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Fig.3.30. Reflection coefficient for a TE polarized illumination incident at 250 

on the target shown in Fig.3.29. 

 

Fig.3.30 depicts the reflection coefficient in the considered spectrum range obtained with the 

CL-FDTD algorithm,  compared to the RCWA solution computed by KLA-Tencor [55]. The 

performed tests have shown that in this particular case the model should consist of at least two 

pitches to guarantee appropriate separation of incident and reflected beams in the angular 

scattering pattern calculated with the aid of NTF transformation. Fig.3.30 proves the mutual 

convergence of both methods in the whole considered spectrum – average discrepancy 

amounts to about 0.76%. In order to meet the challenging requirements for precision of the 

scatterometry technique, a 2nm FDTD cell size has been set, so as to have at least 50 cells per 

wavelength in the worst case (λ0 = 500nm, poly). The simulation time step is dt = 0.004 fs. 

Such a fine meshing is necessary since the scatterometry technique is dedicated to the 

measurement of the overlay between gratings processed in different layers. The bottom 
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grating is often buried below some opaque material, such as poly or barc (see Fig.3.29), 

resulting in ill-conditioned algorithm for the overlay extraction. However, even with such a 

fine discretization, a simulation of one frequency point is relatively quick and the 

convergence is reached after 580 seconds, achieving the simulation speed of about 100 

iter/sec4

 

. Successful comparison of the new algorithm with the calculations performed using 

the RCWA method justifies the first statement of the thesis posed in Chapter 1. 

The author of this thesis has been involved in a European project [57], where his aim was to 

develop and implement FDTD models applicable to the modeling of scatterometry of periodic 

structures. More details concerning this issue are omitted here and can be found in 

[49],[54],[58-60]. 

 

Now, let us consider an oblique incidence of a plane wave on a two-dimensionally periodic 

structure to verify the 2D PBC algorithm implemented by the author of this thesis5. First, 

relations between the Floquet phase shift per period in each direction and the incidence angle 

will be introduced. Let us apply a spherical coordinate system6

 

 to maintain generality of the 

notation. It should be emphasized that in the modeling of a plane wave scattering 

phenomenon, the Floquet phase shift per period along an arbitrary axis may be understood as 

the phase shift of the considered plane wave along one period of the FDTD model. Thus, the 

relevant formulae are as follows: 

( ) ( ) xxxx LkLk θφψ sincos==  (3.35) 

( ) ( ) yyyy LkLk θφψ sinsin==  (3.36) 

( ) zzzz LkLk θψ cos==  (3.37) 

 

To exemplify the issue, let us consider an infinite set of 10mm x 10mm metal patches set in 

the xy-plane, located in an empty air region. The fundamental period is the same in both 

directions and amounts to 20mm. The goal is to illuminate these patches with a TE polarized 

plane wave (see Fig.3.19), of the frequency f = 20 GHz, and incident at (φ, θ) = (450, 1350). 

The operating frequency imposes a delay between excitation signals of real and imaginary 

FDTD grids of dt = T/4 = 12.5 ps (see Eq.3.25). 
                                                
4 Intel Core™2 Duo CPU 3.00GHz, 4094MB RAM, 64-bit Windows Vista Business. 
5 See Appendix 1. 
6 See Appendix 3. 
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Two simulations with 1x1 and 2x2 arrays of metal patches will be performed – both with 

periodic boundary conditions imposed. For the purpose of this analysis, a 0.25 nm FDTD cell 

size has been set (60 cells/λ) to suppress potential problems with the numerical dispersion of 

the FDTD algorithm. Fig.3.31 depicts normalized scattering patterns obtained at the incident 

plane (θ = 450). The specular reflection is accompanied by the 1st order one, appearing at (φ, 

θ) = (450, 339.30) (compare Eq.3.23). When inspecting the curve obtained for 1x1 model 

(red), one may notice a significant deformation of the beam. Nevertheless, comparison with 

the plot obtained for 2x2 array model (blue) once again confirms the theoretical findings 

presented earlier (see Eq.3.33) that the beam deformation due to a finite length of an NTF 

surface does not disturb the scattering pattern at the angles belonging to a set of diffraction 

orders. Comparing both characteristics plotted in Fig.3.31, the discrepancy of the reflection 

coefficient of the 0th order is about 0.11%, whereas for the 1st order, it amounts to 0.23% (see 

values in Table 3.3). 

 

 
Fig.3.31. Angular scattering patterns (normalized power scaling) calculated in an incident plane 

for the infinite array of 10mm x 10mm metal patches modeled with 

1x1 (red) and 2x2 (blue) matrix of patches. 

 

 

 



 71 

 Table 3.3. Values taken from the angular scattering patterns shown in Fig.3.31. 

N |E|2 @ θ = 450 |E|2 @ θ = 1350 |E|2 @ θ = 3390 RP (450/1350) RP (3390/1350) 
1x1 0.093498 0.948897 0.089128 0.098534 0.093928 
2x2 0.095949 0.984369 0.090183 0.097472 0.091615 

 

To resume, extraction of the far-field angular scattering pattern due to a plane wave incidence 

has been discussed. The proposed approach allows evaluation of not only the specular 

diffraction from a periodic structure, but also possible higher diffraction orders. The author 

has successfully implemented and verified a plane wave source and a near-to-far 

transformation in the presence of periodic boundary conditions in the CL-FDTD algorithm, 

proving the first statement of the thesis posed in Chapter 1. 

 

3.5.1.2 Waveguide Mode over Infinitely Periodic Structure 
 

Now, let us introduce a different method applicable to the analysis of EM wave scattering 

from infinite periodic structures. An analogy to the wave propagation in a waveguide will be 

applied. Let us first remind that each E(H)mn mode in a rectangular waveguide has a priori 

known forward phase constant [61]: 

 

22
mncmnf βββ −=  (3.38) 

 

where β stands for the phase constant in an unbounded region and βc mn is the cut-off of the 

considered mode. Each mode has a specified distribution of EM components in a waveguide 

cross-section, which does not depend on frequency. Such a distribution is usually called a 

mode template. It will be shown that such a mode template resembles a standing wave in an 

unbounded region. 

 

Let us consider – without loss of generality – modes only of E(H)m0 kind. For the sake of 

simplicity, notation of the indices m0 in the subscripts below will be suppressed.         

Fig.3.32 illustrates decomposition of the phase vector β into the forward and             

transverse components. The corresponding incidence angle |αinc| can be determined           

from the following formula: 
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where εeff denotes an effective permittivity and fc is a cut-off frequency of the considered 

mode. 

 

 
Fig.3.32. Plane wave representation of waveguide mode propagation. 

 

Exactly the same field distribution can be obtained in any unbounded region exciting          

two plane waves propagating at +αinc and -αinc angles, producing, in consequence,      

standing wave distribution in the plane, transverse to the propagation. This conclusion        

will be employed to propose another method of simulation of the scatterometry         

problems. An outline of the FDTD model is shown in Fig.3.33. At the top                              

of the model, an input port (red line) is applied to generate the waveguide                         

mode propagating downwards, whereas the bottom of the model is truncated                      

with a Mur superabsorption. What is original in the approach is that the electric          

boundary conditions at the lateral walls of the model are substituted with                              

the periodic ones, to maintain propagation of the mode as in an unbounded region.  

Depending on the polarization of the excited signal, remaining boundaries are set as electric 

or magnetic ones. 

 



 73 

  
Fig.3.33. Waveguide model with PBC for the scattering of periodic structures. 

 

According to Eq.3.26, an appropriate Floquet phase shift per period is set at the periodic 

boundary conditions to maintain undisturbed propagation of the mode related to the incident 

angle (see Eq.3.39). Calculation of the mode template at the input port cross-section is 

performed using the advantage of the V2D FDTD solver [48], with the following propagation 

constant, understood as a simulation parameter (more details can be found in Section 3.4.2): 

 

efff c
f

ε
π

β 0
0

2
=  (3.40) 

A scattering matrix with a reflection coefficient (S11) is calculated below the input port at a 

reference plane (a blue dashed line), in the same manner as for nonperiodic waveguide 

templates [7],[62]. If there is any scattering object inside the model, at least two specularly 

reflected rays are expected since the input port generates two plane waves at ±αinc. 

 

The proposed mode template method is relatively simple and versatile in its applicability. In 

QuickWave-3D software package [48] used by the author of this thesis, the procedure is 

executed automatically with no need of any user control. A user just needs to define a 

frequency and an effective permittivity associated with a particular incident angle. However, 

there is a fundamental limitation. The method proposed in this Section is useless when higher 

diffraction orders are not evanescent. It stems from the principal assumption which must be 
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satisfied to calculate a scattering matrix. The assumption is that waveguide modes are 

orthogonal with each other in the following sense: 

 

( ) ( )∫∫ =× ⊥⊥
S

ji dxdyyxhyxe 0,,  (3.41) 

 

where e⊥i (x,y) and h⊥j (x,y) are orthonormal distributions of transverse electric and magnetic 

components of the ith and jth modes (i≠j), respectively. 

 

It may be easily proven that the above relation is not satisfied for higher                    

diffraction orders, when the periodic boundary conditions are imposed instead                       

of electric or magnetic ones (see Fig.3.33). It follows from the fact that                 

orthogonality of waveguide modes is satisfied if strict (electric/magnetic)                   

boundary conditions are imposed. Thus, the field distribution at a waveguide                   

cross-section can be expressed as a sine/cosine series that, by definition, sets                         

an orthogonal basis. On the contrary, periodic boundary conditions allow                           

each mode to propagate with an arbitrary phase shift along the periodicity axis.                

Thus, if a higher diffraction order appears, it may be arbitrarily shifted                                

with respect to a fundamental mode loosing orthogonality needed to separate them. 

 

Let us check the correctness of the aforementioned method by considering                             

an empty model L = 10 mm wide, located between PBCs. The aim is to excite                         

a TE polarized standing wave at f = 15 GHz, with the magnitude of an incident                 

angle equal to |αinc| = 300. Thus, according to Eq.3.23, higher diffraction                          

orders are not supposed to appear. Eq.3.39 allows evaluation of the effective          

permittivity of the searched mode, and it amounts to εeff = 0.75. Next,                         

according to Eq.3.26, the Floquet phase shift per period is ψx = π/2 rad. The mode       

template is computed with the V2D FDTD algorithm, with the longitudinal                      

phase constant equal to βf = 0.272 rad/mm (see Eq.3.40). Afterwards, the calculated         

mode template is coupled with the whole model shown in Fig.3.33, driving it with               

the pulse of a spectrum deliberately wider than usually necessary to visualize                    

some properties of the method. 
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Fig.3.34. Reflection coefficient |S11| obtained in a periodic empty model 

excited with a TE mode template (L=10mm, fc=7.5GHz, f=15GHz, εeff=0.75). 

 

Table 3.4. Values taken from the reflection coefficient shown in Fig.3.34. 

 f [GHz] |S11| [dB] 

Cut-off frequency of the fundamental mode 7.5 -2.6 

Matching frequency of the fundamental mode 15 -61.3 

Cut-off frequency of the second mode 22.58 -17.9 

 

Fig.3.34 shows the magnitude of the reflection coefficient |S11| extracted at the reference 

plane. The marker values are shown in Table 3.4. It can be noticed that, indeed, the reflection 

is negligibly small at f = 15 GHz (matched frequency), which proves that there is no obstacle 

placed inside the model which would diffract the incident wave. Nevertheless, when the 

frequency deviates from the matched value, the magnitude of the reflection coefficient |S11| 

increases, and at least three reasons may be specified for that. First of all, the Mur 

superabsorption applied at the bottom of the model is matched to a plane wave incident at 

|αinc| = 300 but, for the specified mode template (fixed effective permittivity), this angle varies 

with frequency (compare Eq.3.40). Secondly, as the frequency decreases, the considered 

mode is getting closer to its cut-off, which may be directly derived from Eq.3.39. In that case, 

it is equal to fc = 7.5 GHz, which is consistent with the plot shown in Fig.3.34 since |S11| 

reaches its global maximum exactly there. Last but not least, as it has already been mentioned, 
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the method is only applicable to the investigation of specular reflection. Substituting Eq.3.39 

to Eq.3.23 and equating the latter to unity, the following relation is obtained: 

 

( ) ( ) 1sinsin 1 =−=−=−=
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f

fL
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f
f

LL
cc

inc
λαλα  (3.42) 

 

The above formula enables detection of the cut-off frequency of the 1st diffraction order. The 

calculated frequency fc1 = 22.5 GHz is in a good agreement with the reflection coefficient |S11| 

that, indeed, reaches the local maximum of about -18dB there. 

 

  
Fig.3.35. FDTD model of a dielectric grating. 

 

Since validity of the method has just been confirmed in an empty air region, let us go further 

and check how it will work if an obstacle is placed inside the model. Fig.3.35 shows the 

scenario consisting of one period of teflon dielectric grating (εr = 2.2). The height of the line 

is 20mm, whereas the line to space ratio is exactly L/S = 0.5. The size of the FDTD cell 

applied during the simulation is a = 0.5 mm, satisfying dispersive requirements of the FDTD 

algorithm with a large surplus since about 27 cells/λ in the dielectric region are applied. 

Fig.3.36 shows the plot of |S11| around the frequency of interest, and it can be observed that 
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the reflection coefficient is equal to |S11| = 0.097740 at f = 15 GHz. Simulation speed reaches 

13700 iter/sec, providing a convergent result after just about 10 ms7

 

. 

 
Fig.3.36. Reflection coefficient |S11| obtained for a dielectric grating (εr=2.2) 

excited with a TE mode template (L=10mm, fc=7.5GHz, f=15GHz, εeff=0.75). 

 
Fig.3.37. Normalized scattering pattern for the dielectric grating shown in Fig.3.35 illuminated 

with a TE polarized plane wave at αinc = 300 (f = 15GHz). 

                                                
7 Intel Core™2 Duo CPU 3.00GHz, 4094MB RAM, 64-bit Windows Vista Business. 
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Fig.3.38. Reflection coefficient |S11| obtained for a dielectric grating (εr=2.2) 

excited with a TM mode template (L=10mm, fc=7.5GHz, f=15GHz, εeff=0.75). 

 
Fig.3.39. Normalized angular scattering pattern for the dielectric grating shown in Fig.3.35 

illuminated with a TM polarized plane wave at αinc = 300 (f = 15GHz). 

 

Now, let us assess the reliability of the proposed waveguide periodic approach.                      

A normalized angular scattering pattern has been calculated for the same dielectric       

grating, but this time illuminated with a purely traveling plane wave (see Fig.3.21).              
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As shown in Fig.3.37, the reflection coefficient is equal to 0.097628, so                                

the discrepancy between the results obtained using both FDTD models reaches                 

about 0.01%. This time a simulation is slightly faster, reaching 14000 iter/sec,                    

with approximately the same computation time. However, the NTF solution               

stabilizes at the second significant digit, whereas |S11| provides five stable                 

significant digits. Apparently, it makes the mode template method more reliable                   

for the modeling of electrically short scenarios. 

 

To make the analysis complete, let us consider the same problem but with                                

a TM polarized wave. Fig.3.38,39 depict the reflection coefficient |S11| and                           

the angular scattering pattern, respectively. Obtained results differ at the level                        

of about 0.02%, however, like for the TE polarization, only two significant digits                 

are stable in the ASP and five in |S11|. Nevertheless, extension of the model                            

to two periods of the grating would alleviate NTF problem at the cost of doubling 

computational effort. 

 

Now, let us modify the proposed model by changing periodic boundary conditions                 

to perfect electric conductor (see Fig.3.40). First of all, it enables the application                    

of the classic FDTD algorithm with one simulation grid, instead of the                                 

CL-FDTD one with two grids, reducing the computational effort at least twice.          

However, at the same time the mode template flexibility is restricted. Due to the                

PEC imposed at the sidewalls of the model, only the modes that satisfy the following   

discrete set of phase shifts can be excited: 

 

πβ mLxx =  (3.43) 

 

Hence, the following set of incident angles can be obtained: 

 

( )
x

x
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m
β

π
β
β

α ==sin  (3.44) 

 

where m = 1, 2, 3, … 
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The above formula leads to the major property of the proposed model. The length of the 

whole model has to be an integer multiple of the fundamental period of the modeled structure 

Lx = n Lxp. Thus, in order to obtain a particular incidence angle αinc for a specified frequency, 

the value of the parameter m has to be selected in a way which ensures that the chosen 

incident angle mincα  is close enough to the intended one: 

 

( )
xp

minc Ln
m

β
πα =sin  (3.45) 

 

  
Fig.3.40. Waveguide model with PEC sides for the scattering of periodic structures. 

 

There is a visible tendency for the step between consecutive incident angles mincα  to decrease 

with the increasing length of the structure (n >> 1). Hence, in general, a better accuracy can 

be obtained if the model is longer. However, as it will be shown, this requirement may be 

alleviated under some conditions. 

 

Let us consider incidence of a plane wave on the dielectric coated PEC cross-shaped grating 

already introduced in this Chapter (see Fig.3.25). The analysis is confined to one frequency 

point, i.e. d/λ0 = 0.125. First, let us check how precisely an incidence angle can be selected. 

Eq.3.45 indicates that the precision of the angle selection rises with the increasing length of 
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the model, and Fig.3.41 confirms this anticipation, showing that the mismatch exponentially 

decreases. Nevertheless, the intended angle can be fitted exactly for the following series of 

discrete points Lx/λ = 0.5, 1.0, 1.5, 2.0, … . 
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Fig.3.41. Precision magnitude of an incidence angle versus the length of the model 

of the dielectric coated PEC cross-shaped grating (d = 100 mm, λ = 800mm, αinc = 300). 
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Fig.3.42. Reflection coefficient versus the length of the model of the dielectric coated 

PEC cross-shaped grating (d = 100 mm, λ = 800mm, αinc = 300). 
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Next, simulations have been performed for varying model length to show that the mismatch of 

an illumination angle has a major contribution to the accuracy of the obtained reflection 

coefficient. Fig.3.42 shows that the model does not have to be very long to get the accurate 

result provided that the intended incidence angle is exactly fitted. Reflection coefficients 

obtained for the unmatched points exponentially converge to the accurate value. 

 

Another essential feature of the waveguide method with PEC lateral boundaries is the 

possibility to evaluate higher diffraction orders. Contrary to the already introduced waveguide 

model with PBCs, where waveguide-like modes are considered (see Fig.3.33), the PEC 

version of the model excites strictly a waveguide mode, which is orthogonal to the other 

modes. Moreover, if the fundamental mode is properly adjusted to the corresponding 

incidence angle (see Eq.3.45), the potential higher diffraction orders will also satisfy electric 

boundary conditions at the waveguide port. Therefore, if another port matched to the higher 

order mode is defined in the same place as the input port, it is possible to monitor the amount 

of power reflected at the considered higher diffraction order. 

 

To exemplify the method, let us go back to the structure shown in Fig.3.25 illuminated in the 

xy-plane at an angle of αinc = 300. It will be investigated on one frequency for d/λ0 = 0.883 (f 

= 2.65 GHz). According to Eq.3.23, the 1st diffraction order can be expected at α1 = 39.20, 

which corresponds to (φ, θ) = (129.20, 900) in spherical coordinates8

 

. The model with 17 

fundamental periods of grating is defined since such a length of the model enables to keep a 

good matching of two mode templates which correspond to the 0th and the 1st diffraction 

orders. Following Eq.3.39, the effective permittivity of the fundamental mode is equal to εeff = 

0.750366, which is equivalent to the incidence angle of αinc = 29.980. As regards another 

mode, it has the effective permittivity equal to εeff = 0.599477, corresponding to α1 = 39.260. 

Thus, intended angles are matched with the accuracy better than 0.1%. 

The structure is excited with a short pulse with the spectrum within 2.5 – 3.0 GHz, providing 

the following scattering parameters: |S11|2 = 0.748 and |S21|2 = 0.156. The first value 

corresponds to the power reflection coefficient of the 0th order, whereas the second value is 

understood as the power transmission coefficient from the 0th order mode to the 1st one. 

However, to assess the reliability of the obtained solution, the simulation of the same scenario 

                                                
8 See Appendix 3. 
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will be run in the already studied plane wave excitation model (see Fig.3.21). Fig.3.43 

presents the obtained scattering pattern in a quadratic (power) scaling and, indeed, the ray of 

the 1st diffraction order can be observed. The comparison of the results obtained with both 

methods, shown in Table 3.5, indicates that the discrepancy is about 0.4% and 1.1% for the 0th 

and the 1st order, respectively, with approximately the same computation time. 

 

 
Fig.3.43. Angular scattering pattern (power scaling) for the dielectric coated 

PEC cross-shaped grating (d = 100 mm, αinc = 300, f = 2.65GHz) obtained in a 17 periods model. 

 

Table 3.5. Values taken from the angular scattering patterns shown in Fig.3.43. 

|S11|2 |S21|2 RP0 (600/3000) RP1 (1290/3000) 

0.748 0.156 0.752 0.145 

 

The main advantage of the approach with PEC boundary conditions is 50% smaller 

computational effort as compared to the model with PBCs imposed. However, the major 

disadvantage of the first method is the necessity to match precisely the waveguide mode to the 

intended incidence angle, which can impose definition of a longer FDTD model. 

 

In the aforementioned waveguide approach, a periodic structure has been extended to the 

whole length of the model. In principle, it refers to the case of an infinite spot over an infinite 

structure (see Section 4.5). It should be emphasized, however, that the waveguide approach 
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might be also applicable to the investigation of an infinite spot over a finite structure (see 

Fig.3.44). Practically, it refers to so-called isolated targets, composed of periodic structures 

separated from each other by the same distance. In such a scenario, a periodic structure is 

shorter than the whole waveguide model, which may be useful when investigating the impact 

of the diffraction on edges of the targets on the angular scattering pattern. However, since the 

concept of the FDTD model does not change at all in this case, a thorough investigation of 

this issue will be omitted here. 

 

   
a)       b) 

Fig.3.44. Waveguide model with PEC sidewalls for the infinite spot size scattering 

of infinite (a) / finite (b) periodic structure. 

 

So far, a few methods useful to the modeling of a plane wave scattering from periodic 

structures have been considered. First, an approximate approach was studied, which allows  

reducing the FDTD model to one or just a few fundamental periods of the structure, 

depending on the required computational precision. Two types of simulation models have 

been investigated in that case: a plane wave source and a waveguide port with periodic 

boundary conditions. Next, it was proposed to modify a waveguide approach exchanging 

PBCs with PEC to reduce computational effort, and to extend applicability of the model to 

higher diffraction orders. The summary of the advantages and limitations of these methods is 

presented in Table 3.6. The results prove the first statement of the thesis posed in Chapter 1. 

In the next Section, the attention will be focused on a Gaussian beam illumination of a 

periodic structure. 
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Table 3.6. Pros and cons of the methods introduced in Section 3.5.1. 

Method Pros Cons 

PLW & NTF 

&PBC  

1. A possibility to reduce      

an FDTD model to one or few 

periods of a structure. 

2. Simulation possible for  

an arbitrary angle of incidence 

and an arbitrary polarization. 

3. Possible detection of 

higher diffraction orders. 

1. Accuracy only at a single 

matching frequency. 

2. Doubled memory 

occupation (two FDTD grids). 

WG port & PBC 

1. A robust technique taking 

advantage of well-established 

modal templates excitation 

and extraction. 

1. Accuracy only at a single 

matching frequency. 

2. Doubled memory 

occupation (two FDTD grids). 

3. Accurate only for             

specular (mirror-like) 

reflection. 

WG port & PEC 

1. The most robust technique 

among those on the list (due to 

rigid boundary conditions). 

2. Possible analysis of 

higher diffraction orders. 

3. A single FDTD grid. 

1. Accuracy strongly dependent 

on waveguide mode matching to 

the corresponding angle of 

incidence. 

 

3.5.2 Gaussian Beam Illumination of Periodic Structures 
 

In principle, the plane wave excitation considered so far is a simplified formalism used to 

approximate an electromagnetic wave propagating in a particular direction far from a 

radiation source. Such a specific approximation is often sufficient for the modeling of 

practical problems, although, in fact, an EM wave never maintains a plane wavefront when 

propagating in a linear medium. On the contrary, the wavefront always converges or diverges 

when receding from a source. The most popular approximation of such a case is known as a 

Gaussian beam. 
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Fig.3.45. Shape of a Gaussian beam in a focal plane (y = 0). 

 

The following formulae describe 3D and 2D Gaussian beams propagating along the y-axis 

[63], respectively: 
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and w0 stands for the beam’s spot radius understood as the distance from the Gaussian beam 

axis in the focal plane where the amplitude decreases by 1/e (see Fig.3.45). 
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Fig.3.46. Scheme of the FDTD model for a Gaussian beam obliquely incident 

on the structure periodic along the x-axis. 

 

In this thesis, without loss of generality, the attention will be focused on the 2D FDTD model 

of a Gaussian beam illumination of a periodic structure, taking advantage of the classic FDTD 

algorithm. Fig.3.46 shows the FDTD model which will be applied hereafter. In principle, it is 

very similar to the one shown in Fig.3.21. However, this time a plane wave wall (PLW) is 

substituted with a Gaussian beam wall (GBW). In principle, operation of a GBW source is 

similar to a PLW one in a sense that it divides the considered volume into total and scattered 

field regions (compare Fig.3.21). The only difference is in the shape of the beam. In this 

particular scenario shown in Fig.3.46, GBW excites a Gaussian beam propagating 

downwards, whereas the area above is filled only with scattered field (if such is generated). 

Moreover, periodic boundary conditions, originally placed at the sidewalls, are replaced with 

a Mur superabsorption, truncating the volume of the FDTD model. The model is long enough, 

as compared to the beam’s spot radius, to avoid spurious diffraction of the EM field from the 

absorbing sidewalls. The definition of the TE/TM polarization, which will be used below, can 

be found in Fig.3.19. 

 

Fig.3.47 shows an example of a TE polarized 2D Gaussian beam propagating obliquely in the 

empty air model and centered in the middle. The beam is incident at λinc = 250 and driven with 
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a sinusoidal excitation at λ = 0.5µm (see Fig.3.20). It will be applied to illuminate the periodic 

structure placed below the NTF plane. 

 

   
Fig.3.47. Snapshots of the electric field (left) and the envelope (right) for a TE polarized 

2D Gaussian beam incident in the xy-plane (λ = 0.5µm, w0 = 1µm, AOI = 250). 

 

Let us consider the poly-to-active stack already shown in Fig.3.29. The initial results of the 

author’s studies of this issue were published in [64]. Fig.3.30 depicts the spectrum of the 

reflection coefficient computed with the CL-FDTD algorithm. First, analysis of the scenario 

excited with a Gaussian beam of w0 = 20µm spot diameter will be executed and the obtained 

reflection coefficient will be compared to the one shown in Fig.3.30. Fig.3.48 shows the 

computational results of both methods and a good agreement can be noticed. It confirms that a 

plane wave illumination of an infinite structure can be a good method to overcome the 

computational limitations of the real scattering problem with a spatially finite illumination 

spot. 

 

Once the agreement between infinite and finite approaches has been confirmed                     

for a large beam diameter, it will be assessed how the finite solution diverges when              

the spot is getting smaller. For this purpose, let us perform several simulations                       

to observe a deviation of the relevant reflection coefficient with diminishing spot size.           

It should be emphasized, however, that the sensitivity of the reflection coefficient                 

on the spot size is scenario-dependent so the conclusions derived below cannot be understood 

as general. 
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Fig.3.48. Reflection coefficient for a TE polarized 2D Gaussian beam 

incident at 250 on the target shown in Fig.3.29. 

 

Fig.3.49,50 show the absolute deviation of TE and TM reflection coefficients as a function of 

diminishing spot size. The following formula has been applied to calculate the absolute 

deviation: 

 

[ ] ( )refkk RRR −=∆ 100%  (3.50) 

 

where Rk stands for a considered reflection coefficient Rss (Rpp) and Rref  denotes the reference 

value of Rss (Rpp) obtained for the largest spot size. 

 

The largest spot covers about 62 pitches of the considered poly-to-active stack,            

whereas the smallest one covers only two pitches. It can be noticed that sensitivity                 

to the spot size is of the order of 0.3% and 0.1% for the TE and                                             

TM polarizations, respectively, down to a 2-3 micron spot size (6-10 pitches). It can           

also be noticed that the TM polarization is less sensitive to the spot size changes.       

However, below the level of 2-3 microns we observe rapid changes of the reflection 

coefficients. 
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Fig.3.49. Absolute deviation of Rss with a diminishing spot size 

for the poly-to-active stack (pitch = 320nm). 

 

 
Fig.3.50. Absolute deviation of Rpp with a diminishing spot size 

for the poly-to-active stack (pitch = 320nm). 

 

Summing up this Section, it has been confirmed that the approximate approach with a plane 

wave excitation of an infinitely long periodic structure can be a good alternative to the direct 

approach with a spatially finite scenario illuminated with a Gaussian beam. However, special 
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care as regards to the accuracy of the approximation must be taken if a spot is relatively small 

as compared to the number of illuminated periods. 

 

3.6 Summary 
 

The application of the partially analytical FDTD method dedicated to the modeling of 

electromagnetic wave scattering from periodic structures has been studied in this Chapter. A 

thorough insight into the procedure of looping periodic boundary conditions in the CL-FDTD 

algorithm extended by the author to 2D and 3D periodicity has been given. The author has 

also applied 1D and 2D PBCs in the V2D FDTD method. It has been shown that the 

implemented features allow simulating both eigenvalue and deterministic periodic problems. 

Special attention has been focused on the applicability to the modeling of plane wave 

scattering from infinite periodic structures. For that purpose, two types of modeling scenarios 

have been introduced and cross-compared, taking into account many modeling criteria, such 

as polarization, beam shape, diffraction orders and the size of the model. The first scenario 

takes advantage of a plane wave wall and a near-to-far transformation, which allow 

simulation and accurate extraction of the specular and higher diffraction orders. The second 

modeling scenario is based on the waveguide approach. In the first version of this approach, 

the periodic boundary conditions have been applied. It has been shown that the method is 

dedicated to the modeling of specular reflection only. However, by substituting periodic 

boundary conditions with a perfect electric conductor, it is possible to extend the applicability 

of the waveguide method to the higher diffraction orders, but at the expense of a mismatch of 

the incident angle. Finally, the last Section of this Chapter has been focused on a Gaussian 

beam illumination of a periodic structure as the most realistic case. The study presented in this 

Chapter fully proves the first statement of the thesis, formulated in Chapter 1. 
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Chapter 4 
 

 

Hybrid FDTD Modeling 
of the Far-Field Microscopy Imaging 

 

 

4.1 Introduction 
 

This Chapter presents the original study of the author of this thesis on the applicability of the 

FDTD method to the modeling of imaging phenomenon, which plays an important role in 

optical microscopes. The phenomenon is well known and understood in modern optics. 

However, imaging techniques are still under development, pushing the resolution of methods 

for imaging complex geometrical structures down to a nanometer scale. These high 

requirements contribute to demand for an increasing accuracy of design and modeling tools. 

Yet, the popular approximate methods, such as the one based on Fresnel approximation [65], 

have inherent limitations and, thus, are not sufficiently accurate for modeling of a whole 

imaging path from a light source to an image plane. Hence, hybrid modeling taking advantage 

of various modeling methods might be preferable. The critical part of the imaging path is the 

diffraction of light from a target (specimen). The target can be of an arbitrary shape and 

composed of various materials. Under such circumstances, the approximate modeling 

methods may not be able to meet expected requirements with sufficient accuracy. By contrast, 

application of the FDTD method does not impose any specific limitations to the scenario, 

enabling to achieve a very fine solution if needed. The concept of employing the FDTD 

method to the modeling of imaging problems is not new and can be found in radar cross 

section (RCS) techniques [66] or near field optics [67]. However, it is hard to find 

comprehensive studies of possible application of the FDTD method to modeling of the classic 

far-field microscope imaging. 

 

The limited interest in application of the FDTD method in this field follows from the fact that 

far-field microscope imaging is an optical problem with dimensions of the entire system 

measured in thousands of wavelengths, so its direct analysis with the FDTD method is not 

possible at the moment, even with the aid of modern supercomputers. It is generally 
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recognized that present computer systems allow 3D analysis of objects having linear 

dimensions not bigger than a few dozens of wavelengths. This is the main reason behind its 

narrow range of application in optics where the electrical size of objects is typically much 

bigger. However, the FDTD method as a full-wave approach has several advantages 

prompting us to apply it in a selected part of computational domain and to combine it with 

other methods typical for optics. Therefore, this Chapter addresses the issue of the potential 

application of the FDTD method coupled with a particular approximate optical approach to 

enhance capabilities of the overall algorithm of the far-field microscope imaging. Initial 

results of the author’s work presented below have been published in [68],[69],[70]. 

 

The main goal of this study is to define an algorithm that takes advantage of the FDTD 

method in modeling of an imaging phenomenon exploited in the far-field microscope systems. 

These imaging methods have various practical applications, including the quality control of 

masks and reticles in the lithography process of integrated circuits or 3D imaging of 

biological tissues, to name just a few. First, a theoretical background - essential in the 

understanding of the chosen modeling method - will be provided. Then, a brief survey of the 

hybrid algorithms that take advantage of the FDTD method in the modeling of far-field 

optical imaging problems will be presented. Subsequently, wide-field microscopy will be 

considered as a basic concept exploited in optical microscopes [71]. Eventually, the study will 

be extended to confocal imaging systems [71] dedicated to the analysis of 3D geometry of a 

thick target (specimen). Since the main scope of this Chapter is strictly related to optical 

problems, notation usually applied in that field is used hereafter. In particular, the symbol i is 

used instead of j to denote a complex number. Moreover, it is assumed that a monochromatic 

plane wave has the following notation: 

 

tirki eeUU ω−= 0  (4.1) 

 

The difference as compared to the notation common in electronics and used in the previous 

Chapters of this thesis lies in the opposite sign of the argument in the exponent. 
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4.2 Theoretical Background 
 

A brief historical review of how the formalism explaining a diffraction phenomenon was 

developed will precede the study of the optical imaging, as it plays a key role in the concept 

of imaging theory. Essentially, although there is a variety of imaging systems depending on 

the particular technology applied, a final image is always obtained by an appropriate 

processing of light diffracted from or transmitted through a target (specimen). 

 

In 1678, a Dutch physicist, Christiaan Huygens, formulated the main concept that became a 

starting point for the further study in this field. He stated that each point of the advancing 

wavefront is a source of a new spherical radiation, and all the secondary waves reconstruct the 

wavefront. Subsequently, this concept had been independently developed by Thomas Young 

(1804) and Augustin-Jean Fresnel (1818). However, Gustav Kirchhoff (1882) was the first 

who formulated an explicit solution of the wave equation with well-defined boundary 

conditions [72]. 

 

 
Fig.4.1. Point source radiation through the aperture. 

 

Let us assume that a point source of electromagnetic radiation illuminates an air hole in an 

unbounded metal layer as shown in Fig.4.1. For the purpose of this study, the problem is 

reduced to the scalar one, neglecting the issue of source polarization. According to the 
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Fresnel-Kirchhoff diffraction principle, the field behind the wall is given by the following 

formula: 
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Subsequently, assuming that the radiation source U(P2) is far from the air hole (r21 >> λ), the 

Rayleigh-Sommerfeld approach leads to a simplified integral with the integration over the air 

hole surface: 
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A brief look upon this equation allows us to recognize the Huygens principle since the field is 

integrated over each point within the air hole, as if it were a source of a spherical wave 

(modified by the cosine directional coefficient). 

 

Subsequently, applying a paraxial Fresnel approximation (∠(n,r01) ~ 00), Eq.4.3 can be 

simplified to the following one: 
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It can be noticed (see Eq.4.4) that the field at the observation point U(x,y) may be understood 

as a 2D convolution of the source field distribution U(x’,y’) and the impulse response of a free 

space region given by: 

 

( ) ( )22

2,
yx

z
ikzki

e
zi

eyxh
+

=
λ  (4.5) 

 

 

 



 96 

Appropriate rearrangement of Eq.4.4 leads to the following expression: 
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where one can recognize Fourier transform to an angular domain: 
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with the following definition of angular frequencies: 
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Let us introduce the last approximation, known as Fraunhofer (or far field) approximation, 

assuming that the source is electrically small as compared to the distance to the observation 

point. Thus, the equation - well known in the antenna theory [73] - is obtained [71]: 

 

( ) ( ) ( )∫∫ ′′′′=








′+′−+

S

y
z

yx
z

xiyx
z

ikzki

ydxdeyxUe
zi

eyxU λλ
π

λ

2
2 ,,

22

 (4.9) 

 

The above expression evidently depicts that the free space between the electromagnetic 

source and the observation point located in Fraunhofer region performs Fourier transform to 

the angular domain of the source field spatial distribution. 

 

Each of the approximations outlined above reduces the computational effort when   

calculating field at the observation point. The Fresnel formula (see Eq.4.4)                     

always converges to the Fraunhofer one (see Eq.4.9) with an increasing distance.      

Typically, in modeling of the far-field microscope imaging the Fresnel approach                    
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is employed to avoid the risk of potential inaccuracy of the Fraunhofer approximation, 

although it needs to be mentioned that such an approach requires higher computer effort. 

 

The Fourier transform allows substitution of a time consuming convolution appearing in the 

Fresnel formula (see Eq.4.4), with a much simpler multiplication in a Fourier domain: 

 

( ) ( ) ( )yxoyxyxi ffUffhffU ,,, =  (4.10) 

 

where [71]: 

( ) ( )2225.0, yx ffdkidki
yx eeffh +−= λ

 (4.11) 

 

and the subscripts o and i denote the image and object planes, respectively. 

 

Regarding spherical lenses, the simplest approximation is a perfectly thin spherical lens 

described by the following phase transfer function [71]: 

 

( )
( )22

2,
yx

f
ki

L eyxt
+−

=  (4.12) 

 

where f stands for the lens focal length. 

 

Field distribution behind the lens is the product of the field in front of the lens and the lens 

transfer function: 

 

( ) ( ) ( )yxUyxtyxU L ,,, 12 =  (4.13) 

 

It indicates that the Fourier transform is not preferable in this area since                                

the spatial multiplication given by Eq.4.13 would have been changed to                              

time consuming convolution in a Fourier (angular) domain. Finally, field distribution     

behind the lens U2(x,y) can be processed to an image plane applying impulse               

response of an open air region between the lens and the image plane, in a similar way as in 

Eq.4.10. 
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To summarize, the part of diffraction theory important from the point of view of 

electromagnetic modeling of the far-field microscope imaging investigated hereafter has been 

recalled. The next Section is focused on applicability of the FDTD method to EM modeling of 

a classic wide-field microscope. 

 

4.3 State-of-the-art 
 

Due to the reason mentioned in the previous Section, the literature concerning applicability of 

the FDTD method to the modeling of the far-field imaging problems is very limited. One can 

find a lot of research done in the field of breast cancer detection [74], but it works with a 

different approach to the imaging concept (not utilizing focusing elements like lenses). In 

2004 Hollmann et al. published a paper [75] about the hybrid FDTD-Fresnel imaging of living 

tissues (embryo). The authors applied the FDTD method in a close vicinity of the target, in 

order to expose it to plane wave illumination and to obtain scattered fields in the whole 

surrounding volume. These volume fields were further processed with 3D Green’s function to 

get the fields at the lens plane. The rest of the imaging path was modeled with the aid of the 

Fresnel approximation. In principle, this is a slightly different approach from the one which is 

going to be developed in this Chapter since in real microscopes the target is never totally 

exposed to a scanning beam, but the beam is spatially restricted to the focal spot of a 

particular dimension. 

 

Another notification about the hybrid FDTD-Fresnel modeling can be found on the website of 

the PlanetQuest project, led by Jet Propulsion Laboratory [76], where the FDTD method 

together with the so-called Fresnel propagator are applied to process measurement results of 

distant stars and planets with a real confocal optical system. However, there are no details 

provided about the modeling conditions. 

 

The last paper that is going to be addressed is [77]. It refers to EM modeling of the confocal 

3D imaging of subwavelength features. The authors proposed the FDTD model with a 

Gaussian beam illumination for the confocal characterization of 2D nanovoids fabricated 

inside a polymer volume. The scheme of the FDTD model looks similar to the one proposed 

by the author in Section 4.5, but [77] lacks comprehensive explanation how the final image is 

processed. The authors focused on application rather than on detailed description of the 

modeling issue. 
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4.4 Hybrid FDTD Modeling of the Wide-Field 
Microscopy 
 

Historically, the wide-field microscopy was the first imaging concept applicable                    

in the microscopes built of optical lenses. Although modern imaging tools are                  

much more sophisticated, with specialized techniques applied to push the resolution         

down to the physical limits of the particular technology, the basic idea has remained            

the same. Therefore, without loss of generality of further conclusions, the study         

presented hereafter will be confined to a simple imaging scenario composed of                    

one spherical lens, in order to concentrate only on the hybrid modeling                                   

of the imaging phenomenon. The goal is to assess whether the FDTD method                      

can enhance capabilities of the modeling algorithms used in optics. Let us first           

introduce the investigated scenario and present its short theoretical description. 

 

4.4.3 Introduction to Wide-Field Microscopy 
 

Fig.4.2 shows a lens-imaging scenario which will be studied in this Section. There are  

various types of wide-field microscopy systems, such as transmitted, reflected, etc. This  

study will be concentrated on the reflected light microscopy. Let us assume a perfectly       

thin lens approximation [71] to suppress an aberration issue. According to geometrical optics, 

the thin lens formula relates the object distance zo with the image distance zi in the following 

manner: 

 

io zzf
111

+=  (4.14) 

 

where f stands for the focal length of a lens. 

 

The ratio between image and object distances determines the magnification factor M             

of a single lens system. The obtained image is inversed with respect to the object.      

However, although geometrical optics allows some estimation of the object                      

plane and magnification, it does not quantitatively explain how the image is constructed.   

This is a role of the diffraction theory, already pointed out in Section 4.2. 
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Fig.4.2. Single lens imaging scenario. 

 

The target located at the object plane is illuminated with light focused by the objective lens. 

The major parameter of the objective lens is the numerical aperture (NA) associated with the 

half-angle θ of the focused light cone: 

 

( )θsinnNA =  (4.15) 

 

where n stands for the refraction index of the medium between the objective lens and the 

target. 

 

It should be emphasized that NA of the illumination beam can differ from the NA of the beam 

collected by the lens after diffraction from the target. The numerical aperture of the 

illumination beam determines the observation area, whereas NA of the collected beam implies 

the resolution limit. However, in many cases both NAs are the same. According to the 

Rayleigh criterion [72], the resolution of a simple imaging system can be approximated by the 

following formula: 

 

NA
R

2
λ

=  (4.16) 

where NA corresponds to the cone of collected light. 
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Let us assume for a moment that the target is very thin, so the issue of finite depth of a focal 

point can be neglected. According to the Fresnel approximation (see Eq.4.6), the angular 

distribution of the light reflected from the target is its Fourier transform. Subsequently, the 

divergent wavefront of the scattered beam is transformed by the objective lens to a convergent 

beam (see Eq.4.12) and propagation from the objective plane further to the image plane 

performs the second Fourier transform. Eventually, if the object and image planes satisfy 

Eq.4.14, a magnified and inversed image of the target will be observed. Formally, the whole 

imaging path can be represented by the following formula: 

 

( ) ( ) ( )[ ] ( ){ } ( )yxhyxtyxhyxUyxU Loi ,,,,, 21 ⊗⊗=  (4.17) 

 

where h1(x,y) and h2(x,y) denote impulse responses (see Eq.4.5) of the regions between the 

target and the objective lens, and between the objective lens and the image plane, 

respectively. 

 

To summarize this Section, general outline of a simple reflected light microscope system has 

been presented. Investigation introduced in the next Section is the original contribution of the 

author of this thesis on the hybrid FDTD-Fresnel modeling of this particular imaging system. 

 

4.4.4 Hybrid FDTD-Fresnel Modeling of the Wide-Field Microscope 
 

Due to the computational limitations mentioned before, let us split the considered scenario, 

shown in Fig.4.2, into two parts, and compute each of them using a different method. The 

FDTD method will be applied in close vicinity of the target to model the illumination source 

and collect the field reflected from the target. The rest of the imaging path, through the 

objective lens to the image plane, will be computed using the Fresnel approximation. The 

FDTD method can be used to consider an arbitrary geometry of the target, and obtain 

accuracy that would never be achieved using the method based on the Fresnel approximate 

approach. However, the cost is in a higher computational effort, and thus the size of the 

scenario dedicated to the FDTD method should be as small as possible. By contrast, the 

Fresnel approximation is well suited to model large lens systems in a reasonable time. It 

provides sufficient accuracy in that kind of applications. The FDTD method brings additional 

advantage since it allows extraction of the needed properties of the considered target in a wide 
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spectrum range with only one simulation run. Thus, a single FDTD simulation can deliver 

input data for several runs of the Fresnel diffraction algorithm, and therefore lower the overall 

computing time. 

 

Fig.4.3 depicts the FDTD model defined to investigate the illumination of the target. The light 

focused by the lens is approximated with a spatially distributed Gaussian beam centered at the 

target level to obtain the plane wave illumination in the limited region. Hence, a Gaussian 

beam wall (GBW) is set at some distance above the target to generate a beam propagating 

downward, driven with a short pulse of a limited spectrum. In principle, the model is very 

similar to the one introduced in Section 3.5, where the scatterometry issue has been discussed. 

 

 
Fig.4.3. FDTD model of EM wave scattering from a target. 

 

Slightly above the GBW, in the scattered field (SF) region, a near-to-far (NTF) transformation 

plane is set. The role of the NTF transformation is the same as in the case of scattering 

problems investigated in Section 3.5, as it calculates the angular scattering pattern (ASP) in a 

far-field zone. Bearing in mind that the objective lens is in the far-field zone of the target, it 

can be noticed that ASP can provide a field distribution right at the objective plane. 

 

Regarding material properties of the target, there are no specific restrictions imposed by the 

FDTD method. It can be non-transparent (reflective or lossy) or semi-transparent. In the latter 
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case, absorbing boundary conditions should be applied also below the target. Any potential 

restrictions imposed on the target follow from principal limitations of the modeled imaging 

method. 

 

Let us start the investigation assuming a scalar 2D problem, and thus, reducing the model to 

the plane shown in Fig.4.2. It requires shorter computing time and is simpler to interpret than 

the full 3D problem. In principle, the 2D approximation means that a spherical lens is 

substituted with a cylindrical one. Although a new wavefront has a different shape, it does not 

deteriorate formation of the image. Furthermore, the 2D approach implies no field variation 

perpendicular to the plane of the model, so a 2D Gaussian beam source has to be applied. If 

TE polarization is considered, the model should be limited to just one layer of FDTD cells 

placed in the xz-plane between two layers of perfect electric conductor (PEC). Alternatively, 

TM polarization can be investigated if the model is placed between two layers of perfect 

magnetic conductor (PMC). 

 

The rest of the imaging path, including the lens and the distance to the image plane, is to be 

processed by an optical algorithm based on the scalar Fresnel approximation. Eq.4.17, which 

represents the whole imaging path can be now reduced to the following 2D formula: 

 

( ) ( ) ( )[ ] ( )xLNTFxi fhxtxUfU 2ℑ=  (4.18) 

 

where ℑ  denotes the Fourier transform. 

 

The following four steps need to be performed to observe the final image: 

1. multiplication of the field distribution UNTF (x) obtained from the FDTD simulation 

with the lens transfer function tL (x), 

2. Fourier transform of the above product, 

3. multiplication of the above with the free space transfer function h2 (fx), 

4. inverse Fourier transform to get the final image. 

 

Considering computational effort needed for execution of Eq.4.18, it can be noticed that 

multiplications in the first and the third steps listed above are not very time-consuming, as 

compared to the Fourier transform, which comprises many multiplication steps. However, 
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data vectors can be organized in a manner to fit with the FFT algorithm’s requirements for 

efficient execution. At all events, computation time of the scalar Fresnel procedure is of the 

order of magnitude faster than the FDTD simulation. 

 

4.4.5 Computational Tests 
 

Three types of tests will be carried out to validate the proposed hybrid FDTD-Fresnel 

algorithm: 

1. validation of the Fresnel-based algorithm, 

2. tests of the FDTD model, 

3. tests of the hybrid FDTD-Fresnel algorithm. 

 

First, let us evaluate the Fresnel procedure implemented by the author of this thesis                

in Matlab environment9. The algorithm based on the Fresnel approach is dedicated                

to model an optical path in an imaging system from a target to an image plane.           

Similarly to electronic circuit theory, such a system can be described by its impulse   

response, which is understood as the image of the isotropic point source [65].      

Alternatively, a transfer function can be defined, understood as the spatial Fourier     

transform of the impulse response. For that purpose, let us compute the squared            

impulse response, usually denoted as a point spread function (PSF) [65], of the whole  

imaging scenario shown in Fig.4.2. For the spherical lens applied in the 3D scenario,         

PSF has the shape of an Airy disc [65], due to axisymmetrical shape of the point source.      

By contrast, in the 2D case the point source is understood as the infinitely long        

rectangular slit, resulting in PSF having the shape of a sinc function (or a squared               

sinc function in the intensity scaling)10

 

.  

Let us consider a 2D cylindrical lens of zero thickness (thin lens approximation),              

made of glass ns = 1.5, with the focal length of f = 15mm. To obtain a real inverted   

magnified image, the target should be placed in front of the focal plane. Thus, if                   

the target is set at zo = 20mm, according to Eq.4.14, the image is expected at zi = 60mm, 

magnified |M| = 3 times. Let us also assume the operating wavelength of λ = 500nm. 

 

                                                
9 See the listing in Appendix 5. 
10 The intensity is hereafter understood as a square of the electric field intensity. 



 105 

 
Fig.4.4. Axial distribution of the point spread function. 

 

 
Fig.4.5. Lateral distribution of the point spread function. 

 

In the first test, let us check whether the image is really at the theoretically expected distance 

from the objective lens, i.e. zi = 60mm. Thus, the Fresnel algorithm with the isotropic point 

source placed at the target plane is executed, and the intensity of light along the symmetry 

axis is scanned. Fig.4.4 shows the obtained intensity distribution for three values of the 
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numerical aperture. It can be noticed that the maximum is indeed at the expected distance, and 

that for increasing NA, the axial resolution of the system increases as well. It is the first 

validation test, passed successfully by the implemented algorithm. Subsequently, Fig.4.5 

depicts the lateral distribution of PSF at zi = 60mm for the same set of NAs. As it might be 

expected, PSF is a squared sinc function. The comparison of both Figures indicates that the 

lateral resolution is of about one order of magnitude better than the axial one, which is a 

general property of the wide-field imaging systems. 

 

Table 4.1. Resolution of the images shown in Fig.4.5 

compared with theoretical estimations. 

θ0 Rth [µm] Rfr [µm] 

10 1.44 1.33 

20 0.73 0.66 

40 0.39 0.30 

 

Table 4.1 presents the obtained resolution (Rfr) extracted from the PSF shown in Fig.4.5 

compared with theoretical estimations (Rth), calculated according to Eq.4.16. The resolution is 

understood here as the distance from the maximum of PSF to its first minimum, divided by 

the magnification factor (|M| = 3). Quite a good agreement between both columns can be 

noticed, especially when bearing in mind that the theoretical resolution Rth is just a rough 

estimation, and it is common practice to add correction coefficients to Eq.4.16, depending on 

a particular imaging system. 

 

As it has already been mentioned, the Fresnel algorithm was implemented with the aid          

of FFT, so that the length of data vectors has to be a multiple power of 2, in order                  

to meet the requirements of the applied Cooley-Tukey FFT algorithm [71]. Additionally,       

it was assumed that the spatial discretization step should not be larger than 200nm,                

so as to satisfy the Nyquist’s condition at λ = 500nm. Fig.4.6 shows                                      

the measured computation time as a function of NA. As NA increases, the data               

vector has to be extended to take into account the larger lens diameter. However,                    

it can be noticed that the computation time varies from 100ms for a small NA                        

up to about 2 seconds for a large NA. Blue figures depict the lengths of data vectors, 

indicating that FFT operates with vectors of about one million samples in a reasonable time. 
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Fig.4.6. Computation time of the point spread function versus NA. 

 

To summarize this part, the Fresnel algorithm has been successfully validated by observing 

the point spread function of the considered imaging system. Now, computational tests of the 

FDTD model will be performed. 

 

Let us assume that the target is an isolated 16µm wide plate made of PEC, illuminated with Ez 

polarized light beam (λ = 500nm) focused by the lens. The beam is approximated with a 

Gaussian shape having 50µm spot diameter, centered at the target level and driven with a 

short pulse of even spectrum between 460nm and 540nm. Such a large spot is applied to 

expose the whole target to the illumination beam. Finite duration of the pulse allows 

application of  the NTF transformation, in order to acquire ASP at the considered wavelength. 

The FDTD grid size is set to 20nm, to make sure that the numerical dispersion of the FDTD 

method would not deteriorate the final accuracy. Consequently, in order to satisfy the Courant 

stability criterion, a time step of 0.04fs is imposed. 

 

The FDTD simulation needs about 2000 iterations to obtain convergent results, whereas the 

simulation speed reaches about 50 iter/sec11

                                                
11 Intel Core™2 Duo CPU 3.00GHz, 4094MB RAM, 64-bit Windows Vista Business. 

. It can also be noticed that the obtained angular 

scattering pattern, shown in Fig.4.7, has the shape of a sinc function. As it might be expected, 

it is the spatial Fourier transform of the field distribution at the target level. The singularities 
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observed in the phase distribution are due to the ill-conditioned numerical computation of the 

phase at the minima of the ASP magnitude. Nevertheless, contribution of these singularities is 

negligible since the corresponding magnitude approaches zero. 

 

 
Fig.4.7. Angular scattering pattern of the PEC plate (w=16µm) illuminated at λ=500nm. 

 

Extensive studies of the FDTD model are not necessary at this stage since the issue has 

already been addressed in Section 4.5. However, once the ASP for the considered target is 

acquired, it can be coupled with the Fresnel-based algorithm to process the final image. 

 

Regarding the lens imaging scenario, the same values of parameters are chosen as depicted 

during the tests of the Fresnel algorithm carried before. Numerical aperture of the objective 

lens is set to NA = sin(100) = 0.1736, so, according to Eq.4.16, the resolution of the 

considered microscope system is expected to be about R = 1.44µm. 

 

The angular scattering pattern is projected from the object plane (yo = 20mm) onto the front 

plane of the lens by shifting the phase of ASP. Subsequently, the Fresnel algorithm is 

executed to calculate the intensity distribution at the image plane (yi = 60mm). Spatial 

discretization is set to 107.621nm, so the length of the FFT data vector is N = 216 = 65536. 

Computing-time is about 100ms, which is less than a percent of the total computing time for 

the whole hybrid FDTD-Fresnel procedure. Fig.4.8 presents the obtained image intensity 
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distribution. Full width at half maximum (FWHM) of linearly scaled image is about 45.8µm, 

i.e. 2.2µm (4.6%) less than theoretically expected. However, as the physical resolution          

of the considered microscope system is approximately 1.44µm on the target side,                 

the uncertainty of the FWHM measurement at the image plane is about                   

±3*1.44µm = ±4.32µm. It indicates that the obtained inaccuracy is within physical limits      

of the investigated optical system. 

 

 
Fig.4.8. Image of the isolated PEC plate (w=16µm) at yi = 60mm (intensity scaling). 

 

Now, let us consider an image of two isolated PEC plates separated by the varying distance. 

This time, narrower PEC plates are defined (w = 8µm) to avoid ripples in their images,       

and the focus is only on the distance between the plates. It enables the comparison                 

of the theoretical magnification and the obtained one. Fig.4.9 depicts the results                    

for the following set of separations between the plates: 4, 8, 12 and 16 µm. Table 4.2   

presents the obtained magnification values, and it can be noticed that the inaccuracy    

amounts to –12.2, –4.2, –2.0 and 0.0%, respectively. Inaccuracy of the magnification      

factor has a tendency to decrease as the distance between PEC plates increases                  

since the images of plates located very close to each other produce a disturbed image.        

Yet, the obtained inaccuracy is still close to the limit of resolving capabilities of                   

the investigated microscope system. 
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Fig.4.9. Images of two isolated PEC plates (w=8µm) at yi = 60mm 

separated by a variable distance (t = 4, 8, 12, 16 µm). 

 

Table 4.2. Magnification of the obtained images as shown in Fig.4.9. 

t [µm] t [µm] @ image plane Magnicitation 

4 10.54 2.635 

8 22.99 2.874 

12 35.28 2.940 

16 48.00 3.000 

 

In the current example, the FDTD cell size and the model size were similar to those in the 

previous case of an isolated PEC plate, so the computing time of the FDTD solver and the 

Fresnel procedure were approximately the same. 

 

Let us now extend the problem, assuming that the goal is to collect an image of the PEC plate 

not at a single wavelength, but within a specified spectrum of visible light. The aim is to 

indicate advantageous applicability of the FDTD method, which enables collecting scattering 

patterns for an arbitrary set of discrete frequencies in a single simulation run. Consequently, 

the only change in the scenario is in the spectrum of the incident light, as shown in Fig.4.10, 

which is wider and can have a user-defined shape. Angular scattering patterns are collected 

from 450nm up to 750nm with 50nm step. Fig.4.11 depicts the obtained image, calculated as 
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the light intensity averaged over the specified seven wavelength points. Width of the imaged 

plate is 6.75% more than theoretically expected, and ripples are more regular than in case of 

single wavelength imaging at λ = 500nm. The example indicates the possibilities to apply the 

presented approach to multi-frequency imaging. However, this subject will not be continued 

here since it is assumed to be outside the main subject of this thesis. 

 

 
Fig.4.10. Normalized spectrum of the illumination plane wave (power scaling). 

 
Fig.4.11. Image of the isolated PEC plate (w=16µm) at yi = 60mm (λ = 450:50:750nm). 
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Major limitation of the wide-field microscope systems consists in a relatively large depth of 

focus (DOF), caused by a large illumination spot focused by the objective lens at the target 

level. In consequence, the axial resolution of the method is worse than the lateral one, which 

makes the tool rather incapable of resolving the shape of a thick target (specimen). The next 

Section concentrates on the extension of classic microscope system which provides an 

increased axial resolution. The confocal scanning microscopy will be considered. 

 

4.5 Hybrid FDTD Modeling of the Confocal Microscopy 
 

The concept of confocal microscope was originally introduced in 1957 by Marvin Minsky as 

he tried to increase the contrast of the conventional optical microscope by putting pinholes to 

eliminate out-of-focus light. It allowed him to construct a system which has gained a very 

wide applicability nowadays, especially to the inspection of biological tissues or 

semiconductor devices. There are several versions of the confocal scenarios but, without loss 

of generality of the conclusions, the study presented in this Section will be concentrated on 

the simplified scenario, in order to check the possibility of applying the FDTD method in the 

modeling of that concept. The author’s work described hereafter has been originally published 

in [69]. Let us first introduce the investigated scenario with some essential comments. 

 

4.5.1 Introduction to the Confocal Microscopy 
 

The scenario of the confocal microscope is very similar to the wide-field one, shown in 

Fig.4.2. The major difference is in the image processing. Fig.4.12 shows a schematic view of 

a typical confocal scanning microscope in the illumination (left view) and scanning (right 

view) modes. The light radiated by the source illuminates an input pinhole, which spatially 

restricts the amount of passing light, whereas the objective lens focuses the beam of light at 

the target plane. Since the input pinhole plane and the target plane are conjugate planes [78], 

an image of the pinhole is observed at the target plane. Thus, if the pinhole is getting smaller, 

the spot becomes - within diffraction limit – smaller as well. Subsequently, the light reflected 

from this small fraction of the target propagates back through the lens to the image plane, 

where another pinhole is set. Such a scenario has two major advantages. First, the input 

pinhole allows reducing the size of the spot at the target plane. Thus, the light diffracts only 

from a tiny part of the target, increasing the spatial contrast of the final image. Afterwards, 

reflected light is refocused by the objective lens onto the image plane (see red line in 
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Fig.4.12), where the output pinhole limits the amount of light collected by the detector. In 

consequence, the light scattered from different parts of the target or at different levels (see 

blue line in Fig.4.12) is focused outside the output pinhole, reducing the contribution of the 

out-of-focus light to the power collected by the detector. The aforementioned procedure 

implies that a whole confocal microscope operates like a scanner which selectively probes the 

target point by point. By performing several measurements for different positions of the target 

a 3D image can be acquired. 

 

    
Fig.4.12. Scenario of confocal scanning microscope 

(illumination mode – left, scanning mode - right). 

 

As opposed to the concept of wide-field microscope, both axial and lateral resolutions are of 

great interest in the confocal microscopy. They can be evaluated from the point spread 

functions of the illumination and detection paths (see Fig.4.12). Convolution of both PSFs 

gives a point-spread function of the whole system [79]. Topography and electric properties of 

the target also have an impact on the resolving capabilities, but it is usually assumed to be 

negligible. However, irrespective of the width of PSFill and PSFdet, the total PSF is always 

narrower. Assuming, for the sake of simplicity, that the output pinhole is larger than the input 

one, it can also be assumed that the final resolution depends mainly on the illumination path, 

as the PSFill dominates. 
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Similarly to the hybrid FDTD-Fresnel modeling of the wide-field microscope described in the 

previous Section, the FDTD model is reduced to the close vicinity of the target (see Fig.4.3) 

and a Gaussian shape is applied to approximate the illumination beam. In the 3D scenario, 

advantage of Eq.4.16 is usually taken to calculate NA for the aimed lateral resolution. This 

time the procedure is a bit different since the radius of the Gaussian spot should be 

determined from the aimed axial resolution, rather than the lateral one. Axial and lateral 

resolutions are understood hereafter as a full width at half maximum (FWHM) of a 2D 

Gaussian beam in the axial and lateral planes, respectively. Let us then derive a relation 

between a 2D Gaussian beam spot radius w0 and the numerical aperture NA of the represented 

light beam. 

 

 
Fig.4.13. Divergence angle θ of a Gaussian beam. 

 

Fig.4.13 shows a 3D/2D Gaussian beam shape with the approximate divergence angle θ 

indicated. Following Eq.4.47, which describes a 2D Gaussian beam distribution, an 

approximate formula for a 2D Gaussian beam envelope valid far from the focal plane (y >> 

y0) can be derived: 
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Furthermore, let us derive from the above formula the lateral FWHM of a Gaussian beam far 

from the focal plane: 

 

( )
0

0, 2ln
y
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Thus, the numerical aperture NA is given as follows: 
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However, the aim is to relate NA with the axial resolution Rax (FWHMax) of a 2D Gaussian 

beam, which is given as follows: 

 

0152 yFWHMR axax ==  (4.22) 

 

Introducing Eqs.4.48,49 and 4.22 into Eq.4.21 leads to the following relations for the 

numerical aperture and spot radius, respectively (compare Eq.4.15): 
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π
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1520 π
λaxRw =  (4.24) 

 

To summarize this Section, application of input and output pinholes allows                

achieving increased image contrast, especially in the axial plane, improving the  

determination of a 3D shape of the target. It should be emphasized, however, that        

confocal microscopy is a sequential image processing method, as it acquires the whole   

image pixel by pixel. 
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4.5.2 Hybrid FDTD-Fresnel Modeling of the Confocal Microscope 
 

Hybrid FDTD-Fresnel modeling has already been discussed in Section 4.4.4. Hence, the only 

modifications to the hybrid algorithm necessary to properly represent the investigated 

problem will be indicated below. The FDTD model is exactly the same as shown in Fig.4.3. 

Each simulation run provides, as an outcome, the angular scattering pattern, which is further 

processed by the Fresnel-based algorithm onto the image plane. The major discrepancy is in 

the different postprocessing of the data obtained from the FDTD simulations since the whole 

image is acquired from a pixel-by-pixel execution of several simulations for different 

centering of the illumination spot. Regarding illumination source, the Gaussian spot has to be 

much narrower than in the wide-field microscope model, so as to resemble the existence of 

the input pinhole, which is imaged at the target level. 

 

4.5.3 Computational Tests 
 

Let us consider two complementary targets: a trench and a line processed in a bulk of GaAs 

wafer (εr = 10.4976). The height and width of the trench (line) are the same and amount to 

10µm, whereas the length of the trench (line) extends to infinity. An image will be processed 

at λ = 500nm. Assuming that the target is zo = 2mm from the objective lens and the image 

plane is zi = 200mm behind the lens, the focal length amounts to f = 1.98mm. 

 

Since the FDTD model is exactly the same as for the wide-field imaging, basic tests of the 

imaging path will be abandoned here. It has been assumed that the spatial discretization step 

should not be larger than 200nm, so as to satisfy the Nyquist’s condition at λ = 500nm. 

 

Another step is to choose the expected axial resolution of the imaging system, which will 

further allow establishing the radius of the illumination spot (see Eq.4.24) and the width of the 

output pinhole. Hence, let us set axial resolution to Rax = 2µm. Thus, according to Eq.4.23, 

numerical aperture amounts to NA = 0.547 (θ ≈ 330) and, consequently, the Gaussian beam 

radius is w0 = 0.203µm. The same NA will be set for the detection mode. 

 

Let us now compute a point spread function of the detection path (see Fig.4.14). The distance 

between the first minima of the PSF is about 108µm, and this value will be set as the width of 

the output pinhole. 
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Fig.4.14. Point spread function of the detection path. 

 

Regarding the FDTD model, it is two-dimensional and consists of one FDTD layer of the 

target’s cross-section, assuming no field variation along the trench (line). It indicates that 

illumination plane is perpendicular to the trench (line). The analysis will be confined to the 

transverse electric (TE) polarization, with electric field perpendicular to the illumination 

plane. The minimum FDTD cell size is set to 10nm maintaining at least 15 FDTD cells per 

operating wavelength (λ = 500nm). The whole FDTD model is 40µm long, which ensures that 

the excited Gaussian beam and the scattered field do not exceed the computational area. 

 

A single FDTD simulation takes about 5 minutes12

 

. The whole image has been computed with 

a 1µm step, although, due to the symmetry of the targets, only a half of each image has been 

collected. Thus, the total FDTD computation time amounts to 286x5min ≅ 24h. Finally, all 

the obtained ASPs serve as the input to the Fresnel-based algorithm, which takes only several 

seconds, making a minor contribution to the total computational effort of the hybrid modeling 

method. 

Fig.4.15 shows the obtained images of the trench (left) and the line (right). It can be noticed 

that the image resembles target’s shape, although, as might be expected, the axial resolution is 

a bit worse, resulting in blurred horizontal edges. Another interesting phenomenon can be 
                                                
12 Intel Core™2 Duo CPU 3.00GHz, 4094MB RAM, 64-bit Windows Vista Business. 
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seen at the sharp corners of the trench (line). Due to significant diffraction of the incident light 

at the corners of trench (line), dark vertical gaps can be observed in both images around x = -

5µm and x = 5µm. 

 

   
Fig.4.15. Image of the trench (left) and the line (right) with the green dotted line 

depicting the real shape of the target. 

 

To sum up this Section, hybrid FDTD-Fresnel modeling was successfully validated and 

proved to be an advantageous technique in the modeling of the confocal microscope. It allows 

the acquisition of a 3D shape of the considered target. 

 

4.6 Summary 
 

Microscope imaging scenarios, investigated in this Chapter, were simplified in a large extent, 

as compared to the modern imaging tools, which are often very sophisticated. Nevertheless, 

the technique introduced in this Chapter can be easily extended to more advanced and 

complicated scenarios, both in the FDTD and Fresnel regions. It has been shown that the 

hybrid FDTD-Fresnel approach can be very advantageous in the modeling of the far-field 

optical imaging, where the first method cannot handle such computationally large problems, 

whereas the second one can fail when the target has a complicated shape. It can be concluded 

that the study presented in this Chapter fully proves the second statement of the thesis 

formulated in Chapter 1. 
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Chapter 5 
 

 

Near-to-Near Transformation in 
Axisymmetrical Structures 

 

 

 

5.1 Introduction 
 

It is well known that a complicated radiating structure can be fully characterized                   

by a set of electric and magnetic surface currents placed at a closed surface surrounding      

the structure (often called the Huygens surface). Knowledge of these currents               

(directly related to electric and magnetic fields tangential to the surface) is sufficient              

to calculate electromagnetic fields in any test point placed outside the Huygens surface.   

Most often that kind of approach is used to perform the so-called near-to-far (NTF) 

transformation, consisting in calculation of the fields in the far zone. In NTF transformation,  

it can be assumed that: 

- all straight lines traced between the test point and any point of the Huygens surface     

      are parallel, 

- fields in the test point do not have radial field components, where “radial” relates 

to the spherical coordinate system13

-   the distance between the surface current at the Huygens surface and the test point  

influences the phase but not the amplitude of the relative contribution of that 

current to the field in the test point. 

 with the origin situated inside the  Huygens 

surface, 

 

The above assumptions simplify the calculation of the fields in the test point. However,         

if test point is relatively close to the Huygens surface, these assumptions cannot be accepted. 

In such a case, a much more complicated procedure of calculating fields in the test point has 

to be applied. In other words, the so-called near-to-near (NTN) transformation has to be 

applied. 
                                                
13 See Appendix 3. 
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In the case of axisymmetrical problems, denoted also as body of revolution (BOR) problems, 

the formulae for numerically effective application of NTF transformation are well known 

[80],[81],[82] and applied in commercial software for a long time. In the case of NTN 

transformation, the classic approach consists in applying a direct integration of contributions 

of the surface currents (placed on cylindrical Huygens surface) in a 3-D space. Such an 

approach takes no advantage of the analytically known angular dependence of the currents on 

that surface, so computation becomes numerically very ineffective.  

 

This Section describes the new approach to the problem, leading to a very effective numerical 

algorithm. That approach is an original contribution of the author of this thesis. Its highlights 

were first presented in [83]. 

 

5.2 Basic Concept 
 

Axisymmetrical antenna problems are of high importance in the engineering practice. For 

instance, corrugated circular waveguide horns or biconical antennas may be recalled. These 

horns are often employed as feeds of larger, but also axisymmetrical reflectors. In general, 

angular dependence of EM field in axisymmetrical structure may be decomposed into the 

following series, given in cylindrical coordinates14

 

: 

( ) ( ) ( ) ( ) ( )∑ +=
n

nn nzEnzEzE φρφρφρ cos,sin,,, '


 (5.1) 

 

In most practical cases, BOR structures are excited by field patterns of a specific value of n. 

Typical example is the circular waveguide mode H11 with n=1. With such an excitation, all 

the field components inside a BOR structure are proportional to cos(nφ + φ0), with φ0 

dependent on coordinates ρ and z. A 3D problem can be reduced to a 2D one with all EM 

components present. Such problems are usually referred to as vector 2D (V2D) in the 

cylindrical coordinate system [6], [84], [85]. 

 

The major advantage of V2D over 3D approach to BOR problems is that it is much faster and 

requires much less computer memory to solve the problem. The difference in both speed and 

memory requirements may reach even two orders of magnitude, which is why V2D enables to 
                                                
14 See Appendix 4. 
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handle designs that are out of reach for up-to-date 3D EM solvers. Its axisymmetrical version 

has been implemented in several methods, such as the Method of Moments (MoM) [86] or 

FDTD [6]. Numerical solvers based on such methods often support NTF transformation, 

which provides far field zone radiation pattern. If the 3D approach is considered, the antenna 

is surrounded by cylindrical NTF surface (Huygens surface), where EM field is recorded. 

Next, following the equivalence principle, all EM field components are replaced with electric 

and magnetic surface currents, which are subsequently used to obtain electric field in a far 

field test point. In the case of V2D BOR approach, it is sufficient to record the field 

distribution only in one specified cross-section of the structure since it can be analytically 

expanded to the entire NTF cylinder, using either sin(nφ) or cos(nφ) multiplication (see 

Fig.5.1). With the known analytical dependence on φ angle spanned from 0 to 2π, integration 

of electric (magnetic) current can be proceeded over ∆z on the side of the NTF cylinder, or ∆ρ 

on the cylinder bottoms. It indicates that in V2D BOR FDTD algorithm, each surface element 

of NTF line expanded over the whole range of φ angle forms a circular loop. Thus, it makes 

the problem similar to the calculation of fields radiated by the current loop. 

 

 
Fig.5.1. NTF surface surrounding V2D BOR FDTD model of axisymmetrical antenna. 

 

NTF transformation is very useful and widely applicable in EM modeling of radiation 

problems. However, sometimes it is not sufficient if the observation point is still in the near 

field zone. For instance, parabolic antenna with off-axis axisymmetrical feed may be quoted. 

Since there is no common axis of symmetry, the whole antenna system cannot be modeled as 

a V2D model. Nevertheless, a model of the feeding antenna can be prepared to find the 

radiation pattern. Afterwards, a simulation of the reflector dish can be run, with illumination 
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signal derived from the previously obtained radiation pattern. However, sometimes it cannot 

be assumed that the reflector is in the far field zone of the feeding antenna. In such a case, 

NTN transformation may be applied in the feed model to obtain distribution of the field that 

illuminates reflector. 

 

In principle, BOR NTN transformation can proceed in a similar manner to BOR NTF one 

with the Huygens surface reduced to just 3 segments (see Fig.5.1). However, NTN 

transformation is more complicated than NTF method since the latter one needs only two 

electric field components Eφ and Eθ to be calculated at the test point, as the radial component 

does not appear. Moreover, magnetic field is straightforward related to electric one by the free 

space impedance. As it has been pointed out earlier in this Chapter, in NTF transformation 

some additional approximations can be made, assuming that each point on the NTF surface is 

seen under the same angle at the observation point. On the contrary, NTN transformation 

imposes calculation of all 6 EM components, without any approximations allowed for NTF 

transformation. 

 

Before moving on to the method proposed by the author of this thesis, let us discuss a 

straightforward approach to BOR NTN transformation. The concept consists in using BOR 

calculation results to collect surface currents on the pickup NTN surface that surrounds 

radiating antenna. Then, to obtain the appropriate field component at the test point, a direct 

integration of the contribution of these surface currents needs to be performed. However, 

although such an approach is robust, it requires a lot of computational effort. Hence, it is 

natural to look for a more effective BOR NTN transformation that takes the advantage of 

analytically known axial dependence of EM fields (see Eq.5.1). To the knowledge of the 

author of this thesis, his paper [83] was the first publicly available consideration of this issue. 

 

Douglas Werner [87] introduced an exact integration procedure for vector potentials 

generated by current flowing in a thin circular loop antenna. He considered the current 

naturally oriented along φ angle, described by: 

 

( ) ( )'cos' φφ φ nII n=  (5.2) 

 

where prime superscript denotes the source coordinates. 
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Werner’s approach is valid in both near and far field zones, and for arbitrary radius a of the 

current loop antenna. Later, he extended these results to moderately thick cylindrical wire 

antennas [88]. Both solutions refer to the radiation of EM fields into unbounded free space. It 

should also be mentioned that Li et al. [89] presented an alternative approach, based on dyadic 

Green’s function with separate solutions for regions, where 0 ≤ r ≤ a and r > a. 

 

Let us note that in the BOR NTN transformation, in each of the observation points 

contributions of three electric Iρ , Iφ , Iz and three magnetic Kρ , Kφ , Kz current components, 

located at the pick-up surface surrounding radiating object, need to be calculated. Werner’s 

formulas enable calculation of the contribution of Iφ (φ') component for the specified (ρ, z) 

coordinates, and by virtue of duality this can also be extended to Kφ (φ'). To obtain a complete 

NTN solution, the method needs to be extended to the remaining components. 

 

5.3 Theoretical Background 
 

As it has already been mentioned, the theoretical background of the analysis below is based 

on the approach proposed by Werner [87]. Let us briefly address the relevant issues here. A 

view of the considered circular loop antenna is shown in Fig.5.2. 

 

 
Fig.5.2. Current loop antenna. 
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First of all, a vector potential A is employed to describe EM field components: 

 

AH
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×∇=
µ
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 (5.3) 

H
j

E

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 (5.4) 

 

Let us recall that the vector potential A is related to the source current by the following 

formula [73]: 
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Assuming spherical coordinates notation, magnetic and electric field components are related 

to the vector potential A via the following formulae: 
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where η denotes intrinsic impedance of the surrounding medium (the air is assumed in this 

consideration). 
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Werner proposed to express this vector potential using the following integral: 
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( ) ( )φφθ ′−−=′ cossin22 arRR  (5.13) 

 

where: β is the free space phase constant, R’ is the distance from the source point P`(a,90ο,φ') 

to the test point P(r,θ,φ) as shown in Fig.5.2 and: 

 

22 arR +=  (5.14) 

 

Subsequently, using Lommel's expansions and Euler's identity, Werner derived an exact series 

expansion of the integral (Eq.5.12) as follows: 
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and ( ) ( )Rhm β2  is the 2nd kind Hankel function of the mth order. 

 

Afterwards, Werner applied this expansion to evaluate exact formulae for the vector potential 

components Ar, Aθ, Aφ, given in the spherical coordinates15

                                                
15 See Appendix 3. 

. Eventually, electric and magnetic 

components can be evaluated at the test point using Eqs.5.3,4. Werner restricted his 

investigation to one polarization of the current. In the next Section, the contributions of other 

current components, i.e.: 
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( ) ( )φφ ρρ ′=′ nII n cos  (5.17) 

( ) ( )φφ ′=′ nII znz cos  (5.18) 

 

will be thoroughly investigated. 

 

5.4 Radial Current Component 
 

Let us express radial current component (Eq.5.17) in the spherical coordinates by employing 

unit vectors at the test point P(r,θ,φ): 

 

( ) ( ) ( ) ( ) ( ) ( )φφφφθφφθφ ρφρθρρ ′−−′−+′−=′ sinˆcoscosˆcossinˆ IaIaIaI r  (5.19) 

 

If we substitute Eq.5.19 to Eq.5.5, three components of the vector potential are obtained: 
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Direct integration of these expressions seems to be extremely time-consuming. Thus, the 

problem is approached in a similar way as Werner did in the case of angular current 

component. It is presumed that the radial current component can also be expressed as a 

function of the integral given by Eq.5.12. Thorough comparison of Eq.5.12 and Eqs.5.20-22 

leads to the following relations: 
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Finally, introducing series expansion of the integral (see Eq.5.15) into above formulae and 

employing Eqs.5.3,4 expressed in spherical coordinates, the following set of expressions has 

been derived: 
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Derivation of these expressions was very laborious and they look quite complicated. 

However, as it will be shown, due to the presence of factorial term m! in denominators, 

computation of the series quickly converges. For relatively small loops (up to about 4 

wavelengths), usage of 20 series terms is usually sufficient. For larger loops, the required 

number of terms may be higher, but does not exceed 100 the for most practical situations. 

 

5.5 Transverse Current Component 
 

Now, let us present the solution for z-polarized electric current: 

 

( ) ( ) ( )θθφ θ sinˆcosˆ zzrz IaIaI −=′  (5.32) 

 

As previously, the vector potential is expressed as a function of the integral (see Eq.5.15): 
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Eventually, it leads to the following expressions for magnetic and electric components at the 

test point: 
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The above expressions are relatively complex but, as will be shown in the forthcoming 

example, they require much less computational effort than the direct integration procedure. 

Besides, let us note that although several Hankel functions appear in all the above 

expressions, they have the same argument, so the Hankel functions of different order may be 

effectively calculated using recursive algorithm. 
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5.6 Benchmark Tests 
 

Three types of independent tests will be run to investigate the accuracy and convergence rate 

of Eqs.5.26-31,36-41. These tests can be grouped into the following categories: 

1. convergence as a function of series terms (m = 1,2,…,M); 

2. available speedup when compared to the direct integration procedure; 

3. asymptotic convergence to the NTF transformation. 

 

Formulae for the contribution of Iρ (φ') and Iz (φ') to 6 EM components at the test point have 

been derived. All twelve formulae were thoroughly tested against direct numerical integration 

and in all cases convergence has been obtained. For the purpose of this Section, the focus is 

on the Iz(φ’) contribution to the Hφ component (see Eq.5.38), as a representative case. 

 

 
Fig.5.3. Magnitude of magnetic field |Hφ| as a function of relative distance r from the loop center 

(see Eq.5.38). 

 

Fig.5.3 presents Iz(φ’) contribution to Hφ component, computed using Eq.5.38, assuming the 

loop radius equals to the wavelength (a = λ). The results are drawn as a function of distance r 

from the loop center, assuming that the test point is seen at the angles θ=π/4 and φ=π/4. Next, 

computation with different number of summation terms M has been run, and the obtained 

results have been compared with the ones obtained using direct integration in 3D space, with 
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very high accuracy of 10-12. Convergence tests have been performed on 160 samples taken 

from the curve of Fig.5.3 (with r varying from 0.05λ to 8λ). Fig.5.4 presents a histogram 

depicting how many of these 160 samples match a particular accuracy value. It can be seen 

that for M=15, most of the samples have an average error of about 0.02%. Furthermore, 

increasing M to 25 causes the average error drop to about 0.01%. It proves a quick 

convergence rate of the series computation, mainly due to the factorial m! in denominator. 

 

 
Fig.5.4. Accuracy histogram for points shown in Fig.5.3 

for consecutive number of terms M in Eq.5.38. 

 

Now let us move on to the speedup issue. The computing time of the above approach will be 

compared with the computing time of direct integration procedure, providing that the 

accuracy of both approaches is similar. This time, the investigation of all EM field 

components is presented. As a reference, direct integration results obtained with very high 

accuracy of 10-12 are used. Each of the compared algorithms had been running until the 

particular accuracy (1%, 0.1%) was reached, with respect to the reference. The computing 

time was compared for each of the considered 160 samples. Table 5.1 presents the average 

speedup factors, understood as the ratio of the computing time of direct integration procedure 

and the computing time of the introduced method. The results are shown separately for each 

of the EM field components. Additionally, since each of the components was calculated for 

160 points, the average value and its standard deviation σ have been depicted. At least two 
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interesting observations can be made. First of all, if the accuracy needs to be enhanced, the 

computational effort rises slower in the presented method than for the direct integration one. It 

can be seen in the fourth column of the Table 5.1, where speedups corresponding to 0.1% 

accuracy are higher by about 10 to 20% as compared to the values depicted in the third 

column, corresponding to 1.0% accuracy. Second observation is that in most cases the 

speedups are significantly higher for electric field components. The source of the difference 

lies in a procedure of electric and magnetic components computation based on direct 

numerical integration. According to Eqs.5.6-11, each electric field component is computed 

from previously obtained two magnetic field components, imposing at least twice longer 

computational time of electric field components.  

 

Table 5.1. Speedup factor for all of EM field components 

             obtained from the contribution of Iz(φ’) and Iρ(φ’). 

Current 
comp. 

EM 
comp. 

Avg. speedup 
factor 

Std. deviation of 
the speedup 

factor 
Accuracy 

1,0[%] 0,1[%] 1,0[%] 0,1[%] 

Iz(φ') 

Hφ [A/m] 45 52 8 8 
Hθ [A/m] 31 38 5 7 
Hr [A/m] 31 39 5 7 
Eφ [V/m] 37 45 6 8 
Eθ [V/m] 80 92 19 17 
Er [V/m] 102 121 15 14 

Iρ(φ') 

Hφ [A/m] 26 29 3 4 
Hθ [A/m] 30 36 5 7 
Eφ [V/m] 60 84 10 20 
Eθ [V/m] 52 60 7 10 
Er [V/m] 86 114 17 15 
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Fig.5.5. Comparison between Eq.5.38 and corresponding NTF solution. 

 

The last investigation focuses on the asymptotic convergence of the NTN solution to the NTF 

one [80]. Fig.5.5 shows both curves in a logarithmic scale. It is clearly observable that the 

NTN transformation tends to the NTF one, and for the distance larger than about 6-7 

wavelengths discrepancy is barely visible, which indicates that it is the far field zone limit. 

 

5.7 Summary 
 

Analytically preprocessed formulae for the effective near-to-near transformation of 

axisymmetrical problems have been presented. The obtained results show that a speedup by a 

factor of about 30 to 100 can be obtained, with respect to direct integration in 3-D space in 

practical cases of Huygens surfaces of the size of a few wavelengths. These results appear to 

be very attractive when practical applications are concerned. Thus, the third auxiliary thesis 

posed in Chapter 1 has been successfully proven. 
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Chapter 6 
 

 

Conclusions and perspectives 
 

This dissertation has been focused on extension of the finite-difference time-domain method 

and its computational capabilities, by supplementing the method with analytical formulations 

appropriate for specific electromagnetic problems. Three types of the problems have been 

considered in this thesis: 

1. 1D, 2D, and 3D periodic structures; 

2. far-field optical microscope imaging; 

3. near-to-near electromagnetic field transformation in axisymmetrical structures. 

 

The first issue is an extension of methods and algorithms already known from the literature. 

Considerations of the author of this thesis have been focused on CL-FDTD algorithm. 

Implementation of the algorithm has been extended from 1D to 2D and 3D periodicity, and 

successful validation has been performed. The method has been further applied to the analysis 

of eigenvalues problems in the infinitely periodic structures. It has been proved to be a useful 

technique for investigation of dispersive properties of photonic crystals. Afterwards, an 

extension of the CL-FDTD algorithm to the analysis of plane wave diffraction from infinitely 

periodic structure has been shown. For that purpose, three computational models have been 

proposed and thoroughly validated against other numerical methods, such as Finite Element 

Method, Plane Wave Expansion, Rigorous Coupled Wave Analysis, and analytical 

formulations. It has also been shown that approximate approach with an infinite plane wave 

over periodic structure is convergent to the real case with a finite spot of a Gaussian shape. 

 

With growing interest in photonic crystals from optics, through millimeter wave technology, 

to microwaves, the scope of potential applications of the computational methods like          

CL-FDTD will be extending. However, it seems that more challenging will be another issue 

addressed in the context of periodic structures, i.e. scatterometry. First of all, single frequency 

operation in CL-FDTD models for a plane wave illumination of periodic structures is their 

major limitation. Additionally, it would be an interesting option to develop a source with an 
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arbitrary shape of a beam impinging on infinite periodic structure. As it has been pointed out 

in Chapter 3, some preliminary studies have already been published. 

 

The second type of problems addressed in this dissertation deals with electromagnetic 

modeling of the far-field optical microscopes that utilize lenses as image-processing devices. 

A theoretical knowledge about an image formation in lens microscopes is very well 

established and thoroughly examined. However, imaging tools are still under development, 

driven by the science and industry’s demand for still increasing resolution. It forces the 

modeling methods to improve their computational capabilities, as well as the achievable 

accuracy. This is a proper place for full-wave electromagnetic design, especially at the target 

level where subwavelength diffraction plays an important role. It has been proposed in this 

dissertation to couple the full-wave finite-difference time-domain technique with the optical 

method based on Fresnel approximation of the diffraction phenomenon. Such approach 

combines advantages of both methods, increasing the achieavable accuracy without a 

tremendous impact on the computation time. It has been proven to be useful in the modeling 

of wide field, as well as confocal optical microscopes. 

 

There is a lot of perspectives for the finite-difference time-domain method, as well as for the 

other full-wave approaches to find new fields of application in the optical imaging. With 

growing capabilities of computing machines, it will be possible to extend the complexity of 

FDTD models and their computational volume. Another important issue that has already 

found some attention of researchers is the modeling of sources which properly represent time-

dependent electromagnetic field distribution focused by a lens without loss of causality. 

Successful research in this field will help to improve appropriate represenation of 

electromagnetic field in the finite-difference time-domain schemes. 

 

The last but definitely not least subject addressed in this thesis is strictly related to the 

modeling of axisymmetrical antennae. An efficient method for electromagnetic field 

transformations in a near zone of a radiating axisymmetrical object has been derived and 

validated with theoretical calculations. The method can be useful for the modeling of the 

axisymmetrical antenna systems with no common symmetry axis, like in the case of 

Cassegrain antenna with a feeding antenna shifted off the axis. 
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The method presented in this thesis waits for its implementation in the finite-difference time-

domain scheme or other computational methods applied to axisymmetrical problems. 

 

To summarize the whole dissertation, thesis posed in Chapter 1, claiming that the partially 

analytical FDTD method can improve computational efficiency of the overall method has 

been proven. The auxiliary statements regarding periodic structures, microscope imaging, and 

near-to-near field transformation for axisymmetrical problems have also been thoroughly 

investigated and confirmed.  
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Appendix 1 
 

 

Periodic Boundary Conditions 
 

A schematic flow of the FDTD algorithm for periodic boundary conditions is given below. 

Notation is based on C language. 

 

for (FDTD_iteration==1; FDTD_iteration>0; FDTD_iteration++){ 

   //E calculation with FDTD algorithm 

   ... 

      switch (periodicity){ 

         case x: 

            Ey_re(N-1,:,:) = Ey_re(1,:,:)*cos(ψx) - Ey_im(1,:,:)*sin(ψx); 

            Ey_im(N-1,:,:) = Ey_im(1,:,:)*cos(ψx) + Ey_re(1,:,:)*sin(ψx); 

            Ez_re(N-1,:,:) = Ez_re(1,:,:)*cos(ψx) - Ez_im(1,:,:)*sin(ψx); 

            Ez_im(N-1,:,:) = Ez_im(1,:,:)*cos(ψx) + Ez_re(1,:,:)*sin(ψx); 

            break; 

         case y: 

            Ex_re(:,M-1,:) = Ex_re(:,1,:)*cos(ψy) - Ex_im(:,1,:)*sin(ψy); 

            Ex_im(:,M-1,:) = Ex_im(:,1,:)*cos(ψy) + Ex_re(:,1,:)*sin(ψy); 

            Ez_re(:,M-1,:) = Ez_re(:,1,:)*cos(ψy) - Ez_im(:,1,:)*sin(ψy); 

            Ez_im(:,M-1,:) = Ez_im(:,1,:)*cos(ψy) + Ez_re(:,1,:)*sin(ψy); 

            break; 

         case z: 

            Ex_re(:,:,P-1) = Ex_re(:,:,1)*cos(ψz) - Ex_im(:,:,1)*sin(ψz); 

Ex_im(:,:,P-1) = Ex_im(;,:,1)*cos(ψz) + Ex_re(:,:,1)*sin(ψz); 

            Ey_re(:,:,P-1) = Ey_re(:,:,1)*cos(ψz) - Ey_im(:,:,1)*sin(ψz); 

Ey_im(:,:,P-1) = Ey_im(;,:,1)*cos(ψz) + Ey_re(:,:,1)*sin(ψz); 

            break; 

         case xy: 

            Ey_re(N-1,:,:) = Ey_re(1,:,:)*cos(ψx) - Ey_im(1,:,:)*sin(ψx); 
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            Ey_im(N-1,:,:) = Ey_im(1,:,:)*cos(ψx) + Ey_re(1,:,:)*sin(ψx); 

            Ez_re(N-1,:,:) = Ez_re(1,:,:)*cos(ψx) - Ez_im(1,:,:)*sin(ψx); 

            Ez_im(N-1,:,:) = Ez_im(1,:,:)*cos(ψx) + Ez_re(1,:,:)*sin(ψx); 

            Ex_re(:,M-1,:) = Ex_re(:,1,:)*cos(ψy) - Ex_im(:,1,:)*sin(ψy); 

            Ex_im(:,M-1,:) = Ex_im(:,1,:)*cos(ψy) + Ex_re(:,1,:)*sin(ψy); 

            Ez_re(:,M-1,:) = Ez_re(:,1,:)*cos(ψy) - Ez_im(:,1,:)*sin(ψy); 

            Ez_im(:,M-1,:) = Ez_im(:,1,:)*cos(ψy) + Ez_re(:,1,:)*sin(ψy); 

            break; 

         case xz: 

            Ey_re(N-1,:,:) = Ey_re(1,:,:)*cos(ψx) - Ey_im(1,:,:)*sin(ψx); 

            Ey_im(N-1,:,:) = Ey_im(1,:,:)*cos(ψx) + Ey_re(1,:,:)*sin(ψx); 

            Ez_re(N-1,:,:) = Ez_re(1,:,:)*cos(ψx) - Ez_im(1,:,:)*sin(ψx); 

            Ez_im(N-1,:,:) = Ez_im(1,:,:)*cos(ψx) + Ez_re(1,:,:)*sin(ψx); 

            Ex_re(:,:,P-1) = Ex_re(:,:,1)*cos(ψz) - Ex_im(:,:,1)*sin(ψz); 

Ex_im(:,:,P-1) = Ex_im(;,:,1)*cos(ψz) + Ex_re(:,:,1)*sin(ψz); 

            Ey_re(:,:,P-1) = Ey_re(:,:,1)*cos(ψz) - Ey_im(:,:,1)*sin(ψz); 

Ey_im(:,:,P-1) = Ey_im(;,:,1)*cos(ψz) + Ey_re(:,:,1)*sin(ψz); 

            break; 

         case yz: 

            Ex_re(:,M-1,:) = Ex_re(:,1,:)*cos(ψy) - Ex_im(:,1,:)*sin(ψy); 

            Ex_im(:,M-1,:) = Ex_im(:,1,:)*cos(ψy) + Ex_re(:,1,:)*sin(ψy); 

            Ez_re(:,M-1,:) = Ez_re(:,1,:)*cos(ψy) - Ez_im(:,1,:)*sin(ψy); 

            Ez_im(:,M-1,:) = Ez_im(:,1,:)*cos(ψy) + Ez_re(:,1,:)*sin(ψy); 

            Ex_re(:,:,P-1) = Ex_re(:,:,1)*cos(ψz) - Ex_im(:,:,1)*sin(ψz); 

Ex_im(:,:,P-1) = Ex_im(;,:,1)*cos(ψz) + Ex_re(:,:,1)*sin(ψz); 

            Ey_re(:,:,P-1) = Ey_re(:,:,1)*cos(ψz) - Ey_im(:,:,1)*sin(ψz); 

Ey_im(:,:,P-1) = Ey_im(;,:,1)*cos(ψz) + Ey_re(:,:,1)*sin(ψz); 

            break; 

         case xyz: 

            Ey_re(N-1,:,:) = Ey_re(1,:,:)*cos(ψx) - Ey_im(1,:,:)*sin(ψx); 

            Ey_im(N-1,:,:) = Ey_im(1,:,:)*cos(ψx) + Ey_re(1,:,:)*sin(ψx); 

            Ez_re(N-1,:,:) = Ez_re(1,:,:)*cos(ψx) - Ez_im(1,:,:)*sin(ψx); 
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            Ez_im(N-1,:,:) = Ez_im(1,:,:)*cos(ψx) + Ez_re(1,:,:)*sin(ψx); 

            Ex_re(:,M-1,:) = Ex_re(:,1,:)*cos(ψy) - Ex_im(:,1,:)*sin(ψy); 

            Ex_im(:,M-1,:) = Ex_im(:,1,:)*cos(ψy) + Ex_re(:,1,:)*sin(ψy); 

            Ez_re(:,M-1,:) = Ez_re(:,1,:)*cos(ψy) - Ez_im(:,1,:)*sin(ψy); 

            Ez_im(:,M-1,:) = Ez_im(:,1,:)*cos(ψy) + Ez_re(:,1,:)*sin(ψy); 

            Ex_re(:,:,P-1) = Ex_re(:,:,1)*cos(ψz) - Ex_im(:,:,1)*sin(ψz); 

Ex_im(:,:,P-1) = Ex_im(;,:,1)*cos(ψz) + Ex_re(:,:,1)*sin(ψz); 

            Ey_re(:,:,P-1) = Ey_re(:,:,1)*cos(ψz) - Ey_im(:,:,1)*sin(ψz); 

Ey_im(:,:,P-1) = Ey_im(;,:,1)*cos(ψz) + Ey_re(:,:,1)*sin(ψz); 

            break; 

      } 

      dt += dt/2;  

   //H calculation with FDTD algorithm 

   ... 

      switch (periodicity){ 

         case x: 

            Hy_re(1,:,:) = Hy_re(N-1,:,:)*cos(ψx) + Hy_im(N-1,:,:)*sin(ψx); 

            Hy_im(1,:,:) = Hy_im(N-1,:,:)*cos(ψx) - Hy_re(N-1,:,:)*sin(ψx); 

            Hz_re(1,:,:) = Hz_re(N-1,:,:)*cos(ψx) + Hz_im(N-1,:,:)*sin(ψx); 

            Hz_im(1,:,:) = Hz_im(N-1,:,:)*cos(ψx) - Hz_re(N-1,:,:)*sin(ψx); 

            break; 

         case y: 

            Hx_re(:,1,:) = Hx_re(:,M-1,:)*cos(ψy) + Hx_im(:,M-1,:)*sin(ψy); 

            Hx_im(:,1,:) = Hx_im(:,M-1,:)*cos(ψy) - Hx_re(:,M-1,:)*sin(ψy); 

            Hz_re(:,1,:) = Hz_re(:,M-1,:)*cos(ψy) + Hz_im(:,M-1,:)*sin(ψy); 

            Hz_im(:,1,:) = Hz_im(:,M-1,:)*cos(ψy) - Hz_re(:,M-1,:)*sin(ψy); 

            break; 

         case z: 

            Hx_re(:,:,1) = Hx_re(:,:,P-1)*cos(ψz) + Hx_im(:,:,P-1)*sin(ψz); 

            Hx_im(:,:,1) = Hx_im(:,:,P-1)*cos(ψz) - Hx_re(:,:,P-1)*sin(ψz); 

            Hy_re(:,:,1) = Hy_re(:,:,P-1)*cos(ψz) + Hy_im(:,:,P-1)*sin(ψz); 

            Hy_im(:,:,1) = Hy_im(:,:,P-1)*cos(ψz) - Hy_re(:,:,P-1)*sin(ψz); 
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            break; 

         case xy: 

            Hy_re(1,:,:) = Hy_re(N-1,:,:)*cos(ψx) + Hy_im(N-1,:,:)*sin(ψx); 

            Hy_im(1,:,:) = Hy_im(N-1,:,:)*cos(ψx) - Hy_re(N-1,:,:)*sin(ψx); 

            Hz_re(1,:,:) = Hz_re(N-1,:,:)*cos(ψx) + Hz_im(N-1,:,:)*sin(ψx); 

            Hz_im(1,:,:) = Hz_im(N-1,:,:)*cos(ψx) - Hz_re(N-1,:,:)*sin(ψx); 

            Hx_re(:,1,:) = Hx_re(:,M-1,:)*cos(ψy) + Hx_im(:,M-1,:)*sin(ψy); 

            Hx_im(:,1,:) = Hx_im(:,M-1,:)*cos(ψy) - Hx_re(:,M-1,:)*sin(ψy); 

            Hz_re(:,1,:) = Hz_re(:,M-1,:)*cos(ψy) + Hz_im(:,M-1,:)*sin(ψy); 

            Hz_im(:,1,:) = Hz_im(:,M-1,:)*cos(ψy) - Hz_re(:,M-1,:)*sin(ψy); 

            break; 

         case xz: 

            Hy_re(1,:,:) = Hy_re(N-1,:,:)*cos(ψx) + Hy_im(N-1,:,:)*sin(ψx); 

            Hy_im(1,:,:) = Hy_im(N-1,:,:)*cos(ψx) - Hy_re(N-1,:,:)*sin(ψx); 

            Hz_re(1,:,:) = Hz_re(N-1,:,:)*cos(ψx) + Hz_im(N-1,:,:)*sin(ψx); 

            Hz_im(1,:,:) = Hz_im(N-1,:,:)*cos(ψx) - Hz_re(N-1,:,:)*sin(ψx); 

            Hx_re(:,:,1) = Hx_re(:,:,P-1)*cos(ψz) + Hx_im(:,:,P-1)*sin(ψz); 

            Hx_im(:,:,1) = Hx_im(:,:,P-1)*cos(ψz) - Hx_re(:,:,P-1)*sin(ψz); 

            Hy_re(:,:,1) = Hy_re(:,:,P-1)*cos(ψz) + Hy_im(:,:,P-1)*sin(ψz); 

            Hy_im(:,:,1) = Hy_im(:,:,P-1)*cos(ψz) - Hy_re(:,:,P-1)*sin(ψz); 

            break; 

         case yz: 

            Hx_re(:,1,:) = Hx_re(:,M-1,:)*cos(ψy) + Hx_im(:,M-1,:)*sin(ψy); 

            Hx_im(:,1,:) = Hx_im(:,M-1,:)*cos(ψy) - Hx_re(:,M-1,:)*sin(ψy); 

            Hz_re(:,1,:) = Hz_re(:,M-1,:)*cos(ψy) + Hz_im(:,M-1,:)*sin(ψy); 

            Hz_im(:,1,:) = Hz_im(:,M-1,:)*cos(ψy) - Hz_re(:,M-1,:)*sin(ψy); 

            Hx_re(:,:,1) = Hx_re(:,:,P-1)*cos(ψz) + Hx_im(:,:,P-1)*sin(ψz); 

            Hx_im(:,:,1) = Hx_im(:,:,P-1)*cos(ψz) - Hx_re(:,:,P-1)*sin(ψz); 

            Hy_re(:,:,1) = Hy_re(:,:,P-1)*cos(ψz) + Hy_im(:,:,P-1)*sin(ψz); 

            Hy_im(:,:,1) = Hy_im(:,:,P-1)*cos(ψz) - Hy_re(:,:,P-1)*sin(ψz); 

            break; 

         case xyz: 



 142 

            Hy_re(1,:,:) = Hy_re(N-1,:,:)*cos(ψx) + Hy_im(N-1,:,:)*sin(ψx); 

            Hy_im(1,:,:) = Hy_im(N-1,:,:)*cos(ψx) - Hy_re(N-1,:,:)*sin(ψx); 

            Hz_re(1,:,:) = Hz_re(N-1,:,:)*cos(ψx) + Hz_im(N-1,:,:)*sin(ψx); 

            Hz_im(1,:,:) = Hz_im(N-1,:,:)*cos(ψx) - Hz_re(N-1,:,:)*sin(ψx); 

            Hx_re(:,1,:) = Hx_re(:,M-1,:)*cos(ψy) + Hx_im(:,M-1,:)*sin(ψy); 

            Hx_im(:,1,:) = Hx_im(:,M-1,:)*cos(ψy) - Hx_re(:,M-1,:)*sin(ψy); 

            Hz_re(:,1,:) = Hz_re(:,M-1,:)*cos(ψy) + Hz_im(:,M-1,:)*sin(ψy); 

            Hz_im(:,1,:) = Hz_im(:,M-1,:)*cos(ψy) - Hz_re(:,M-1,:)*sin(ψy); 

            Hx_re(:,:,1) = Hx_re(:,:,P-1)*cos(ψz) + Hx_im(:,:,P-1)*sin(ψz); 

            Hx_im(:,:,1) = Hx_im(:,:,P-1)*cos(ψz) - Hx_re(:,:,P-1)*sin(ψz); 

            Hy_re(:,:,1) = Hy_re(:,:,P-1)*cos(ψz) + Hy_im(:,:,P-1)*sin(ψz); 

            Hy_im(:,:,1) = Hy_im(:,:,P-1)*cos(ψz) - Hy_re(:,:,P-1)*sin(ψz); 

            break; 

      } 

} 

 

Legend: 

 

1) Indices of all components are written using E(m,n,p) notation, where (m,n,p) indicates 

the location of the component on the FDTD grid expanded in a Cartesian (x,y,z) space. 

2) The maximum number of FDTD grid points is (N,M,P). 

3) Suffixes _re and _im denote real and imaginary parts of EM component, respectively,. 

4) The symbol ψ denotes the Floquet phase shift per period - a parameter of the CL-

FDTD algorithm. 

5) A symbol dt is the FDTD algorithm’s time step. 
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Appendix 2 
 

 

Brillouin zone 
 

According to the Bloch’s (or Floquet’s) theorem, propagation of the electromagnetic wave in 

a periodic medium can be characterized in the following way: 

 

( ) ( ) rkj
kk erur 0


=ψ  (1.1) 

 

where uk(r) function has the same periodicity L as the periodic medium: 

 

( ) ( )ruLru kk


=+  (1.2) 

 

and k0 is the wavenumber. 

 

It implies that the solution of ψk(r) function is identical for all the integer multiples of the 

wavenumber: 

 

L
nkkn

π2
0 +=  (1.3) 

 

Thus, mode frequencies are also periodic in the wave vector space, so the analysis                 

of the k(ω) dispersion can be limited to the region: -π/L < kn < π/L, usually called                

the first Brillouin zone that characterizes primitive cell of the considered reciprocal        

lattice. Unique characterization of the dispersion characteristic k(ω) can be                        

done considering only the so-called irreducible Brillouin zone, understood as                       

the first Brillouin zone reduced by using all the possible symmetries. Brillouin zone               

is parameterized using critical points that refer to the characteristic points of the Brillouin 

zone. 
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Let us recall the most common lattice geometries addressed in this thesis: 

1. square lattice 

 
(a) 

 
(b) 

 
(c) 

Fig.A2.1. Square lattice (a) and the corresponding reciprocal lattice (b) with the irreducible 

Brillouin zone (c). 

Critical points: 

Γ: 0== yx kk . 

X: akx
π2= ; 0=yk . 

M: akk yx
π2== . 
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2. hexagonal lattice 

      
(a) 

 
(b) 

 
Fig.A2.2. Hexagonal lattice (a) and the corresponding reciprocal lattice (b) with the irreducible 

Brillouin zone (c). 

Critical points: 

Γ: 0== yx kk . 

M: 0=xk ; 
a

k y 3
2π= . 

K: akx 3
2π= ; 

a
k y 3

2π= . 
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3. Body centered cubic (bcc) lattice 

 
(a) 

 
(b) 

Fig.A2.3. Body centered cubic lattice (a) and the corresponding reciprocal face centered (fcc) 

lattice (b). 

 

Critical points: 

Γ: 0=== zyx kkk . 

H: 0=xk ; ak y
π2= ; 0=zk . 

N: akx
π= ; ak y

π= ; 0=zk . 

P: akx
π= ; ak y

π= ; akz
π= . 
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Appendix 3 
 

 

Spherical coordinate system 
 

 
Fig.A3.1. Spherical coordinate system view. 

 

Relation between rectangular and spherical coordinates: 

 

( ) ( )φθ cossinrx =  (3.1) 

( ) ( )φθ sinsinry =  (3.2) 

( )θcosrz =  (3.3) 

 

Transition from rectangular to spherical components: 

 

( ) ( ) ( ) ( ) ( )θφθφθ cossinsincossin zyxr AAAA ++=  (3.4) 

( ) ( ) ( ) ( ) ( )θφθφθθ sinsincoscoscos zyx AAAA ++=  (3.5) 

( ) ( )ϕφφ cossin yx AAA +−=  (3.6) 
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Transition from spherical to rectangular components: 

 

( ) ( ) ( ) ( ) ( )φφθφθ φθ sincoscoscossin AAAA rx −+=  (3.7) 

( ) ( ) ( ) ( ) ( )φφθφθ φθ cossincossinsin AAAA ry ++=  (3.8) 

( ) ( )θθ θ sincos AAA rz −=  (3.9) 
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Appendix 4 
 

 

Cylindrical coordinate system 
 

 
Fig.A4.1. Cylindrical coordinate system view. 

 

Relation between rectangular and cylindrical coordinates: 

 

( )φρ cos=x  (4.1) 

( )φρ sin=y  (4.2) 

zz =  (4.3) 

 

Transition from rectangular to cylindrical components: 

 

( ) ( )φφρ sincos yx AAA +=  (4.4) 

( ) ( )φφφ cossin yx AAA +−=  (4.5) 

zz AA =  (4.6) 
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Transition from cylindrical to rectangular components: 

 

( ) ( )φφ φρ sincos AAAx −=  (4.7) 

( ) ( )φφ φρ cossin AAAy +=  (4.8) 

zz AA =  (4.9) 
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Appendix 5 
 

 

Lens imaging algorithm 
 

Below,  the procedures for lens imaging based on the Fresnel approximation are given. The 

code of those scripts was written by the author of this thesis in Matlab environment. 

 

 

function Eo = lens_imaging(fname,frequency,start_angle,stop_angle,ref_angle,ds,di,f) 

% Eo = lens_imaging(fname,frequency,start_angle,stop_angle,ref_angle,ds,di,f) 

% calculates an image processed by a single cylindrical lens 

% upon angular scatterring pattern provided by the user in (fname) file. 

%  

% Input data should consist of three columns with an angle (degrees), 

% and corresponding electric field intensity magnitude and phase (degrees). 

% 

% frequency - operating frequency, GHz 

% start_angle - 

% stop_angle - these two values define numerical aperture of a considered 

%              beam taken from the file, degrees 

% ref_angle - reference angle, degrees 

% ds - distance from object plane to the lens, mm 

% di - distance from the lens to image plane, mm 

% f - focal length of the lens, mm 

 

format long g 

deg2rad = pi/180; 

rad2deg = 180/pi; 

 

%read data from file 

A = load(fname); 

%wavenumber 
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k = 2*pi*frequency/299.792458; %[1/mm] 

 

ys=0; %[mm] - radiation from the focal point 

dang=0.00001;% angular resolution 

start_angle_ind = find((A(:,1)>=(start_angle-dang))&(A(:,1)<=(start_angle+dang))); 

stop_angle_ind = find((A(:,1)>=(stop_angle-dang))&(da3_data(:,1)<=(stop_angle+dang))); 

 

%electric field at source plane 

Es=A(start_angle_ind:stop_angle_ind,2) .* 

exp(j*deg2rad.*A(start_angle_ind:stop_angle_ind,4)); 

%find maximum angle... 

alfa_max=A(stop_angle_ind)-ref_angle;%[deg] 

%calculate numerical aperture 

NA = sin(deg2rad*alfa_max); 

%calculate spatial range at the lens 

ys_max = tan(deg2rad*alfa_max)*ds;%[mm] 

 

% space vector discretization for a given resolution... 

pow=10; 

N=2^pow; 

dys_min = pi*ds/(k*ys_max); 

dys = (2*ys_max/(N-1));%[mm] 

while dys>=dys_min 

    pow=pow+1; 

    N=2^pow; 

    dys = (2*ys_max/(N-1));%[mm] 

end 

ys=-ys_max:dys:ys_max; 

fy = -(N-1)/(2*N*dys):1/(N*dys):(N-1)/(2*N*dys); 

 

% interpolation of electric field at newly discretized spatial vector 

alfa_p=rad2deg.*atan(ys./ds); 

Es_abs=interp1(da3_data(start_angle_ind:stop_angle_ind,1)-

ref_angle,abs(Es),alfa_p,'linear'); 
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Es_angle=interp1(da3_data(start_angle_ind:stop_angle_ind,1)-

ref_angle,angle(Es),alfa_p,'linear'); 

Us_FT = Es_abs.*exp(j.*Es_angle); 

 

%impulse response of space between source and lens planes 

hfr = h_fr_air(k,ds,ys); 

HFR = (1/N)*fft(hfr); 

HFR = fftshift(HFR); 

% lens contribution 

tfl = t_lens(k,f,ys); 

%impulse response of space between lens and image planes 

hfr1 = h_fr_air(k,di,ys); 

HFR1 = (1/N)*fft(hfr1); 

HFR1 = fftshift(HFR1); 

%transformation from source plane to lens plane 

Elens = N*ifft(Us_FT.*HFR); 

%transformation through the lens 

Elens = Elens.*tfl; 

Elens_FT = (1/N)*fft(Elens); 

%transformation from lens plane to image plane 

Eo_FT = Elens_FT.*HFR1; 

%transformation from angular space to Cartesian space 

Eo = N*ifft(Eo_FT); 

Eo = fftshift(Eo); 

 

************************** 

 

function h = h_fr_air(k,d,y) 

% Fresnel approximation of the open air impulse response 

% 

% k – wavenumber, 1/mm 

% d – distance, mm 

% y – shift distance from the lens axis, mm 
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format long g 

h = k.*exp(j*k*d).*exp( 0.5.*j.*k.*y.^2./d )./(2*pi*j*d); 

 

************************** 

 

function U = t_lens(k,f,y) 

% thin lens approximation 

% 

% k – wavenumber, 1/mm 

% f – focal length of the lens, mm 

% y – shift distance from the lens axis, mm 

 

format long g 

U = exp( -0.5.*j.*k.*y.^2./f ); 
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