Skrypt do ćwiczeń z przedmiotu Biologia Systemów

Małgorzata Adamczyk

Wprowadzenie

Modelowanie i symulacje komputerowe są integralnym elementem badań związanych z analizą złożonych systemów biologicznych. Użyteczność stosowania podejścia biologii systemowej w bioinżynierii, w oparciu o modele ODE oraz na poziomie komórkowym, w skali genomowej, jest udowodniona licznymi publikacjami. Rozwój metod związanych z analizą *in silico* przyczynił się do licznych aplikacji w sektorze biotechnologii (optymalizacji procesów fermentacji z użyciem mikroorganizmów, otrzymywania bio-produktów), farmakologii (toksykologii systemowej, analizie gospodarz-patogen, modelowaniu epidemii chorób zakaźnych z użyciem danych epidemiologicznych) oraz w spersonalizowanej medycynie systemowej (w celu identyfikacji osobniczych przyczyn skutków ubocznych stosowania leków).

Skrypt został przygotowany, jako materiał pomocniczy i uzupełniający do cyklu wykładów w ramach przedmiotu Biologia Systemów, który mam przyjemność prowadzić dla studentów II stopnia na kierunku Biotechnologia na Wydziale Chemicznym Politechniki Warszawskiej.

Materiał umożliwia studentom zdobycie wiedzy o programach komputerowych, szeroko stosowanymi w analizie systemowej i ich zastosowaniu w modelowaniu systemów biologicznych od procesów komórkowych zachodzących u drożdży *S.cerevisiae*, *Neurospora crassa* i bakterii mlekowych *L.lactis*, do złożonych oddziaływań zachodzących w sieciach metabolicznych i regulacji genów, zachodzących w komórkach eukariotycznych na przykładzie makrofaga i hepatocytu.

Małgorzata Adamczyk

Ćwiczenie 1.

CellDesigner4.4

Ćwiczenie ma na celu zapoznanie się z oprogramowaniem CellDesigner, zdobycie doświadczenia w tworzeniu diagramów SBGN. Gdy diagram będzie gotowy, dodamy do niego równania szybkości reakcji. Dzięki temu ze statycznego modelu uzyskamy model dynamiczny oraz przeprowadzimy symulacje.

Program CellDesigner pozwala na rysowanie zaawansowanych modeli w postaci graficznej. W programie znajduje się edytor służący do rysowania diagramów z bogatą bazą zawierającą paletę symboli graficznych, które odpowiadają różnego rodzaju cząsteczkom biologicznym, takim jak białka, receptory, metabolity, kanały jonowe i wiele innych. Istnieje możliwość modyfikowania symboli w taki sposób, aby oznaczały formy modyfikacji PTS (postranslacyjnych). Program zawiera również makra oznaczające specyficzne procesy komórkowe, takie jak transport, inhibicja i aktywacja.

- 1. Instalacja oprogramowania
- 2. Przykładowy model 1
- 3. Utworzenie nowego modelu
 - Rysowanie różnych rodzajów cząsteczek (spieces)
 - Rysowanie reakcji
 - Makra
 - Format SBGN-PD
 - · Identyfikacja/rozróżnienie cząsteczek o tym samym kształcie
- 4. Wprowadzanie równań szybkości reakcji
 - Opis równania
 - Wprowadzenie równań w programie
- 5. Przeprowadzenie symulacji
 - Symulacja i skan parametrów
- 6. Importowanie modeli z baz danych

1. Przykładowy model 1

Model 1 jest serią reakcji opisujących cykl dobowy Neurospora (Leloupe et al. 1996).

Model opisuje negatywne sprzężenie zwrotne między genem FRQ, a białkiem, kodowanym przez ten gen. Transkrypcja genu FRQ jest wzmożona przez światło dzienne. Białko FREQ jest transportowane do jądra komórkowego gdzie pełni funkcję negatywnego regulatora własnego genu. Proszę zauważyć, że nawet jeśli mamy do czynienia z jedną cząsteczką białka, to występuje ona w różnych kompartymentach komórkowych (jądro komórkowe i cytoplazma) i jest przedstawiona w postaci oddzielnych ikon Fn i Fc.

2. Utwórz nowy plik.

1. Idź do **File- New** i wybierz **New Document**. Ustal szerokość 1200 i wysokość 800 pikseli. Nadaj dokumentowi nazwę Model 1. Potwierdź przez naciśnięcie OK.

Name	Model 1		
	i loueri		
Width	1200	Height	800

Pojawi się puste okno dialogowe z nazwą pliku. Każdy region okna ma określoną funkcję. **Draw Area** (Canvas) służy do rysowania.

e Area			
		Draw A	krea (Canva:
	4 I olana Caras Hiska as Ukhs He.	ADROTT SURVEY	
the Acan	n ne nere recerlige	71	
	List Area		Notes Are
12		211	
Cell	Designer		
<u>Eile</u>	<u>E</u> dit <u>C</u> omponent	<u>V</u> iew <u>D</u> ata	base
15	Unda	CtrH-Z	1
13-	Redo	Gtrl+Y	-+ø
	Out	Otrl+X	
	Copy	Ctrl+C	<i>k</i>
M	Paste	Ctrl+V	
+ -	Delete	Delete	
	Create Group	Ctrl+G	
	Alignment	•	
	Set Grid Size		
	Grid Snap		
	Grid Visible ^V		
			1
-	Input Repeat		
	Input Repeat V Name Input Diale	og	
	Input Repeat V Name Input Diale Select All	og Ctrl+A	

Wybierz opcję przyciągania do siatki Grid Snap, co ułatwi rozmieszczenie ikon.

2. Z menu **Species Toolbar** wybierz ikony oznaczające poszczególne cząsteczki i narysuj w oknie dialogowym. Kliknij w pozycji, w której chcesz, żeby pojawił się symbol nazywany **SpeciesAlias.**

3. Narysuj reakcję. Reakcja może zostać zapisana w postaci strzałki między istniejącymi **SpeciesAlias.** Najpierw kliknij na cząsteczkę "substratu", a następnie "produktu".

Niebieskie kwadraty na obrysie ikon pokazują gdzie zostanie utworzone połączenie. Wybierz ikonę reakcji z **Reaction Toolbar.**

Aby narysować przedział komórkowy wybierz z menu ikonę [compartment].

Przeciągnij kursor i zaznacz obszar, który chcesz wydzielić. Nadaj mu nazwę.

4. Makra

Oprogramowanie zawiera paletę wzorów różnych zjawisk biologicznych np. fosforylacji, dimeryzacji, tworzenia kompleksu.

5. Każda cząsteczka utworzona na ekranie będzie traktowana jako wyjątkowa, to jest, będzie posiadała numer ID. Kopiowanie i wklejanie obiektów prowadzi do powstania identycznych obiektów (z perspektywy modelowania), tj. w formacie SBGN ikona, w ten sposób powstała, będzie posiadała oznaczenie **clone marker**. Jeśli chcesz utworzyć odrębny obiekt poprzez kopiowanie istniejącego naciśnij dwukrotnie na ikonę i w oknie dialogowym "protein" wybierz z listy opcję (np. duplikat istniejącego obiektu), lub nadaj nowy ID (nazwij ikonę).

3. Wprowadzanie równań szybkości reakcji

 Publikacja Leloup i współ. opisuje kinetykę systemu posługując się trzema równaniami, które charakteryzują szybkości zmiany trzech komponentów systemu, to jest: mRNA, cytoplazmatycznego FREQ(Fc) i jądrowego FREQ (Fn).

$$\frac{dM}{dt} = vs + \frac{K^n}{Ki^n + FN^n} - vm\frac{M}{Km + M}$$

Reakcja przedstawiona powyżej opisuje przemiany związane z mRNA (M), które zakładają syntezę (box pojedyncza linia) i degradacji mRNA (box podwójna linia).

- 1. Vs, szybkość transkrypcji
- 2. n, współczynnik Hilla, który opisuje kooperatywne wiązanie represora Fn
- 3. Ki, próg powyżej którego dochodzi do represji
- 4. Vm, szybkość degradacji mRNA
- 5. Km, stała Michaelisa dla reakcji degradacji mRNA

$$\frac{dFc}{dt} = ksM - vd\frac{Fc}{Kd + Fc} - k1Fc + k2FN$$

- 1. Ks, szybkość translacji
- 2. Vd, szybkość degradacji białka
- 3. Kd, stała Michaelisa dla reakcji degradacji
- 4. K1, szybkość akumulacji Fc w jądrze
- 5. K2, szybkość akumulacji w cytoplazmie

$$\frac{dFN}{dt} = k1Fc - k2FN$$

Ostatnie równanie przedstawia zachowanie białka Fn w czasie, które jest zależne od eksportu i importu jądrowego (opisane parametrem k1 i k2).

2. Aby dodać równania na diagramie wprowadź do system wszystkie parametry kinetyczne i uzupełnij o wartości podane w poniższej tabeli.

Nazwa	wartość
Vs	1.6
Ki	1.0
n	4.0
Vm	0.505
Km	0.5
Ks	0.5
Vd	1.4
Kd	0.13
k1	0.5
k2	0.6

Następnie należy rozdzielić równania, tak żeby można było dodać prawo kinetyczne w każdej reakcji dodając identyfikator dla syntezy i reakcji degradacji.

Aby dodać równania, należy wybrać glif (symbol kwadratu łączący ikonę substratu i produktu) i w menu wybrać opcję "**Edit Kinetic law**". W oknie dialogowym wybierz "**non predefined function**".

Wzory mają następujący format:

(należy zwrócić uwagę na spacje i wielości liter) **Gene -> RNA**: Vs * pow(Ki, n) / (pow(Ki, n) +pow(s15,n)) **Degradation of RNA**: Vm*s3 / (Km + s3) **Protein synthesis**: Ks*s3 **Protein degradation**: Vd*s2 / (Kd+s2) **Protein import to nucleus**: k1*s2-k2*s15 (W powyższych wzorach, s3 = RNA, s2 = Fc, s15 = Fn. Przyporządkowane w programie nazwy poszczególnych reaktantów mogą mieć inne niż w skrypcie oznaczenia, ze względu na to, że CellDesigner przyporządkowuje reaktantom ID zgodnie z kolejnością wprowadzania wzorów).

3 KineticL	aw	10	-		-	Section from		×
nath		Vs * pow(K	i, n) / (pow(Ki, n)	+ pow(<mark>s1</mark> , n))	•			
	Mat	ni (+][-][/			
[V	ectedRe	action						
	gene	s15	re9		·			• III
v	edefined	Functions	1.00					
		NonPredefin Mass_Action Irreversible_	edFunction _Kinetics _Simple_Michaelis	-Menten				
								_
Species f	Parameters	Rules						
Species f	Parameters	Rules	speciesType	compar	position	induded	quantit	
Species p dass GENE	Parameters id i	Rules	speciesType	compar	position	induded	quantit Amount	

4. Przeprowadzenie symulacji

Wybierz komendę **Simulation -> Control panel**, ustaw czas symulacji 100 i zatwierdź przez kliknięcie ikony **Execute.** Na ekranie powinien pojawić się wykres jak poniżej.

Zmień skalę na wykresie od 0 do 10, a na liście reaktantów pozostaw tylko mRNA, Fc i Fn. Wykres powinien pokazać oscylacje jak poniżej.

Przeprowadź podobną analizę zmieniając uprzednio wartości dla parametrów w modelu. CellDesigner umożliwia również automatyczny skan parametrów.

Używając tego narzędzia możemy uzyskać odpowiedź na poniższe przykładowe pytania.

- Które parametry mają wpływ na czas oscylacji?
- W jaki sposób można wytłumić oscylację (np. oscylacja maleje w czasie)?
- Czy zmiana niektórych parametrów ma większy wpływ na system niż zmiana innych?

Dodatkowo spróbuj konwertować model cyklu dobowego *Drosophila* (Fig1A w publikacji Leloupe *et al.*, 1999) do formatu SBGN.

Ścieżka regulacyjna cyklu dobowego u *Drosophila* (Model2) jest bardziej skomplikowana niż u *Neurospora*. Zamiast monomerycznego białka Freq, mamy tu do czynienia z regulacją transkrypcji poprzez pętlę zwrotną regulowaną przez ufosforylowany dimer dwóch białek *Per* i

Tim. W konsekwencji ścieżka zawiera dodatkową reakcję fosforylacji każdego z białek oraz formowania przez białka kompleksu **Per-Tim**. Na diagramie powyżej symbole oznaczają:

P(0) = nieufosforylowane białko *Per*

P(1) = pojedyncza fosforylacja białka Per

P(2) = podwójnie fosforyzowane białko Per

Tim jest oznaczone w podobny sposób.

Dodatkowa informacja:

Aby narysować model 2 i nadać białkom Per i Tim status niezależnych obiektów należy posłużyć się komendą **state variables** jak poniżej.

modification	empty	-			
state	user defined text 🗸				
text input	Р				
Арр	Reset Cancel				

Zwróć uwagę jak **clone makers** poradzi sobie z białkami o tych samych nazwach, ale występujących w różnych stanach.

5. Importowanie modeli z baz danych

CellDesigner zawiera łącza do baz danych takich jak BioModels, Panther Pathways i SabioRK. Panther Pathways zawiera ręcznie rysowane diagramy wielu ścieżek, które mogą posłużyć jako punkt początkowy do konstrukcji własnego modelu.

Poświęć chwilę czasu na przyjrzenie się dostępnym w bazie modelom.

Baza Biomodels nie zawiera informacji o schemacie/układzie modeli. Jeśli nie wiesz, który model wybrać importuj przykładowe modele cykli dobowych np. Biomodels55, Biomodels22, czy Biomodels89.

Ćwiczenie 2 Copasi

4.16.

Zajęcia mają na celu zapoznanie się z oprogramowaniem Copasi używanym m.in. do symulacji w modelach kinetycznych.

- 1. Poznamy proces utworzenia modelu składajacego się z trzech reakcji.
- 2. Zapoznamy się z rysowaniem wykresów.
- 3. Przeprowadzimy analizy metabolizmu w modelu ścieżki glikolizy *S.cerevisiae* wg. Smallbone2013.

Reakcja R1- odwracalna reakcja Michaelis-Menten z niekompetycyjnym inhibitorem

Reakcja Menten **R2-** nieodwracalna reakcja z niekompetycyjnym inhibitorem

drugiego

rzędu Michaelis-

Reakcja R3- nieodwracalna Michaelis-Menten

- 1. Wejdź do zakładki **Model**. Nadaj nazwę modelowi. Zmień **Volume unit** na litry.
- 2. W zakładce Compartment nadaj nazwę przedziałowi komórkowemu "cell".
- 3. Rozwiń okno dialogowe cell i zapisz Initial Volume (ml) "1e-12".
- 4. Wejdź do zakładki **Reactions.** Nadaj nazwę reakcji R_1. Przejdź do opisu reakcji R_1.
 - a) W linii **Reaction** wpisz A = X
 - b) Rate Law powinno pojawić się automatycznie Mass action (reversible).
- 5. Kliknij **New.** Pojawi się nowa zakładka umożliwiająca opisanie następnej reakcji.
 - a) W nazwie reakcji wpisz R_2
 - b) Rate Law zostanie automatycznie uzupełnione jako **Mass action** (irreversible)

- 6. Kliknij **New.** Pojawi się nowa zakładka umożliwiająca opisanie następnej reakcji.
- 7. Uzupełnij jak powyżej.

8. Przejdź do zakładki **Reactions** i upewnij się, że na liście znajdują się 3 reakcje.

 Ponieważ reakcja R_1 przebiega z udziałem inhibitora, zmień Rate Law wybierając Noncompetitive inhibition (rev) z listy dialogowej. W oknie Symbol Definition pojawią sie komponenty reakcji. Wybierz z listy odpowiedni symbol opisujacy modyfikator (Modifier). Uzupełnij Vf 10mmol/l, Ki= 0.01 mmol/l. Zatwierdź Commit

🗌 🕼 🖬 👼 🦺 🖋 🔤 🖬	Concentrations	*					
COPASI Model	Reaction R_	1					
 Biochemical 	Details No	tes Annotatio	n RDF Brov	wser			
 Compartments (2) cell 	Reaction	A = X; B					
compartment_1		✓ Reversible			1ulti Compartment		
 A Reactions (3) 	Rate Law	Noncompetitive	inhibition (rev)			•	New Rate Law
R_2 R_3	Flux (mmol/s)	0					Edit Rate Law
Global Quantities (0)	Symbol Defini	tion					
Events (0) Parameter Overview	Role	Name	Mapping	Value	Unit		
Parameter Sets (0)	• Substra	te 🛄 substrate	A	,	mmol/l		
Mathematical	Product	t 🛄 product	х	,	mmol/l		
Diagrams ▷ Tasks	- Modifie	er 🔐 Inhibitor	unknown 🔻	,	mmol/l		
Output Specifications	Parameter	Kms	local 🔻	0.1 r	mmol/l		
Functions (38)	Parameter	Kmp	local 🔻	0.1 r	mmol/l		
	Parameter	Vf	local 🔻	10 r	mmol/(l*s)		
	Parameter	Vr	local 🔻	0.1 r	mmol/(l*s)		
	Parameter	Ki	local 🔻	0.01 1	mmol/l		

9.Przejdź do korekty reakcji R_2. Na liście dialogowej **Rate Law** nie istnieje reakcja, która odpowiada procesowi reakcji R_2. Należy ją utworzyć w zakładce **New Rate Law.**

10. W linii Function wpisujemy nazwę funkcji Noncompetitive inhibition 2nd order (irr). W oknie Formula zapisujemy poniższą reakcję. Aby zapisać potęgę 2 używamy zapisu "^2". Kolor niebieski tła oznacza, że funkcja jest zapisana prawidłowo. Jeśli pojawia się różowy kolor tła, oznacza to, że funkcja zawiera błąd, bądź nie została dokończona.

$$\frac{V \cdot \frac{S}{Km}}{\left(1 + \frac{S}{Km}\right) \cdot \left(1 + \left(\frac{I}{Ki}\right)^2\right)}$$

- 11. Zaznacz prawidłowo Function Type.
- 12. W tabeli **Parameters** powinny pojawić się wszystkie symbole znajdujące się w opisie funkcji. Nie wszystkie z nich są parametrami. W oknie **Description** opisz prawidłowo poszczególne symbole. W oparciu o wzór w pkt 10. zidentyfikuj substrat i modyfikator. Zatwierdź **Commit.**
- 13. Wróć do zakłdaki Reactions i dla reakcji R_2 wybierz z listy dialogowej, przed chwilą utworząna funkcję. Zmiana Rate Law spowoduje uaktualnienie listy symboli. Uzupełnij Mapping o nazwę modufikatora. Wartość parametru V = 2 mmol/l.

- 14. Przejdź do R_3. Zmień Rate Law wybierając z listy **Henri-Michaelis-Menten** (**Irr**). Wartość parametru V = 2 mmol/l.
- 15. Upewnij się, że zakładka **Reactions** przedstawia reakcje jak poniżej na rysunku.

16. Przejdź do Spieces i zmień status reagentów

- a) Stężenie A jest stałe, nie zależy od reakcji, więc wpisz **fixed** w linii **Simulation Type**.
- b) Podobną operację wykonaj dla reagent B. Dodatkowo ustaw initial concentration (mmol/l)= 0.1.
- c) Reagent C jak wyżej. Dodatkowo ustaw initial concentration (mmol/l)= 0.1.
- d) Stężenie reagenta X ustaw jako zależne od reakcji, a jego stężenie początkowe w mmol/l wynosi 0.

17. Rozwiń zakładkę **Parameter Overview**. Na liście znajdują się wszystkie parametry i przyporządkowane im wartości. Zapisz plik **File-> Save as.** Przyjrzyj się równaniu różniczkowemu opisującemu zmiany stężenia reagent X w czasie (**Mathematical-> Differential equations**). Zapisz formułę na dysku poprzez zatwierdzenie **Save** w prawym dolnym rogu ekranu.

Na	me		Type	Value	Unit
4	Init	tial Time			
		New Model	time	0	5
Initial Compartment			tes		
		cell	fixed	1e-12	1
		compartment_1	fixed	1	1
4	Init	tial Species Values			
		A	fixed	1	mmol/l
		Х	reactions	0	mmol/l
		В	fixed	0,1	mmol/l
		С	fixed	0,1	mmol/l
	Init	tial Global Quantities			
4	Kir	etic Parameters			
	4	R_1			
		Kms	fixed	0,1	mmol/l
		Kmp	fixed	0,1	mmol/l
		Vf	fixed	10	mmol/(l*s
		Vr	fixed	0,1	mmol/(l*s
		Ki	fixed	0,01	mmol/l
	4	R_2			
		V	fixed	2	mmol/(l*s)
		Km	fixed	0,1	mmol/l
		Ki	fixed	0,1	?
	4	R_3			
		Km	fixed	0,1	mmol/l
		V	fixed	2	mmol/(l*s)

Rysowanie prostych wykresów. Symulacja w czasie.

 W zakładce Tasks wybierz Time course. Przejdź do Output Assistant i wybierz 1szy rodzaj wykresu, który umożliwia śledzenie zmiany stężeń substancji w funkcji czasu. Zatwierdź Create.

	mane 5	ave Data	Zeen nit	Lon X L	an Y Show A	A HAR AL	Core		
	Con	centr	ations	, Volur	mes, and	Globa	al Quant	tity Va	lues_2
0,04]									
0,035		/							
0,03	1	/							
1	1								
0,025	1								
0,02	1								
0,015	1								
E 10.0	1								
1									
0,005									
Ee									

- 2. Dodatkowo wykonaj analizę Steady-state; **Tasks-> steady-state**. Odczytaj wartości flux (przepływu metabolitów) dla reakcji R1, R2, R3.
- 3. Czy model jest stabilny? Co o tym świadczy?

Testowanie funkcji programu Copasi z użyciem modelu glikolizy wg Smallbone2013 - Glycolysis in *S.cerevisiae* - Iteration 17)

- 1. Narzędzie Steady state
- 2. Narzędzie Metabolic Control Analysis
- 3. Narzędzie Skanowania parametrów i próbkowanie

Steady state. Analiza stanu stacjonarnego glikolizy u *S.cerevisiae* ma na celu określenie stanu systemu wyrażonego w stężeniach metabolitów i przepływie metabolitów - Flux w poszczególnych krokach tego szlaku metabolicznego.

- 1. Importuj Model Smallbone2013 (17 iteracja) z bazy BIOMODELS.
- 2. Przejdź do **Tasks -> Steady state**, a następnie wykonaj zadanie przez uruchomienie **Run**
- 3. Podaj stężenie UDP w stanie stacjonarnym oraz Flux dla reakcji kinazy pirogronianiu CDC19, w stanie stacjonarnym.
- 4. Podaj wartość Eigenvalue i określ na jego podstawie, czy stan stacjonarny w modelu glikolizy jest stabilny.

Metabolic Control Analysis. Analiza kontroli metabolicznej glikolizy u *S.cerevisiae* ma na celu ilościowa analizę kontroli, jaka wywierana jest przez poszczególne komponenty systemu (szlaku glikolizy) na aktywności tego szlaku wyrażoną siłą przepływu metabolitów i kontroli stężenia metabolitów.

- 1. Przejdź do **Taks-> Metabolic Control Analysis,** uruchom analizę kontroli metabolicznej.
- 2. Otwórz tabelę z wynikami, które przedstawiają współczynniki kontroli przepływu metabolitów (Flux Control Coefficients).
- 3. Odszukaj w tabeli z wynikami, enzym, który ma największy współczynnik kontroli przepływu metabolitów w ścieżce górnej glikolizy poczynając od heksokinazy 2.
- 4. Otwórz tabelę z wynikami, które przedstawiają współczynniki kontroli stężenia (Concentration Control Coefficients).
- 5. Odszukaj w tabeli z wynikami odszukaj syntezę T6P. Na podstawie współczynników CCC, skomentuj wpływ syntazy T6P w kontroli stężenia metabolitów w ścieżce glikolizy.

Skanowanie parametrów. Skanowanie parametrów ma na celu odpowiedzenie na pytanie:

- w jakim stopniu zachowanie systemu zależy od wartości paramentrów?
- czy są parametry, których wartości muszą być ściśle zdefiniowane?
- które właściwości systemu są wrażliwe, a które bardzo odporne na zmiany, co zapewnia homeostazę systemu (robustness).
 - 1. Nadal korzystaj z modelu Smallbone2013 (17 iteracja).
 - Przejdź do Tasks-> Parameters Scan. Przeprowadź skanowanie w warunkach stanu stacjonarnego Steady-state. W oknie dialogowym Create, wybierz (Select items) parametry, których wartości chcesz poddać skanowaniu: glucose transport Vmax. Przeprowadź analizę z zadanymi oryginalnie wartościami, a następnie porównaj otrzymany wykres po zmianie Intervals na 12 i zmianie min = 1 i max = 20.
 - Aby otrzymać wykresy przedstawione w skrypcie, należy uprzednio określić rodzaj wykresów. W tym celu przejdź do Output Assistant, wybierz z listy Plots-> Scan of recations Fluxes.
 - Nastepnie otwórz okno dialogowe Output Specifications-> Plots-> Scan of reaction Fluxes. Z listy Curve specifications usuń wszystkie element umieszczone na liście poza glucose transport Flux.

Type 2D Plot	Applies to Tasks: All Scar	n				
Axis Scales 🗌 log X-Axis 📄 log Y-Axis						
Curve Specifications		New Curve	New Histogram	New Contour	New Banded Graph	Delete Curve
(glucose transport).Flux	2D Curve		(glucose transport)	Flux		
		X-Axis (glucose transport)	Vmax		G
		Y-Axis (glucose transport)	Flux		G
		Type	lines	•		
		Line Style	Solid	- v	Vidth 1.0 🗘	
		Symbol	small cross	w.		

- 5. Powróć do okna dialogowego Parameter scan i uruchom skanowanie RUN.
- Wygeneruj dwa wykresy skanowania parametrów aktywności transportera glukozy i skomentuj wyniki. Warunki skanowania parametrów 1) glucose transport. Vmax, Intervals 10, min= 1.675, max = 6.7. warunki skanowania parametrów 2) glucose transport.Vmax, Intervals 10, min= 1.675, max = 20

7. Następnie dodaj do listy kolejny parametr do skanowania. Create-> reaction> heksokinase HXK2.kcat

- 4	Scan			Intervals Values		Scan of Reaction Fluxes
	Object (hexokinase [HXK2]).kcat			6	0.8	
	Intervals	min	max		0.7	
	10	31.55	126.2		0.6	
	logarithmic				v 0.5	
	Scan			● Intervals ○ Values	1 0.4	
V	Object (glucose transport).Vmax			6	E	
	Intervals	min	max			
	10	1.675	6.7		0.2	
	logarithmic				0.1	
	Task Steady State				۰	
	Continue from Current State output during	subtask execution 🔽 Continue on Error			1	2 3 4 5 6 / (glucose transport).Flux

8. Zmień zakres aktywności transportera glukozy, to jest do max = 20.

- Przeprowadź podobną symulację korzystając z opcji próbkowania parametrów (Random distribution). Wejdź do Parameter scan i przeprowadź skanowanie w stanie stacjonarnym steady-state oraz ustaw New scan item: jako Random distribution.
- 10. W zakładce **Create** wybierz: glucose transport.Vmax, hexokinase [HXK].kcat, glucose{extracellular}_0, co oznacza stężenie glukozy w pożywce.
- 11. Dodaj do tabeli zakładkę Repeat **New scan item -> Repeat**. Wprowadź przez naciśnięcie przycisku **Create**. Ustaw ilość powtórzeń na 200. W zakładce Plot wybierz **Type** Symbols. Przeprowadź próbkowanie.

	New scan item: Random distribution +	Greate	Scan of Reaction Fluxes
Repeat Number of Iterations 200			
Random Sampling Object (recolumns) (00%) kont Type nn Uniform distribution * 51.53	пах 125.2	Ģ	
	max	6	
Lefton establishon. * [Left3 Bayerine: Bayerine: Generative: Generative:		6	
Type nn Undform diablaution • [37] lingenthme Task Steady State •] Contrare from Current State numper during subsets research	ttas 148 n ⊡ Cantraue antorae		0 1 2 1 2 3 0 0 1 2 3 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

12. Zmień kolejno zakres wartości parametru kcat hexokinase[HXK2].kcat na max =

400, a następnie glucose transpoter.Vmax max = 20

13. Następnie usuń z listy linię odpowiadającą próbkowaniu (**Random Sampling**) stężenia zewnątrzkomórkowej glukozy i zamień próbkowanie na skanowanie dla oryginalnych wartości aktywności transportera glukozy oraz powróć do oryginalnego zakresu wartości kcat hexokinazy HXK2.

Ćwiczenie 3.

Copasi 4.16.104

Ćwiczenia mają na celu wykorzystanie programu Copasi do skonstruowania transgenicznego mikroorganizmu z użyciem strategii "chirurgii metabolicznej". Chirurgia metaboliczna jest koncepcją inżynierii metabolicznej (Adamczyk i Westerhoff, 2012). Jest to nowe podejście do tworzenia zmodyfikowanych organizmów, poprzez wprowadzenie zmian w sposób niezauważalny z punktu widzenia ich metabolizmu. Dzięki zachowaniu oryginalnych (takich samych) stężeń metabolitów w stanie stacjonarnym (również po ingerencji metabolicznej), unikamy negatywnych efektów na metabolizm takich jak zaburzenie homeostazy wewnątrzkomórkowej. Metoda zostanie zilustrowana na dwóch przykładach:

- 1) Inżynierii transportu glukozy do komórki bakterii mlekowych, poprzez zmianę architektury sieci transportu glukozy u *L. lactis* (producenta jogurtu), na system transportu charakterystyczny dla komórki drożdży (*S.cerevisiae*), producenta alkoholu.
- 2) Drugi przykład pokaże, w jaki sposób "chirurgia metaboliczna", w sposób dyskretny pozwala na rozszerzenia ścieżek metabolicznych o nowe komponenty, co może przełożyć się na produkcję sera przez drożdże, a piwa przez bakterie mlekowe.

Adamczyk M and Westerhoff HV (2012) Engineering of self-sustaining systems: substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a *L.lactis* network in silico. *Biotechnol J*, 7(7):877-83

1. Konstrukcja *L.lactis* z drożdżowym systemem transportu glukozy.

Systemy pobierania glukozy dzielimy na aktywne i pasywne.

Pasywne systemy wykorzystywane są w komórkach ludzkich i komórkach drożdży. Aktywne systemy dzielimy na powiązane z:

- transportem jonów do komórki
- zależne od hydrolizy ATP (S. cerevisiae)

- zależne od fosforylacji glukozy przez fosfoenolopirogronian PEP (L. lactis).

Podczas ćwiczeń zamienimy system PEP:PTS w bakterii mlekowej, na system wspomaganej dyfuzji z hydrolizą ATP, który występuje u drożdży.

Reakcje, które przebiegają w niezmodyfikowanym systemie, a służą wymianie oznaczone są literą "P". Reakcje nowe, wprowadzane do sieci oznaczone są literą "Q". Chcemy wymienić proces P na Q.

 $P := PTS: GLC_{o} + PEP \rightarrow G6P + PYR$

Proces Q jest zapisany w dwóch odrębnych reakcjach, z których pierwsza opisuje transport glukozy do komórki, a druga opisuje reakcję konwersji glukozy do glukozo-6-fosforanu z udziałem enzymu heksokinazy.

GLT: $GLC_{o} \rightarrow GLC_{i}$ GLK: $GLC_{i} + ATP \rightarrow G6P + ADP$

Reakcje te <u>nie sa</u> natywne dla *L. lactis*. Aby reakcje P i Q były ekwiwalentne, musi zostać uwzględniona jeszcze jedna reakcja. Jest to reakcja konwersji fosfoenolopirogronianiu (PEP) do kwasu pirogronianowego (PYR)

PYK: PEP + ADP \rightarrow PYR + ATP

Nowy proces Q, w którego skład wchodzą 3 reakcje, zakłada, że Q jest ekwiwalentem reakcji chemicznej *P*

(+1) GLT : $GLC_{o} \rightarrow GLC_{i}$ (+1) GLK : $GLC_{i} + ATP \rightarrow G6P + ADP$ (+1) PYK : PEP + ADP \rightarrow PYR + ATP

 $Q: GLC_{o} + PEP \rightarrow G6P + PYR$

Wykres 1. A) system PTS u *L. lactis*. Na czerwono zaznaczony jest proces transportu glukozy do komórki z udziałem PEP. W procesie bierze udział enzym PYK (kinaza pirogronianu) B) System transportu glukozy drożdży. Na niebiesko zaznaczony jest nowy proces wprowadzony do *L. lactis* (reakcje GLT i GLK). Metabolit oznaczony na zielono GLC. Stężenie glukozy jest stałe.

- 1. Modelem podstawowym, który zmodyfikujemy na ćwiczeniach jest model szlaku glikolizy Hoefnagell i współ. 2002. File -> Open
- 2. Odszukaj na liście reakcji reakcję o nazwie V26 (heksokinaza) i V29 (fosfataza glukozo-6 fosforanu). Zmień Vmax reakcji na zero, co oznacza, że reakcje są nieaktywne.
- 3. Ustaw stężenie glukozy zewnętrznej na 2 mM.
- Oblicz stężenia metabolitów w stanie homeostazy. Oblicz wartości przepływów (flux) w stanie stacjonarnym (Steady-state). Przenieś wyniki do tabeli Excel porównaj z Tabelą 1 (plik Wyniki_ćw_3).
- 5. Dodaj dwie nowe reakcje do modelu *L. lactis* kierując się wskazówkami z ćwiczenia nr 2 (czyli instrukcją tworzenia reakcji w modelu i ich opisu) uzupełnij funkcję

matematyczną, nazwij poszczególne elementy reakcji: modyfikator, substrat, produkt, parametr. Reakcje GLT i GLK zostały opisane (ich kinetyka) w modelu Teusink (2000).

- 6. Importuj model Teusink, 2000. File-> Import SBML.
- Zwróć uwagę na symbole oznaczające glukozę w modelu Hoefnagel (2002) i Teusink (2000). Symbole się różnią (!). Przepisując funkcje dla reakcji weź to po uwagę. Zamień symbol, tak aby był rozumiany przez model Hoefnagel (2002).
- 8. W modelu Hoefnagel (2002) utwórz reakcję o nazwie GLT(transport glukozy) zapisz jako "**Gluc -> Glucin** oraz GLK(heksokinaza) zapisz "**Glucin + ATP = G6P + ADP**".
- Zachowaj wartości parametrów kinetycznych dla tych dwóch reakcji wg Teusink (2000). Dostosuj jedynie Vmax. Tymczasowo ustaw wartość Vmax zero. Reakcje będą nieaktywne. Pozostałe wartości np. ATP, czy G6P itd. zostaną uzupełnione automatycznie (są elementami oryginalnego modelu Hoefnagel (2002)).
- 10. Szybkość transportu glukozy w stanie stacjonarnym w <u>niezmodyfikowanym</u> systemie *L. lactis* wynosi v=101.363 mM/min.

Flux v nowego procesu Q wynosi jak niżej

$$\mathbf{v}_{0}^{\prime} = \begin{pmatrix} 101.363 \\ 101.363 \\ 101.363 \end{pmatrix} \begin{matrix} GLK \\ GLK \\ PYK \end{matrix}$$

W nowym zmodyfikowanym systemie flux PYK (kinazy pirogronianowej) powinien wynosić 192.405 mM/min (sprawdź wynik **flux steady-state** w reakcji PYK w oryginalnym modelu Hoefnagel), więc musi zostać zwiększony aby skompensować usuniętą reakcję konwersji PEP w PYR przez system PTS oraz konsumpcję ADP w nowej reakcji GLK. Z czego to wynika? (patrz plik **wzór_jak obliczyć nowy VmaxPYK_Cw3**).

11. Oblicz nowe wartości Vmax transportera glukozy (vGLT) i heksokinazy (vGLK), tak aby uzyskane wartości przepływu metabolitów dla poszczególnych reakcji w modelu zmodyfikowanym o nowe reakcje, nie uległy zmianie (były identyczne z przepływami w oryginalnym modelu Hoefnagel (2002), v=101.363 mM/min, patrz pkt 11).

Transporter glukozy (GLT)

$$V_{GLT}^{GLT} \cdot \left(GLC_o - \frac{GLC_i}{K_{eq}^{GLT}}\right)$$
$$V_{GLT} = \frac{\left(1 + \frac{GLC_i}{K_M^{GLC_i}} + \frac{GLC_o}{K_M^{GLC_o}} + \frac{0.91 \cdot GLC_i \cdot GLC_o}{K_M^{GLC_o}}\right) \cdot K_M^{GLC_o}}{\left(1 + \frac{GLC_i}{K_M^{GLC_i}} + \frac{GLC_o}{K_M^{GLC_o}} + \frac{0.91 \cdot GLC_i \cdot GLC_o}{K_M^{GLC_o}}\right) \cdot K_M^{GLC_o}}$$

$$K_{M}^{GLC_{i}}$$
 = 1.1918 mM; $K_{M}^{GLC_{o}}$ = 1.1918 mM; K_{eq}^{GLT} = 1.

Heksokinaza (GLK)

$$V_{max}^{GLK} \cdot \frac{GLC_i \cdot ATP}{K_M^{GLC_i} \cdot K_M^{ATP}} \cdot \left(1 + \frac{\frac{G6P \cdot ADP}{GLC_i \cdot ATP}}{K_{eq}^{GLK}}\right)$$
$$V_{GLK} = \frac{1 + \frac{GLC_i}{K_M^{GLC_i}} + \frac{G6P_o}{K_M^{G6P}}}{\left(1 + \frac{ATP}{K_M^{ATP}} + \frac{ADP}{K_M^{ADP}}\right)}$$
$$K_M^{GLC_i} = 0.08 \text{ mM}; \ K_M^{G6P} = 30 \text{ mM}; \ K_M^{ATP} = 0.15 \text{ mM}; \ K_M^{ADP} = 0.23 \text{ mM}; \ K_{eq}^{GLK} = 3800.43 \text{ mM};$$

- Następnym krokiem jest inaktywacja oryginalnej reakcji opisanej przez proces *P.* Zidentyfikuj reakcję opisującą transport glukozy PEP:PTS na liście reakcji *L. lactis*. Ustał Vmax tej reakcji na **zero**.
- 2. W **parameter overview** zastąp Vmax (GLK=132.864), Vmax (GLT=579.685) i Vmax (PYK=4290,13) wartościami obliczonymi ze wzorów w pkt 5.
- 3. Przeprowadź analizę **Steady-state** oraz **Time course.** Porównaj wyniki uzyskane w modelu zmodyfikowanym i oryginalnym. Czy są identyczne?
- 4. Zmień stężenie zewnętrznej glukozy od 2 mM do 5 mM. Przeprowadź analizę **Steady**state i **Time course**.

Spec	es C	ompartments	Spec	ies	Compartments	Model Quantities	Reactions Jac
	Name	Flux (mol/s)		Name	Flux (mol/s)	Chemical Equation	•
1	v1	101.362	1	v1	0	GUC + PEP = G6P + P	YR
2	v2	96.2012	2	v2	96.2012	G6P = F6P	
3	v3	96.2084	3	v3	96.2084	F6P + ATP = FBP + A	DP; PEP
4	v4	96.2012	4	v4	96.2012	12 FBP = G3P + DHAP	
5	v5	96.2012	5	v5	96.2012	DHAP = G3P	
6	v6	192,402	6	v6	192.402	G3P + NAD + Phos =	DPG + NADH
7	v7	192.402	7	v7	192.402	DPG + ADP = P3G +	ATP
, 8	48	192.402	8	v8	192.402	P3G = P2G	
0		102,402	9	v9	192.402	P2G = PEP	
7	V7	192.402	10	v 10	192.402	PEP + ADP = PYR + A	ATP; FBP G6P Phos
10	V10	91.0405	11	v11	188.092	PYR + NADH = Lac +	NAD; FBP
11	v11	188.092	12	v12	0.0040217	2 * PYR = ACLAC	
12	v12	0.0040217	13	v13	0.00402159	ACLAC = ACET	
13	v13	0.00402159	14	v14	0.00029706	ACET = ACETOUT	
14	v14	0.00029706	15	v15	1.13823e-07	ACLAC = ACET	
15	v15	1.13823e-07	16	v 16	0.00372464	ACET + NADH = BUT	+ NAD
16	v16	0.00372464	17	v17	1.01826	PYR + COA = FOR +	ACCOA; G3P DHAP
17	v17	1.01826	18	v 18	4.23734	ACCOA + Phos = AC	P + COA
18	v18	4.23734	19	v19	4.23734	ACP + ADP = AC + A	TP
19	v19	4.23734	20	v20	3.2838	PYR + NAD + COA =	NADH + ACCOA
20	v20	3.2838	21	v21	0.0647125	NADH + ACCOA = NA	AD + COA + ACAL
21	v21	0.0647125	22	v22	0.0647125	ACAL + NADH = ETO	H + NAD
22	v22	0.0647125	23	v23	186.311	ATP = ADP + Phos	
22	122	196 211	24	v24	5.39647	NADH + O2 = NAD	
23	¥23	E 200647	25	v25	0.00722157	FBP = F6P + Phos	
24	¥24	5.39047	26	v26	0	G6P = Glucin + Phos	1
25	V25	0.00722157	27	v27	5.1607	G6P = G1P	
26	v26	0	28	v28	1.03214	5 * G1P + 5 * ATP + 1	2 * NADH + 3 * UDP +
27	v27	5.1607	29	v29	0	Glucin + ATP = GSP +	ADP
28	v28	1.03214	30	VGLT	101.362	Gluc = Glucin	1
29	v29	0	31	VGLK	101.362	Gluan + AIP = G6P +	ADP

Hoefnagel

Hoefnagel_ATP

5. Wykorzystaj tabelę poniżej do przeprowadzenia stopniowej wymiany systemu PEP:PTS na system transportu glukozy z udziałem ATP. Przykłady poniżej pokazują różnice w czasie (transient time), wymagane aby system osiągnął stan stacjonarny.

Od lewej: 85% PEP:PTS oraz 5% PEP:PTS

Vmax	GLK	GLT	PTS	РҮК
GLK 90%/PTS 10%	119.5776	521.7165	16.00003	4068.431
GLK 85%/PTS 15%	112.9344	492.7323	24.00004	3955.302
GLK 80%/PTS 20%	106.2912	463.748	32.00006	3842.174
GLK 75%/PTS 25%	99.648	434.7638	40.00007	3729.046
GLK 70%/PTS 30%	93.0048	405.7795	48.00009	3615.917
GLK 65%/PTS 35%	86.3616	376.7953	56.0001	3502.789
GLK 60%/PTS 40%	79.7184	347.811	64.00012	3389.661
GLK 55%/PTS 45%	73.0752	318.8268	72.00013	3276.532
GLK 50%/PTS 50%	66.432	289.8425	80.00014	3163.404
GLK 45%/PTS 55%	59.7888	260.8583	88.00016	3050.276
GLK 40%/PTS 60%	53.1456	231.874	96.00017	2937.147
GLK 35%/PTS 65%	46.5024	202.8898	104.0002	2824.019
GLK 30%/PTS 70%	39.8592	173.9055	112.0002	2710.891
GLK 25%/PTS 75%	33.216	144.9213	120.0002	2597.762
GLK 20%/PTS 80%	26.5728	115.937	128.0002	2484.634
GLK 15%/PTS 85%	19.9296	86.95276	136.0002	2371.506
GLK 10%/PTS 90%	13.2864	57.9685	144.0003	2258.377
GLK 5%/PTS 95%	6.6432	28.98425	152.0003	2145.249
GLK 0%/PTS 100%	0	0	160.0003	4290.13

1. Konstrukcja drożdży produkujących kwas mlekowy zamiast etanolu.

Proces u drożdży: P

Proces u bakterii: Q

(+1) PDC : PYR \rightarrow ACE (+1) ADH : ACE + NADH \rightarrow ETOH + NAD

 $Q := LDH: PYR + NADH \rightarrow LAC + NAD$

 $P: PYR + NADH \rightarrow ETOH + NAD$

Poprzez nowy proces Q, został wprowadzony do system nowy metabolit, którym jest kwas mlekowy, a którego stężenie wewnątrzkomórkowe chcemy utrzymać na możliwie jak najniższym poziomie. W tym celu "wprowadzamy do systemu transporter", o bardzo wysokiej aktywności, który zapewni usuwanie kwasu mlekowego z komórki do pożywki. W naszym przypadku kwas mlekowy w modelu Teusink (2000) zostanie wprowadzony jako metabolit końcowy (podobnie jak w modelu Hoefnagel (2002). Ustawimy stężenie kwasu mlekowego na zero, co naśladuje sytuację sekrecji metabolitu przejściowego na zewnątrz komórki. Wzór reakcji i wartości parametrów reakcji dehydrogenazy mleczanowej zostaną zaczerpnięte z oryginalnego modelu Hoefnagel (2002).

Original	Р	Q	V _{max} (mM/min)			£
system			LDH	PDC	ADH	U U
S. cerevisiae	PDC + ADH	LDH	1.28E+03	9.29E+00	0.00E+00	3.73E-06

- 1. Modelem podstawowym, który zmodyfikujemy w tym zadaniu jest model szlaku glikolizy Teusink i współ. 2000. File-> Import SBML.
- Oblicz wartości przepływów (flux) w stanie stacjonarnym (Steady-state) dla modelu Teusink, 2000. Przenieś wyniki do tabeli Excel. Porównaj z wynikami w pliku Wyniki_Ćw_3.
- Enzym niezbędny do produkcji kwasu mlekowego w *L. lactis* to dehydrogenaza mleczanowa (vLDH). Odszukaj reakcję katalizowaną przez LDH w modelu ścieżki glikolizy Hoefnagel, 2002. File-> Import SBML. Reakcja ta przebiega z udziałem modyfikatora, czynnika allosterycznego fruktozo1,6-bisfosforanu (symbol F1,6P = FBP).

- 4. Dopisz tę reakcję w modelu Teusink (2000), kierując się wskazówkami z ćwiczenia nr 2 (instrukcja do tworzenia modelu składającego się z trzech reakcji), uzupełnij funkcję matematyczną, nazwij poszczególne elementy reakcji: modyfikator, substrat, produkt, parametr.
- 5. Oblicz nowy Vmax dla reakcji LDH, tak by otrzymać przepływ metabolitów (flux) identyczny jak w modelu Teusink (2000) dla reakcji vADH (enzym: dehydrogenaza alkoholowa vADH=AD) (**plik wyniki_Cw_3**).
- 6. Ustaw Vmax dla reakcji vADH zero. Enzym ADH jest wówczas nieaktywny.
- 7. Przeprowadź analizę Time course. Co zaobserwowałeś?

- 8. Przywróć reakcji vADH oryginalny Vmax = 810.
- 9. Oblicz Vmax PDC, aby skierować strumień metabolitów do reakcji LDH. Jednak pamiętaj o pozostawieniu minimalnego przepływu przez tę reakcję, co jest niezbędne dla reakcji znajdującej się w szlaku poniżej PDC. Reakcja ta przebiega z wytworzeniem NADH. Dzięki zachowaniu minimalnej aktywności PDC utrzymany zostanie prawidłowy stan redox między reakcjami vSUC i vG3PDH.
- 10. Zapisz zmiany w modelu pod nazwą Teusink_LDH1.
- 11. Przeprowadź analizę **Steady-state** i **Time course**. Porównaj wyniki oryginalnego modelu Teusink(2000) i modelu komórki drożdżowej produkującej kwas mlekowy.

A stea	dy state w	ith given re	A ste	ady state w	iith given r	esolution was found.
Spe	cies C	ompartmer	Sp	iecies C	ompartme	nts Model Quantities Reactions
	Name	Flux (mol/s)		Name	Flux (mol/s)	Chemical Equation
1	VGLK	88.1505	1	VGLK	88.1505	GLCi + Prb = G6P
2	vPGI	77.3505	2	VPGI	77.3505	G6P = F6P
3	VGLYCO	6	3	VGLYCO	6	G6P + Prb = Glyc
4	vTreha	2.4	4	vTreha	2.4	2 * G6P + Prb = Trh
5	vPFK	77.3505	5	VPFK	77.3505	F6P + Prb = F16P
6	VALD	77.3505	6	VALD	77.3505	F16P = 2 * TRIO
7	VGAPDH	136.499	7	VGAPDH	136.499	TRIO + NAD = BPG + NADH
8	VPGK	136,499	8	VPGK	136.499	BPG = P3G + Prb
9	vPGM	136.499	9	VPGM	136.499	P3G = P2G
10	VENO	136.499	10	VENO	136.499	P2G = PEP
11	vPYK	136.499	11	VPYK	136.499	PEP = PYR + Prb
12	VPDC	136.499	12	/PDC	7.28096	PYR = CO2 + ACE
13	VSUC	3.64049	13	VSUC	3.64048	2 * ACE + 3 * NAD = SUCC + 3 * NADH
14	VGLT	88.1505	14	VGLT	88.1505	GLCo = GLCi
15	VADH	129.218	15	VADH	0	ACE + NADH = NAD + ETOH
16	VG3PDH	18.2025	16	VG3PDH	18.2024	TRIO + NADH = NAD + GLY
17	VATP	99.0961	17	VATP	99.0962	Prb = X
			18	VLDH	129.218	PYR + NADH = Lac + NAD: F16P

Teusink model

Teusink_LDH

Ćwiczenie 4.

FLUX BALANCE ANALYSIS - SurreyFBA

Celem ćwiczeń jest zapoznanie się z interfejsem użytkownika JyMet, który to GUI umożliwia wizualizację modeli w skali genomowej. Poznamy koncepcję SurreyFBA i podstawowe narzędzia/funkcje zintegrowane z SurreyFBA [1]. Wykonamy analizę przepływu strumieni (*ang.flux*) w przykładowym modelu drożdży piekarniczych *S.cerevisiae* o nazwie iTO977 [2]. Model powstał na bazie modelu iLN800 i jest modelem rozszerzonym o dodatkowe reakcje wg. danych literaturowych. Model wykazuje skuteczność w symulacjach wzrostu drożdży na różnych podłożach hodowlanych, analizie istotności genów oraz odtwarza wyniki eksperymentalne dla pojedynczych i podwójnych mutantów zgodnie z danymi literaturowymi. iTO977 został użyty do integracji danych transkryptomicznych i eksperymentalnych danych o przepływach metabolitów w 4 warunkach hodowli; warunki limitujące źródło węgla, warunki limitujące źródło azotu, w dwóch wariantach: w warunkach tlenowych i beztlenowych.

Dodatkowe informacje można znaleźć w podanych poniżej źródłach literaturowych.

Bibliografia:

- 1. Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM. SurreyFBA: A command line tool and graphics user interface for constraint based modelling of genome scale metabolic reaction networks. Bioinformatics. 2011 27(3):433-4.
- Osterlund T, Nookaew I, Bordel S, Nielsen J Mapping condition-dependent regulation of metabolism in yeast through genome-scale modelling BMC Systems Biology. 2013 DOI: 10.1186/1752-0509-7-36

W folderze "SurreyFBA rozwiązania" znajdują się pliki z przykładowymi obliczeniami do przedstawionych ćwiczeń, które będą pomocne przy sprawdzeniu poprawności uzyskanych wyników.

4.1 Wstęp do SurreyFBA

1. Otwórz folder SurreyFBA2.34 a następnie uruchom program **JyMet** (program funkcjonuje w środowisku Java dlatego też wymagana jest wcześniejsza instalacja platformy Java)

2. Wczytanie modelu.

Kliknij: File -> import SMBL, wybierz folder Model, zaznacz plik iTO977_v1.00_cobra.xml (ścieżka dostępu C:\SurreyFBA\examples\models\iTO77_v1_cobra.xml)

Model **iTO977_v1.00_cobra.xml** został skonwertowany do formatu *SurreyFBA*. Model iTO977 został nazwany według konwencji *"in silico*" szczepów mikrobiologicznych. *"i"* oznacza *"in silico*", *"*TO" oznaczają inicjały autora modelu (Tobias Österlund), a 977 oznacza liczbę genów znajdujących się w modelu.

Po zaimportowaniu modelu w oknie dialogowym pojawiają się zakładki: *geny*, *enzymy, reakcje, metabolity* i *problem*.

🔬 JyMet2 🗕 🗆 🗙							
File Edit View Analyse Solve Help							
Direction: max Objective: Solver: Simplex Reduce matrix: Comments:							
960 genes 77	5 enzymes	1562 reactions 135	3 metabolites	Problem			
ID		Equation	LB	UB	Rule	Comment	
R 2MBACt	M m208 = M	m1404	0.0	1000.0		#2-methylbutyl transport (extrad 🔺	
R_2MBACxtl	M_m1415 = M		0.0	0.0		#Uptake of 2-methylbutyl acetal =	
R_2MBACxtO	M_m1404 = N		0.0	1000.0		#Excretion of 2-methylbutyl ace	
R_2MBALDt	M_m209 = M	_m1405	-1000.0	1000.0		#2-Methylbutanal transport (ext	
R_2MBALDxtl	M_m1421 = N	/_m1405	0.0	0.0		#Uptake of 2-methylbutyraldehy	
R_2MBTOHt	M_m207 = M_	_m1406	-1000.0	1000.0		#2-methyl-1-butanol transport (
R_2MPPALt	M_m210 = M_	_m1407	-1000.0	1000.0		#2-methylpropanal transport (e	
R_2PHETOHt	M_m1408 = N	/_m219	-1000.0	1000.0		#2-phenylethanol reversible tra	
R_3C3HMPt	M_m232 = M_	_m1409	-1000.0	1000.0		#2-IsopropyImalate transport, c	
R_3MBALDt	M_m233 = M_	_m1410	-1000.0	1000.0		#3-methylbutanal transport (ext	
R_3MOPt	M_m1411 = M	/_m156	-1000.0	1000.0		#3mop reversible trasport: M_n	
R_44DIMZYMSTxtl	$M_m4 = M_m$	900	0.0	0.0		#Uptake of 4,4-dimethylzymost	
R_44DIMZYMST	$M_m900 = M_i$	_m4	0.0	1000.0		#Excretion of 4,4-dimethylzymo	
R_4ABZt	M_m289 = M	_m1412	-1000.0	1000.0		#4-Aminobenzoate mitochondr	
R_AAC1	M_m1091 + N	/_m335 + M_m768 =	0.0	1000.0	(YBL030C OR	#ADP,ATP carrier protein 1: M_I	
R_AAH1_1 M_m579 = M_m519 + M_m707 0.0 1000.0 YNL141W #Adenosine deaminase: M_n							
R AAH1 2	M m636 = M	m519 + M m639	0.0	1000.0	YNL141W	#Adenosine deaminase: M m6 💌	

W zakładce *reakcje*, znajduje się 1562 reakcji oraz kolejno: nazwa reakcji, równanie reakcji, dolna granica przepływu (**LB**), górna granica przepływu (**UB**), reguły łączące reakcje z zaangażowanymi w ich przebieg genami oraz komentarz do reakcji, zawierający informacje min. na temat lokalizacji (w którym kompartmencie, części komórki zachodzi reakcja), rodzaju reakcji (np. sekrecja, transport), oraz nazwy metabolitów biorących udział w reakcji.

3. Definiowanie zewnętrznych metabolitów

Metabolity zewnętrzne można zaznaczyć w zakładce *metabolity*. Reprezentują one źródło przepływu metabolitów. Bez uprzedniego oznaczenia metabolitów zewnętrznych (w składzie podłoża hodowlanego), nie jest możliwe obliczenie wartości maksymalnego wzrostu. Uzyskujemy wówczas wartość wzrostu = 0 ze względu na brak źródła przepływu metabolitów. W omawianym modelu metabolity zewnętrzne są zaznaczone w kolumnie "external" (zakładka *metabolity*).

<u>\$</u>	JyMet2 − □ ×									
File Edit View Analyse Solve Help										
Direction: max	Direction: max 🔻 Objective: List: Solver: Simplex 💌 Reduce matrix: Comments: 🖍									
S. cerevisiae ger	iome-scale m	nodel x								
960 genes 77	'5 enzymes	1562 rea	ctions	135	3 metabolites	Problem	Essential I	reactions x		
ID	Nar	ne	Exter	nal		Used by		Formula	Canonical SMI	Isomeri
M_m1	(R)-lactate_(C3H6O3	~		-1.0 R_LACxtl +	R_LACxtO		C3H6O3		
M_m10	C26 acid_		~		-1.0 R_C26xtl +	R_C26xtO				
M_m100	nicotinamide	e monon	Ľ		-1.0 R_NMNxtl -	R_NMNxtO		C11H15N2O8P		
M_m1000	maltose_C1	2H22O11			-1.0 R_MAL11 +	R_MLTxtl +	-1.0 R_ML	C12H22O11		
M_m1001	melibiose_C	12H22			R_MELIxtl + -1.0	R_MELIxtO	+ -1.0 R_U	C12H22O11		
M_m1002	methane_Cl	-14			R_MTHNxtl + -1	.0 R_MTHNx	tO + -1.0 R	CH4		
M_m1003	methylglucos	side_C7			R_AMGxtl + -1.0	R_AMGxtO ·	+ -1.0 R_U	C7H14O6		
M_m1004	myo-inositol	C6H12			-1.0 R_ITR1 + F	R_MIxtI + -1.0	R_MIxtO	C6H12O6		
M_m1005	myristic acid	_C14H2			R_C140xtl + -1.	0 R_C140xt0) + -1.0 R	C14H28O2		
M_m1006	nicotinamide	e monon			R_NMNxtl + -1.0	R_NMNxtO	+ -1.0 R_U	C11H15N2O8P		
M_m1007	octadecanoy	1-9-ene			R_C181xtl + -1.	0 R_C181xt0) + -1.0 R			
M_m1008	oligopeptide	_			R_OPEPxtl + -1	.0 R_OPEPxt	tO + -1.0 R			
M_m1009	oxidized glut	athione			R_OGTxtl + -1.0	R_OGTxtO ·	+ -1.0 R_U	C20H32N6O12		
M_m101	octadecanoy	1-9-ene	~		-1.0 R_C181xtl	+ R_C181xt0)			
M_m1010	oxygen_				R_02xtl + -1.0 F	R_02xt0 + -1	.0 R_U227_			
M_m1011	palmitic acid	_C16H3			R_C160xtl + -1.	0 R_C160xt0) + -1.0 R	C16H32O2		
M_m1012	peptide				R PEPTxtl + -1.	0 R PEPTxt	0+-1.0 R			

W innych modelach metabolity zewnętrzne są oznaczone rozszerzeniem np. **"_xtl"** bądź **"_xt"** (np.: **M_example_xtl**). Aby program poprawnie rozpoznał określony metabolit, metabolity zewnętrzne należy zdefiniować w następujący sposób:

Kliknij:

Solve -> externality tag

Po wyświetleniu okna dialogowego należy wpisać odpowiednią dla danego modelu etykietę dla zewnętrznych metabolitów.

File Edit View Analyse	Solve QSSPN	Help		
Direction: max 🔻 Object	iv Write problem			
	Clear problem			
S. cerevisiae genome-sca	Externality tag			
960 genes 775 enzym	e Toleral Define the	tag indicating extern	mal metabolites	
ID Nar	n Solve	Used by	Formula	
M_m1 (R)-lacta	e _{Stop}	-1.0 R_LACxtl +	C3H6O3	
M_m10 C26 acid	Stop	-1.0 R_C26xtl +		
M_m100 nicotinar	nide 🔽	-1.0 R_NMNxtl +	C11H15N2O8P	
M m4000 moltooo	040	400 00144	040100044	

4. Reakcja BIOMASS i GROWTH RATE

Jedna z reakcji znajdująca się w systemie to reakcja definiująca biomasę BIOMASS. Reakcja ta reprezentuje przepływ metabolitów w kierunku wszystkich istotnych komponentów biomasy. Zapotrzebowanie na dane składniki pokarmowe i energetyczne zdefiniowane w zapisie *Equation* w reakcji BIOMASS w postaci oznaczeń takich jak np. M_m358. Przepływ metabolitów w BIOMASS reprezentuje potencjał wzrostu (GROWTH RATE) organizmu. Z zapisu wynika, że inny skład biomasy cechuje drożdże piekarnicze hodowane w warunkach limitujących źródło węgla i limitujących źródło azotu.

<u>ي</u>	JyMet2 – 🗆 🗙								
File Edit View	File Edit View Analyse Solve Help								
Direction: max	Direction: max V Objective: List: Solver: Simplex V Reduce matrix: Comments: V								
960 genes 77	960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Essential reactions x								
ID 🔺	LB	LB Equation							
R_CBIOMASS	0.0	.1358 M_m160 + 0.051 M_m339 + 59.276 M_m340 + 0.05 M_m358 + 0.051 M_m415 + 0.35734 M_m440 +							
R_NBIOMASS	0.0	0.963 M_m160 + 0.04 M_m339 + 59.276 M_m340 + 0.039 M_m358 + 0.04 M_m415 + 0.252 M_m440 + 0.0	98						

Znajdź formułę BIOMASS i sprawdź, co wchodzi w skład tej reakcji. W tym celu kliknij:

Zakładka reaction -> Edit -> search, wprowadź szukaną frazę: BIOMASS

W celu powrócenia do wszystkich reakcji kliknij:

View -> Show -> All

5. Obliczenie biomasy i maksymalnego współczynnika wzrostu (maximal growth rate)

Aby rozpocząć symulację z JyMet ważne jest zdefiniowanie *funkcji celu*, wybranie metody analizy i zdefiniowanie problemu.

W tym celu kliknij:

Analyse -> Objective value.

Wpisz w polu OBJECTIVE znalezioną regułę dla reakcji BIOMASS, ustaw "Direction" na max.

Kliknij:

Solve -> Write problem

Po pojawieniu się dwóch wierszy w zakładce Problem, kliknij:

Solve -> Solve

📓 JyMet2 🗕 🗆 🗙										
File Edit View Analyse Solve Help										
Direction: max Objective: R_CBIOMASS Solver: Simplex Reduce matrix: Comments: S. cerevisiae genome-scale model X										
960 genes 775 enzymes 1562 reaction	960 genes 775 enzymes 1562 reactions 1353 metabolites Problem									
Expression LB UB Comment										
Imax R_CBIOMASS #										
; #										
1 IT										

Tak zdefiniowany problem pozwala programowi obliczyć teoretyczny maksymalny przepływ metabolitów przez reakcję opisującą tworzenie biomasy (reakcja BIOMASS).

Tempo przyrostu biomasy zależy od składu pożywki, oraz od dostępności preferowanych składników odżywczych. W tym ćwiczeniu, przy założeniu maksymalnego transportu źródła węgla do komórki (glukozy) wartość przepływu jest równa 0.0996947 (mM glukozy /h/g suchej masy komórek).

File Edit View Analyse Solve Help Direction: max ▼ Objective: R_CBIOMASS Solver: Simplex ▼ Reduce matrix: Comments: ♥ S. cerevisiae genome-scale model x 960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Objective value x Record1 INFO. Objective value Status Comment 0.0996947	📓 JyMet2 🗕 🗆 🗙							
Direction: max Objective: R_CBIOMASS Solver: Simplex Reduce matrix: Comments: Comments: S. cerevisiae genome-scale model x 960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Objective value x Record1 INFO. 0 0 0 Comment 0.0996947 # # 0 0	File Edit View Analyse Solve Help							
S. cerevisiae genome-scale model x 960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Objective value x Record1 INFO. Objective value Status Comment 0.0996947	Direction: max 💌 Objective: R_CBIOMASS Solver: Simplex 💌 Reduce matrix: 🗌 Comments: 🗹							
960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Objective value Record1 INFO. Objective value Status Comment 0.0996947 #	S. cerevisiae genome-scale model x							
Record1 INFO. Objective value Status Comment 0.0996947 #	960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Objective value x							
Objective value Status Comment	Record1 INFO.							
0 0996947 #	Objective value Status Comment							

6. Oblicz maksymalny współczynnik wzrostu (max GROWTH).

Jaki wynik otrzymano? Czy reakcje BIOMASS i GROWTH różnią się?

4.2. Sprawdzanie istotności reakcji w modelu, dla przepływu metabolitów w kierunku tworzenia biomasy oraz identyfikacja istotnych genów

W modelu iTO977 dyfuzja glukozy z pożywki do cytoplazmy jest zdefiniowana jako reakcja **R_GLCxtI**. W tym przypadku reakcja została napisana w kierunku pobierania glukozy z pożywki. Zewnętrzna glukoza, oznaczona symbolicznie **M_m54**, transportowana jest do cytoplazmy, gdzie definiuje się ją odrębnym symbolem **M_m960**. Reakcja ta jest więzami LB i UB w stronę "konsumpcji" glukozy (tutaj: LB = 1, UB = 1). Jeśli przepływ w reakcji transportu glukozy do komórki ma wartość "1" dla UB, to oznacza, że szybkość reakcji transportu wynosi 1 mM glukozy (M_m54) w czasie 1 h na gram suchej masy komórek.

ĺ	S. cerevisiae genome-scale model x								
1	960 genes 77	5 enzymes 1	562 reactions	1353 metabolite	s Problem	Objective value x]		
	ID LB Equation UB Rule								
	R_GLCxtl	1.0	M_m54 = M_m	960	1.0			#Uptake of alpha-D-glucos	

Aby zmienić skład pożywki należy otworzyć bądź zamknąć strumień przepływu metabolitów w danych reakcjach. Można to osiągnąć poprzez zmianę granic przepływu metabolitów (*LB-lower bound*, *UP-upper bound*) w danej reakcji.. Taki zabieg możemy wykonać na dwa sposoby:

- a) poprzez zmianę granic przepływu bezpośrednio w modelu lub
- b) ustaleniu nowych granic przepływu w zakładce problemy, co jest lepszym rozwiązaniem, ponieważ nie modyfikujemy źródłowej wersji modelu

Wykonaj poszczególne kroki:

S. cerevisiae genome-scale model x								
960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Objective value x								
Expression LB UB Comment								
Imax: R CBIOMASS #								
R_GLCxtl 0.0 0.0 #								
R_GLCXII 0.0 0.0 #								

Wpisz w pierwszym wierszu zakładki *problem* max BIOMASS i zamknij przepływ dla reakcji glukozy. Ustaw wartości LB i UB = 0.

Po wpisaniu reakcji w zakładce problemy sprawdź max BIOMASS (*objective value*). Jeśli zamkniemy transport dla źródła węgla, produkcja biomasy powinna wynieść 0.

1. Sprawdzenie produkcji biomasy w komórkach hodowanych w obecności alternatywnego źródła węgla

Do problemu zdefiniowanego powyżej dodaj jeden wiersz:

Edit -> insert rows -> wpisz: 1

W zakładce reakcje poszukaj reakcję dla transportu glicerolu (**R_GLxtl**), skopiuj ją i wklej w kolejnym wierszu tabeli *problem*. Ustaw granice przepływu w kierunku

S. cerevisia	S. cerevisiae genome-scale model x								
Problem Objective value x Essential reactions x Essential reactions x									
960	960 genes 775 enzymes 1562 reactions 1353 metabolites								
	Expression LB UB Comment								
R_GLxtl	R_GLxti 1.0 1.0 #								
Imax: R_CBI					#				
R_GLCxtl			0.0		0.0	#			
R_GLCxtl 0.0 0.0 #									

konsumpcji glicerolu (dla R_GLxtl ustaw wartości LB=1, UB=1), a zamknij dla glukozy (dla R_GLCxtl ustaw wartości LB=0, UB=0).

Oblicz wartość objective value dla max BIOMASS.

Jaką wartość otrzymasz? Czy jest ona taka sama jak dla komórek drożdży rosnących w pożywce, w której źródłem węgla jest glukoza? Wyciągnij wnioski z obserwacji?

2. Analiza istotności reakcji biochemicznych (Essential reactions).

Metoda **Essential reactions** SurreyFBA służy do weryfikacji istotności udziału poszczególnych reakcji w analizowanym systemie. Dla każdej reakcji ujętej w systemie program ogranicza przepływ do 0 i oblicza maksymalną wartość dla funkcji celu (*objective function*). Jeśli deaktywacja poszczególnych reakcji spowoduje, że funkcja celu wynosi 0, reakcja uważana jest wówczas za istotną dla funkcji celu. Program przedstawia reakcje, które muszą być aktywne podczas wyznaczonego celu (np. wzrostu komórek, produkcji biomasy bądź innej funkcji).

Znajdź istotne reakcje dla wzrostu komórek w podłożu z glukozą. Usuń wiersze w zakładce problemy:

Zaznacz wiersze -> Edit -> Delete rows

W polu objective wpisz R_GROWTH,; direction ustaw na "max"

Solve -> Write problem

Po pojawieniu się dwóch wierszy w zakładce Problem, kliknij:

Solve -> Solve

Oblicz wartość dla *objective value* w celu upewnienia się, że wzrost jest równy 0.0996947 (mM glukozy /godz/g suchej masy komórek).

Do obliczenia essential reactions należy zmienić funkcję z "Objective value" na "Essential reactions"

File Edit View	Analyse Solve QSSPN Help					
Direction: max	Objective value			Lis	t:	
	 Objective value and status 					
S. cerevisiae ger	○ FBA					
960 genes 71	○ FVA	1353 metabolites	Problem			
ID	Knock-out analysis	LB	UB	Rule	Comment	
R_2MBACt	Essential reactions	0.0	1000.0		#Transport, Extracellular; 2-methylbutyl transport (extracel	
R_2MBACxtl		0.0	0.0		#Exchange reactions; Uptake of 2-methylbutyl acetate; M	
R_2MBACxtO		0.0	1000.0		#Exchange reactions; Excretion of 2-methylbutyl acetate;	
R_2MBALDt	Plot 3D	-1000.0	1000.0		#Transport, Extracellular; 2-Methylbutanal transport (extra	
R_2MBALDxtl	Minimal substrate sets	0.0	0.0		#Exchange reactions; Uptake of 2-methylbutyraldehyde;	
R_2MBTOHt	Minimal product sets	-1000.0	1000.0		#Transport, Extracellular; 2-methyl-1-butanol transport (e	
R_2MPPALt	- minimar product sets	-1000.0	1000.0		#Transport, Extracellular; 2-methylpropanal transport (ext	
R_2PHETOHt	Elementary modes	-1000.0	1000.0		#Transport, Extracellular; 2-phenylethanol reversible tran	
R_3C3HMPt	Live reactions	-1000.0	1000.0		#Transport, Extracellular; 2-Isopropylmalate transport, diff	
R_3MBALDt	Unconserved metabolites	-1000.0	1000.0		#Transport, Extracellular; 3-methylbutanal transport (extra	
R_3MOPt	- Unconserved metabolites	-1000.0	1000.0		#Transport, Extracellular; 3mop reversible trasport; M_m	
R_44DIMZYMSTxt	Orphan metabolites	0.0	0.0		#Exchange reactions; Uptake of 4,4-dimethylzymosterol;	
R_44DIMZYMST	Connected components	0.0	1000.0		#Exchange reactions; Excretion of 4,4-dimethylzymostero	
R 4AB7t	O INAT	-1000 0	1000 0		#Transport Extracellular: 4-Aminobenzoate mitochondria	

Kliknij:

Analysis -> zaznacz Essential reactions, Solve -> Solve

Obliczenia potrwają kilka minut (!!!).

Dlaczego proces prowadzący do uzyskania wyniku tą metodą jest stosunkowo kosztowny obliczeniowo?

Program wygeneruje następującą tabelę:

S. cerevisiae genome-scale model 🗴						
960 genes 775 enzymes 1562 reaction	s 1353 metabolites Problem Objective value x Essential reactions x					
Record1 INFO.	Record1 INFO.					
ID	Comment					
	#195 essential reactions.					
R_ACC1	#Acetyl-CoA carboxylase: M_m340 + M_m359 + M_m570 = M_m335 + M_m729 + M_m768 📃					
R_ACS1	#Acetyl-coenzyme A synthetase 1: M_m340 + M_m566 + M_m612 = M_m339 + M_m570 + M_					
R_ADE1	#Phosphoribosylaminoimidazole-succinocarboxamide synthase: M_m164 + M_m340 + M_n					
R_ADE13_1 #Adenylosuccinate lyase: M_m135 = M_m314 + M_m670						
R_ADE16_1 #Phosphoribosylaminoimidazolecarboxamide formyltransferase: M_m176 + M_m314 = N						
R_ADE16_2	#IMP cyclohydrolase: M_m320 = M_m422					
R_ADE2 #Phosphoribosylaminoimidazole carboxylase: M_m164 = M_m315 + M_m359						
R_ADE4	#Amidophosphoribosyltransferase: M_m324 + M_m458 = M_m323 + M_m457 + M_m651					
R_ADE5_7_1	#Phosphoribosylamineglycine ligase: M_m323 + M_m340 + M_m682 = M_m335 + M_m49					
R_ADE5_7_2 #Phosphoribosylformylglycinamidine cyclo-ligase: M_m203 + M_m340 = M_m315 +						
R_ADE6 #Phosphoribosylformylglycinamidine synthase: M_m340 + M_m458 + M_m493 = M_/						
R_ADE8 #Phosphoribosylglycinamide formyltransferase: M_m176 + M_m492 = M_m493 + M_m						
R_AKGxtO #Excretion of 2-oxoglutarate: M_m899 = M_m3_						
R_ARE2	#Sterol O-acyltransferase 2: M_m572 + M_m662 = M_m612 + M_m661					

Wyeksportuj otrzymaną tabelę do pliku EXCEL. Kliknij:

File -> Save table

Nazwij plik jako: essential reactions glucose.xls

3. Wykonaj obliczenia essential reactions dla hodowli na pożywce z glicerolem.

Wygenerowaną przez program tabelę zapisz jako essential reactions glycerol.xls

Wykorzystując wiedzę ze studiów I stopnia, dotyczącą szlaków metabolicznych, odpowiedz, jakie znasz przykładowe enzymy, które są aktywne podczas wzrostu komórek na podłożu zawierającym glicerol, a nie są aktywne na podłożu zawierającym glukozę?

Otrzymane wyniki porównaj w nowym dokumencie Excel, gdzie dwie listy essential reactions znajdują się obok siebie w kolumnach. Wskaż reakcje, które są istotne dla wzrostu tylko w obecności glukozy, oraz te, które są niezbędne do wzrostu tylko w obecności glicerolu. Analizuj wszystkie reakcje w kolumnach, porównaj wyniki wygenerowane dla dwóch źródeł węgla. Zrób przerwę w wierszach jeśli zauważysz, że reakcje nie pokrywają się.

	A	В
1	#199 essential reactions glycerol	#195 essential reactions glucose
2	R_ACC1	R_ACC1
3	R_ACS1	R_ACS1
4	R_ADE1	R_ADE1
5	R_ADE13_1	R_ADE13_1
6	R_ADE16_1	R_ADE16_1
7	R_ADE16_2	R_ADE16_2
8	R_ADE2	R_ADE2
9	R_ADE4	R_ADE4
10	R_ADE5_7_1	R_ADE5_7_1
11	R_ADE5_7_2	R_ADE5_7_2
12	R_ADE6	R_ADE6
13	R_ADE8	R_ADE8
14	R_ADH3	R_AKGxtO
15	R_ARE2	R_ARE2
16	R_ARG1	R_ARG1
17	R_ARG3	R_ARG3
18	R_ARG4	R_ARG4
19	R_ARG5_1	R_ARG5_1
20	R_ARG5_2	R_ARG5_2
21	R_ARG8	R_ARG8
22	R_ARO1_1	R_ARO1_1
23	R_ARO1_2	R_ARO1_2

Wybrane, istotne reakcje zaznacz i przekopiuj do nowego, pustego arkusza w pliku Excel. Wykorzystując wiedzę zdobytą na studiach dotyczącą szlaków metabolicznych, skomentuj uzyskane wyniki.

4. Identyfikacja genów

Przyjrzyj się reakcjom, które reprezentowane są tylko podczas wzrostu w obecności jednego źródła węgla, a nie występują w tabeli wyników w przypadku drugiego źródła węgla. Geny można zidentyfikować na dwa sposoby:

a. W programie SurreyFBA wyszukaj w zakładce *reakcje* wybrane reakcje posługując się komendą

Edit->Search

Odczytaj nazwy genów w kolumnie "rule". Przeszukaj internetowe bazy danych (np. <u>http://www.yeastgenome.org</u>) aby znaleźć nazwy enzymów kodowanych przez te geny. Wyszukaj w ten sposób informację o genie **YLR377C**. Podaj nazwę enzymu, kodowanego przez gen. Jaką reakcję katalizuje ten enzym i w jakim szlaku metabolicznym uczestniczy?

b. Za pomocą dokumentu Excel opisującego wszystkie reakcje i metabolity. Otwórz plik essentials reactions glucose (i glycerol). W kolumnie B znajdź poszczególne reakcje. W kolumnie C wypisane są nazwy enzymów biorących udział w danej reakcji.

4.3. Analiza istotności genów – funkcja *knock-out;* opis reakcji; przebieg reakcji

1. Sprawdzanie istotności genów za pomocą funkcji *knock-out*.

Dzięki funkcji knock-out można dowiedzieć się o istotności genów biorących udział w reakcjach wewnątrzkomórkowych w określonych warunkach zdefiniowanych w zakładce *problem*. Dla każdej reakcji, program wyłącza geny biorące w niej udział (jest to symulacja delecji genu), a następnie oblicza maksymalną wartość funkcji celu (np.: objective value dla R_GROWTH). Jeżeli wartość funkcji celu wyniesie "0" oznacza to iż wyłączony podczas symulacji gen jest istotny. Innymi słowy, usunięcie genu powoduje zaburzenie ważnych szlaków metabolicznych i zahamowanie wzrostu komórek.

Direction: max V Objective: List: R_GLCxtl					
S. cerevisiae genome-scale model x					
960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Knock-out analysis					
Expression	LB	UB			
Imax: R_CBIOMASS			#		
R_GLCxtl	0.0	0.0	#		
R_GLxtl	1.0	1.0	#		

Sprawdź jakie geny są niezbędne do wzrostu drożdży na pożywce zawierającej glicerol.

W tym celu kliknij

Analyse -> Knock-out analysis.

Wpisz w polu OBJECTIVE znalezioną regułę dla reakcji GROWTH, ustaw "Direction" na max.

Kliknij:

Solve -> Write problem

Po pojawieniu się dwóch wierszy w zakładce *Problem* dodaj jeszcze jeden wiersz. W utworzonych polach wpisz nazwy reakcji dla przepływu glukozy i glicerolu. Dla **R_GLxtI** ustaw wartości LB=1, UB=1, a dla **R_GLCxtI** ustaw wartości LB i UB = 0

kliknij:

Solve -> Solve

Obliczenia potrwają kilka minut

S. cerevisiae genome-scale model x Manual x	
960 genes 775 enzymes 1562 reactions 1353 metabolites Problem Knock-out analysis	X
Record1 INFO.	
ID Transition rate	
YBL030C 0.0556717 OPTI	MAL
YBR085W 0.0556717 OPTI	MAL
YMR056C 0.0556717 OPTI	MAL
YNL141W 0.0556717 OPTI	MAL
YKL106W 0.0556717 OPTI	MAL
YLR027C 0.0556717 OPTI	MAL
YNR033W 0.0556717 OPTI	MAL
YNR016C 0.0 OPTI	MAL
YBL015W 0.0556717 OPTI	MAL
YJL200C 0.0556717 OPTI	MAL
YLR304C 0.0556717 OPTI	MAL
YKL192C 0.0556717 OPTI	MAL
YML120C 0.0556717 OPTI	MAL
YAL054C 0.0556717 OPTI	MAL
YLR153C 0.0556717 OPTI	MAL

Powtórz powyższe czynności tym razem dla glukozy (w zakładce *Problem* zmień wartości LB i UB dla odpowiednich przepływów). Wyniki wyeksportuj do osobnych plików Excel. Nazwij je knockout analysis – wzrost na glukozie oraz knockout analysis – wzrost na glicerolu. Wypisz wszystkie geny, kodujące enzymy, które są niezbędne do spełnienia funkcji celu gdy komórki rosną w pożywce zawierającej glicerol. Tą samą symulację przeprowadź dla pożywki zawierającej glukozę.

W Excelu dokonaj porównania tylko istotnych reakcji (transistion rate = 0). Zaznacz różnymi kolorami geny istotne dla wzrostu na danym źródle węgla. Zapisz plik pod nazwą: porównanie knock-out glukoza i glicerol.xls

	А	В	С	D	
1	R_ACC1	0.0	OPTIMAL	#R_ACC1	
2	R_ACC1	0.0	OPTIMAL	#R_ACC1	
3	R_ACS1	0.0	OPTIMAL	#R_ACS1	
4	R_ACS1	0.0	OPTIMAL	#R_ACS1	
5	R_ADE1	0.0	OPTIMAL	#R_ADE1	
6	R_ADE1	0.0	OPTIMAL	#R_ADE1	
7	R_ADE13_	0.0	OPTIMAL	#R_ADE13	1
8	R ADE13	0.0	ΟΡΤΙΜΛΙ	#R ADE13	1

Pamiętaj o sprawdzeniu poprawności problemu za pomocą objective value (4.1 pkt5)!

2. Umiejętność opisu reakcji

Do modelu został dołączony dokument w formacie Excel, w którym znajdują się szczegółowo opisane reakcje oraz metabolity. Dokument ułatwia zrozumienie reakcji znajdujących się w modelu. Otwórz dokument pod nazwą "opis 5 reakcji" i przeanalizuj jego zawartość.

Folder: SurreyFBA ćwiczenia - >Ćw.3 -> 2. Opis reakcji -> opis 5 reakcji.xls

Dla każdej uzyskanej reakcji (z zadania 1, pięć pierwszych nie licząc xtl), niezbędnej podczas wzrostu komórki na glicerolu, wypisz:

a) nazwy genów,

b) kompartmenty,

c) subsytemy,

d) nazwy substratów i produktów.

3. Przyporządkowanie metabolitów do oznaczeń w modelu.

Znajdź metabolit o nazwie **m794.** Kliknij:

Edit->serach-> wpisz: m794

Odpowiedz na pytania:

- a) jaka jest nazwa tego metabolitu?
- b) wypisz wszystkie reakcje, w których bierze udział i zaznacz te, w których m794 jest tylko produktem reakcji.
- c) Czy metabolit pod tą samą nazwą (nie numerem) znajduje się w innym kompartmencie? Jeśli tak, to wypisz numer/y.

4.Przebieg reakcji:

W nowym pliku Excel zapisz przebieg wyszukanych reakcji z opisem enzymów oraz metabolitów biorących udział w danej reakcji (numery oraz nazwy) począwszy od metabolitu **m1171**, skończywszy na **m1077** (5 reakcji, nie uwzględniając transportu m1171 z cytoplazmy do mitochondrium).

Ćwiczenie 5.

Analiza przepływu metabolitów (FBA) w MUFINS1.0. Wstęp do analizy sieci Petriego QSSPN (ang. *Quasi-Steady State Petri Net*).

Celem ćwiczenia jest zapoznanie się z narzędziem FBA (ang. *flux balance analysis*) służącym do analizy przepływu metabolitów w modelach w skali genomowej (GSMN). Poznamy również nowe narzędzie o nazwie QSSPN, które umożliwia integrację modeli zapisanych w różnych formatach (ang. *multi-formalism simulation*), modeli w skali genomowej omawianych na ćwiczeniu 4 i dynamicznych modeli typu sieć Petriego czy modeli kinetycznych.

Bibliografia:

1. Wu H, von Kamp A, Leoncikas V, Mori W, Sahin N, Gevorgyan A, Linley C, Grabowski M, Mannan AA, Stoy N, Stewart GR, Ward LT, Lewis DJM, Sroka J, Matsuno H, Klamt S, Westerhoff HV, McFadden J, Plant NJ, Kierzek AM. MUFINS: multi-formalism interaction network simulator. Systems Biology and Applications. 2016, 2, 16032.

5.1 Wizualizacja wyników FBA w JyMet na przykładzie modelu makrofaga myszy

Wykorzystamy do tego celu model, który został stworzony do badania reakcji typu gospodarz-patogen pomiędzy makrofagiem myszy, a *Mycobacterium tuberculosis* w czasie infekcji. Przeprowadzimy symulację, w której zostanie zobrazowany przepływ metabolitów w kierunku reakcji syntezy tlenku azotu (NO) w obecności lipopolisacharydu (LPS) oraz inhibitora kinazy Mek1 na ścieżkę sygnałową aktywującą produkcję tlenku azotu (NO) w komórce makrofaga [1].

1. Otwórz zawartość dysku C i znajdź folder **MUFINS1.0**. Ścieżka dostępu: MUFINS1.0/git/MUFINS1.0/JyMet . Następnie uruchom program **JyMet 2.34**

2. Otwórz model makrofaga **RAW264_7_r.sfba** poprzez kliknięcie File -> Open model (ścieżka dostępu

SurreyFBA\MUFINS1.0\git\MUFINS1.0_Examples\RAW264_7_r\RAW264_7_r.sfba)

Pojawi się okno dialogowe, które poinformuje nas, że metabolity zewnętrzne są niezdefiniowane.

🛃 JyMet2.34 File Edit Vie	ew Analyse Solve QSSPN	Help		internet and	
Direction: max	x Objective:	K 4000 - 411 F	Solv	er: Simplex 🔻 Reduc	ce matrix: 🔲 Comments: [
820 genes	0 enzymes 1001 reactions	1322 metabolites	Problem		-
ID	Equation	LB	UB	Rule	Comment
5 15 16 113 115 118	Data missing	etabolites in the metab	olites table, in the	problem table or by an e	xternality tag. xternality tag. 2 = il12a ab5_end (construction)

3. Kliknij przycisk OK. by potwierdzić ten komunikat.

Jak możesz zauważyć, zaimportowany model o rozszerzeniu sfba wygląda bardzo podobnie do oryginalnego modelu o rozszerzeniu sbml (patrz ćwiczenia 4). Jednakże zakładka "enzymy" pokazuje obecnie zero wpisów. Jako że format SFBA wykorzystuje tabelę powiązań genu i reakcji, enzymy są nieistotne dla działania modelu - zostały odrzucone. Import modeli w formacie SBML pozwala na zdefiniowanie powiązań gen/enzym, jednak format SFBA jest szybszy i wystarczający do symulacji, którymi będziemy się dzisiaj zajmować.

🛓 JyMet2.34	· ·					100 C 14	
File Edit Viev	w Analyse Solve	QSSPN Help					
Direction: max	▼ Objective:				Solve	r: Simplex 💌	Reduce matrix: 📃 Comments: 🗹
RAW264_7_r.	sfba x						
820 genes	0 enzymes 1661	reactions 1322	metabolites	Problem			
ID	Equ	Equation		L	IB	Rule	Comment
r3	~ akt1 = gsk3b		0.0	100.0		2	#: ~ akt1 = gsk3b @regnet 🔺
r4	~ akt1 + ~ ikk_com	iplex = tsc	0.0 100.0				#: ~ akt1 + ~ ikk_complex = tsc
r5	~ ap1 + ~ atf3 + du	mmy2 + ~ erk_1	. 0.0 100.0				#: ~ ap1 + ~ atf3 + dummy2 + ~
r6	~ atf3 + dummy3 =	~ atf3 + dummy3 = il 6		0.0 100.0			#: ~ atf3 + dummy3 = il_6 @reg
r13	~ ep2 + ~ ipr1 + necrosis xt = necro		0.0	100.0	2		#: ~ ep2 + ~ ipr1 + necrosis_xt
r15	dummy1 + ~ erk_1_2 = il12a		0.0	100.0	2		#: dummy1 + ~ erk_1_2 = il12a
r18	dummy + ~ gdi = r	ab5_end	0.0	100.0	²		#: dummy + ~ gdi = rab5_end @

4. Przejdź do zakładki "reakcje". W tym modelu równania reakcji poprzedzone znakiem "~" oznaczają inhibicję danej reakcji. Wszystkie reakcje części regulatorowej modelu są opatrzone wyrażeniem "@regnet" występującej w sekcji "komentarze". Możliwość stymulacji i inhibicji reakcji w modelu metabolicznym na skalę genomową jest istotną innowacją programu SurreyFBA-MUFINS.

5. Definiowanie metabolitów zewnętrznych (patrz ćwiczenie 4).

Metabolity zewnętrzne reprezentują zarówno źródło, jak i ujście przepływów metabolitów. Jeżeli nie zdefiniujemy metabolitów zewnętrznych, to przepływ metabolitu w sieci zawsze będzie wynosił 0, gdyż nie będzie jego źródła. W tym modelu metabolity zewnętrzne mają w swoich oznaczeniach rozszerzenie "_xt" (np. phd_xt). Z tego

powodu, aby program mógł poprawnie rozpoznać metabolity zewnętrzne, należy je zdefiniować w następujący sposób:

Kliknij:

Solve -> Externality tag

Po wyświetleniu okna dialogowego należy wpisać odpowiednią dla tego modelu etykietę zewnętrznych metabolitów ("_xt").

6. Otwarcie problemu.

Aby rozpocząć symulację należy otworzyć plik z opisem problemu.

Kliknij:

File -> Open problem, wybierz Model -> Folder RAW 264.7 -> otwórz plik: simulate.pfile

🐇 JyMet2.34	1.0				-		
File Edit Vie	ew Analyse	Solve QSSPN H	elp				
Direction: ma	x 🔻 Objectiv	ve:	ηλ.		Solv	er: Simplex 💌 Reduce matrix: 🗌 Comments: 🗹	
RAW264_7_1	r.sfba x						
820 genes	0 enzymes	1661 reactions	1322 metabolites	Problem			
Expression		LB		UB	Comment		
!max: M_no_e	_xt			-		#	
R_biomass			0.028	0.0281		# Value used by Brodbar et al 2012 for NOS2 si	
mek inhibitor		0.0	0.0		# Treatment with inhibitor of erk phosphorylation		
lps_input			0.0	100.0		# LPS treatment	
cd14_input			0.0	100.0		# cd14_xt = cd14. Constitutive expression of cd	
r145			0.0	0.005		# jnk = inos. We assume that jnk is less potent	
r102			0.0	0.005		# hif1 = inos. We assume that jnk is less potent	
r208			0.0	0.005		# pkc_a_b = erk_1_2. We assume that pkc_a_t	
;				1		#	
!max: M_no_e	_xt			1		#	
R_biomass			0.028	0.0281		# Value used by Brodbar et al 2012 for NOS2 si	
mek_inhibitor	mek inhibitor		100.0	100.0		# Treatment with inhibitor of erk phosphorylation	
lps_input		0.0	100.0		# LPS treatment		
cd14_input		0.0	100.0		# cd14_xt = cd14. Constitutive expression of cd		
r145		0.0	0.005		# jnk = inos. We assume that jnk is less potent		
r102			0.0	0.005		# hif1 = inos. We assume that jnk is less potent	
r208			0.0	0.005		# pkc_a_b = erk_1_2. We assume that pkc_a_t	
						#	

W pliku zdefiniowane są trzy różne symulacje oddzielone znakami ";". Te eksperymenty *in silico* pozwalają na zbadanie wpływu LPS oraz inhibitora kinazy Mek1 na maksymalny współczynnik produkcji tlenku azotu (II) jako czynnika biorącego udział w odpowiedzi immunologicznej.

Dla każdego problemu, wartość "Objective function" jest nastawiona na maksymalną produkcję tlenku azotu (II) w środowisku zewnętrznym (!max: M_no_e_xt). Kolejne rzędy są parametrami danych reakcji, włączając wymagany wzrost (R_biomass), poziom inhibitora MEK1 (mek_inhibitor) oraz LPS (lps_input), a także maksymalny przepływ dla trzech reakcji w ścieżce regulatorowej (r145, r102, r208).

Patrząc na wartości dla inhibitora Mek1, możesz zauważyć, że jedyną różnicą pomiędzy symulacją pierwszą, a drugą jest brak oraz obecność inhibitora MEK1 (patrz LB i UB). Trzeci problem zakłada brak inhibitora Mek1 oraz brak LPS.

7. Przeprowadzenie Flux Balance Analysis (FBA).

Analiza FBA jest szeroko stosowana do badania sieci powiązań biochemicznych w szczególności rekonstrukcji sieci metabolicznych w skali genomowej (GSMN) zawierających dane na temat wszystkich poznanych reakcji metabolicznych wraz z genami, które kodują poszczególne enzymy danego organizmu. FBA oblicza przepływ metabolitów przez sieć metaboliczną, a tym samym pozwala na przewidzenie tempa wzrostu organizmu oraz szybkości produkcji interesującego nas metabolitu.

Kliknij:

Analyze -> FBA

🛓 JyMet2.34	8 A				
File Edit View	Analyse Solve QSSPN Hel	p			
Direction: max	 Objective value Objective value and status FBA 			Solver: Si	mplex 💌 Reduce matrix: 🗌 Comments: 🗹
820 genes 0	O FVA	322 metabolites	Problem]	
	Knock-out analysis	LB		UB	Comment
!max: M_no_e_xt	O Essential reactions	0.000	0.0004		#

Następnie:

Solve -> Solve

🛃 JyMet2.34						
File Edit View Analyse Solve	File Edit View Analyse Solve QSSPN Help					
Direction: max Objective:		Solver: Simplex V Reduce matrix: Comments:				
RAW264_7_r.stba x 820 genes 0 enzymes 1661 Record1 Record2 Record3	reactions 1322 metabolites	Problem FBA x				
ID	Transition rate	Comment				
		#0.0777853: OPTIMAL (M_no_e_xt)				
R_10FTHF5GLUti	0.0	#: M_10fthf5glu_c = M_10fthf5glu_l				
R_10FTHF5GLUtm	0.0	#: M_10fthf5glu_m = M_10fthf5glu_c				
R_10FTHFtl	0.0	#: M_10fthf_c = M_10fthf_I				
R_10FTHFtm	0.0	#: M_10fthf_c = M_10fthf_m				
R_13DAMPPOX	0.0	#: M_13dampp_c+M_h2o_c+M_o2_c=M_bamppald_c+M_h2o2_c				
R_1MNCAMti	9.78483e-13	#: M_1mncam_c + M_atp_c + M_h2o_c = M_1mncam_e + M_adp_c +				
R_1PPDCRp 0.0		#: M_1pipdn2c_x + M_h_x + M_nadh_x = M_Lpipecol_x + M_nad_x				
R_2AMADPTm -0.0901481		#. M_L2aadp_c + M_akg_m = M_L2aadp_m + M_akg_c				
R_2DR1PP 2.24225e-24		#: M_2dr1p_c + M_h2o_c = M_drib_c + M_pi_c				
R_2HBO 0.0		#. M_2hb_c+M_nad_c=M_2obut_c+M_h_c+M_nadh_c				
R_2HBt2	0.0	#: M_2hb_e + M_h_e = M_2hb_c + M_h_c				
R_2HC03_NAt	-10000.0	#: 2.0 M_hco3_e + M_na1_e = 2.0 M_hco3_c + M_na1_c				

Gdy symulacja zostanie przeprowadzona, wyniki są umieszczone w formie tabeli, przy czym każda symulacja z pliku problemu jest przedstawiona w oddzielnej zakładce ("Record1-3"). Ponadto zakładka "INFO" zawiera dziennik symulacji, w tym poleceń używanych do uruchomienia narzędzia symulacyjnego.

🛓 JyMet2.34				
File Edit View Analyse Solve	QSSPN Help			
Direction: max Objective: RAW264_7_r.sfba_x		Solver: Simplex 💌 Reduce matrix: 🗌 Comments: 🗹		
820 genes 0 enzymes 1661 Record1 Record2 Record3	I reactions 1322 metabolites	Problem FBA x		
ID	Transition rate	Comment		
		#0.0777853: OPTIMAL (M_no_e_xt)		
R_10FTHF5GLUti	0.0	#: M_10fthf5glu_c = M_10fthf5glu_l		
R_10FTHF5GLUtm	0.0	#: M_10fthf5glu_m = M_10fthf5glu_c		
R_10FTHFtl	0.0	#. M_10fthf_c = M_10fthf_l		
R_10FTHFtm	0.0	#: M_10fthf_c = M_10fthf_m		

Przed przystąpieniem do wizualizacji należy ograniczyć ilość reakcji, która będzie brała udział w procesie. Jest to związane z wykorzystaniem mniejszej mocy obliczeniowej komputera. Dlatego następnymi etapami są:

- a. wybór elementów sieci, które nas interesują najbardziej
- b. wybór jedynie reakcji, które mają niezerowe wartości przepływu metabolitów.
- 8. Wybór interesujących nas reakcji.

W tym ćwiczeniu, zawęzimy symulację do ścieżki sygnałowej. W tym modelu, wszystkie reakcje regulatorowe mają dodane w komentarzach "@regnet". Będziemy się dalej zajmować tylko tymi reakcjami. Wyszukaj je dzięki: Edit -> Search -> "@regnet"

9. Wybór reakcji z wartością przepływu inną od zera.

Kliknij na nagłówek kolumny "Transition rate". Pozwoli Ci to uszeregować metabolity od najwyższej do najniższej wartości przepływu. Zaznacz wszystkie reakcje, których przepływ jest różny od zera.

🛃 JyMet2.34					×						
File Edit View	Analyse Solve	QSSPN H	elp								
Direction: max	Objective:			Solver: Simplex 💌 Reduce matrix: 🗌 Comme	ents: [
RAW264_7_r.st	fba x										
820 genes	enzymes 1661	reactions	1322 metabolites P	roblem FBA x							
Pocordi Po	Cord2 Pocord3	INFO									
Recordin	COTUZ NECOTUS	IN 0.		1 <u>0</u> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)							
	ID	Т	ransition rate 💌	Comment	10						
cd14_input		0.0388927		#: cd14_xt = cd14 @regnet	-						
r71		0.0388927		#: cd14 + lps = tir4 @regnet							
Ips_input		0.0388927		#: lps_xt = lps @regnet							
R_NUS2		0.0388927		# M_nadph_c + 2.0 M_nwharg_c + 2.0 M_o2_c + & inos = 2.0 M_citr_DAS							
190		0.0288927		#. erk_1_2 + ~ p38 = mos @regnet							
1101		0.0288927		#. mexi + ~ mexi_xi + ~ pipu_xi - eix_1_2 @regnet							
1221		0.0200927		# rac - raf 1 @regnet							
1220		0.0200327		# rashefth = ras @regnet							
r269		0.0200327		# tir4 = rasgef1b @regnet							
r130		0.01		#: ~ a20 + irak4 = traf6 @regnet							
r23		0.01		#: ~ irakm + mvd88 = irak4 @regnet							
r265		0.01		#: tirap_mal = mvd88 @regnet							
r272		0.01		#: tir4 = tirap mal @regnet							
r284		0.01		#: traf6 = tak_tab @regnet							
r164		0.005		#: ~ dusp1 + mkk_3_6 = jnk @regnet							
r102		0.005		#: hif1 + ~ p38 = inos @regnet							
r34		0.005		#: hif1a + ~ phd = hif1 @regnet							
r113		0.005		#: ikk_complex = hif1a @regnet							
r145		0.005		#: jnk + ~ p38 = inos @regnet							
r257		0.005		#: tak_tab = ikk_complex @regnet							
r258		0.005		#: tak_tab = mkk_3_6 @regnet							
r242		0.0		#: ~ a20 + rip2 = traf6 @regnet							
r4		0.0		#: ~ akt1 + ~ ikk_complex = tsc @regnet							
r178	r178 0.0 #: ~ akt1 + nod2 = caspase9 @regnet										

10. Generowanie wizualizacji w JyMet

By automatycznie wygenerować wizualizację, należy skorzystać z funkcji:

View -> Layout -> hierarchical

Układ przepływów zostanie przedstawiony jako Sieć Petriego (graf dwudzielny), gdzie prostokąty reprezentują tzw. "przejścia", a okręgi reprezentują "miejsca". Strzałki oznaczają przepływ metabolitów, przy czym przerywane linie zakończone kółkiem bez wypełnienia oznaczają inhibicję, zaś takie z wypełnieniem, oznaczają aktywację.

Powinieneś otrzymać:

Poprzez kliknięcie na prawy przycisk myszy możesz znaleźć narzędzie do zbliżenia/ oddalania obrazu, tak, by uzyskać obraz całej sieci:

Zapisz wizualizacje poprzez kliknięcie:

File -> Save graph (na pulpicie)

Możesz otworzyć później ten plik w JyMet używając:

View -> Layout -> Custom

11. Jakie możesz wyciągnąć wnioski? Spójrz na wartość przepływu (Flux) dla reakcji powstawania NO w komórce (reakcja: R_NOS2). Jak inhibitor Mek1 wpływa na produkcję NO? Jak LPS wpływa na ścieżkę sygnałową?

12. Zamknij program

5.2 Dynamiczne FBA (dFBA). Symulacja QSSPN (ang. *Quasi-Steady State Petri Net*) ścieżki sygnałowej kortyzolu w wątrobie ludzkiej.

Kortyzol to ważna cząsteczka sygnałowa, która działa m.in. w czasie odpowiedzi organizmu na stres. Poziom kortyzolu we krwi jest rozpoznawany przez trzy receptory: receptor glukokortykoidowy (GR), receptor pregnanu X (PXR) oraz receptor mineralokortykoidowy (MR). Tak więc sygnał kortyzolu musi być rozpoznany przez trzy niezależne ścieżki sygnałowe, aby mogło dojść do reakcji organizmu. W dalszej części ćwiczeń będziemy pracować z modelem w skali genomowej metabolizmu komórki wątroby ludzkiej, połączonym z modelem dynamicznym regulacji poziomu glukozy i mleczanu we krwi (model ODE, ang. *Ordinary Differential Equation*). Razem modele te tworzą tzw. dynamiczne FBA (dFBA). W modelu tym ustawiono jako funkcję celu regenerację glukozy z mleczanu.

dFBA zostało połączone w sieci Petriego z modelem ścieżki sygnałowej kortyzolu. Zintegrowanie modeli, zapisanych w różnych formatach jest możliwe dzięki zastosowaniu tzw. MUFINS (ang. *MUlti-Formalism Interaction Network Simulator*). W SurreyFBA osiągnięto to przy pomocy narzędzia QSSPN [1].

1. Przeprowadzanie symulacji QSSPN w JyMet2.34

Aby przeprowadzić symulację w JyMet należy załadować trzy pliki. Pierwszy jest modelem w formacie GSMN, który został nazwany **recon2_xt.PIPES.CORE.v1.sfba**. Otwórz go za pomocą:

File -> Open model (ścieżka dostępu: C:SurreyFBA\MUFINS1.0\git\MUFINS1.0_Examples\NR_Recon2) Powinieneś

otrzymać taki wynik:

🛃 JyMet2.34	ing on t	he complexity	of the mo	odel, and he	ence execu		5
File Edit View	Analyse So	olve QSSPN Help					
Direction: max	Objective: S.CORE.v1.sfb	ax		Solve	r: Simplex 💌	Reduce matrix: 🗌 Comments: [~
2169 genes	0 enzymes	7440 reactions 576	4 metabolites	Problem			
ID		Equation	LB	UB	Rule	Comment	
R_10FTHF5GLUt	I M_10fthf5glu	_c = M_10fthf5glu_l	0.0	1000.0		#5-glutamyl-10FTHF transport,	
R_10FTHF5GLU.	M_10fthf5glu	_m = M_10fthf5glu_c	0.0	1000.0		#5-glutamyl-10FTHF transport,	
R_10FTHF6GLUt	I M_10fthf6glu	_c = M_10fthf6glu_l	0.0	1000.0		#6-glutamyl-10FTHF transport,	
R_10FTHF6GLU.	M_10fthf6glu	_m = M_10fthf6glu_c	0.0	1000.0		#6-glutamyl-10FTHF transport,	
R_10FTHF7GLUt	I M_10fthf7glu	_c = M_10fthf7glu_l	0.0	1000.0		#7-glutamyl-10FTHF transport,	
R_10FTHF7GLU.	M_10fthf7glu	_m = M_10fthf7glu_c	0.0	1000.0		#7-glutamyl-10FTHF transport,	
R_10FTHFtI M_10fthf_c = M_10fthf_I			-1000.0	1000.0		#10-Formyltetrahydrofolate lysc	
R_10FTHFtm M_10fthf_c = M_10fthf_m			-1000.0	1000.0		#10-Formyltetrahydrofolate mite	
R_11DOCRTSLt M_11docrtsl_c = M_11docrtsl_m			-1000.0	1000.0		#11-deoxycortisol intracellular t	
R_11DOCRTSLtr M_11docrtsl_c = M_11docrtsl_r			-1000.0	1000.0		#11-deoxycortisol intracellular t	
R_11DOCRTST M_11docrtstrn_c = M_11docrtstrn_m			-1000.0	1000.0		#11-deoxycorticosterone intract	
R_11DOCRTST	. M_11docrtst	rn_c = M_11docrtstrn_r	-1000.0	1000.0		#11-deoxycorticosterone intrac	

Nie musisz zaznaczać metabolitów zewnętrznych (Solve -> Externality tag), ponieważ wszystkie dane dla modelu będą wczytane potem, razem z plikiem kontrolnym (patrz niżej).

Następnym plikiem, który musisz załadować jest plik Snoopy (z rozszerzeniem SPEPT). Można to zrobić poprzez kliknięcie:

QSSPN -> Import SPEPT oraz wybranie pliku NR_Recon2.v3.1.spept

Pojawi się okno dialogowe z komendą "Set default maximal number of tokens". Należy zostawić wartość 2 dla symulacji jakościowych (dla symulacji ilościowych należy wybrać maksymalnie dużą liczbę, więc wpisujemy 1e9).

Powinieneś/naś otrzymać dane w okno jak poniżej:

الله JyMet2.34				con mence
File Edit View Analyse Solve	QSSPN Help			
recon2_xt.PIPES.CORE.v1.sfba x	QSSPN_mod abolites Enzym	el.tm x		
PN node	Initial tokens	Maximal tokens	Node type	Monitor
PXR_mRNA	0	2	1	
PXR	0	2	1	
PXR_active	0	2	1	

Ostatnim plikiem, który trzeba otworzyć jest plik kontrolny. Kliknij:

QSSPN -> Load control i załaduj plik tekstowy NR_Recon2.v3.1.ctrl.txt

Twoja zakładka "Control" powinna wyglądać następująco:

المعالم		1 X				
File Edit View Analyse Solve QSSPN Help						
recon2_xt.PIPES.CORE.v1.sfba x QSSPN_model.tm x						
PN nodes Interactions Metabolites Enzymes Control						
Parameters InitialStates Functions FluxMap						
Control parameter	Value					
MODEL	./recon2_xt.PIPES.CORE.v1.sfba					
NUMBER_OF_SAMPLES	1					
SEED	761	-				
TIME_MAX	3000.0					
MAXIMAL_TIMESTEP	0.01	-				
MAX_CHANGE	0.01	- 8				
OUTPUT	./output.xls	-				
LOG	./log.txt					
MONITOR	100					
QSSPN_ALGORITHM	SIMULATION					
GSMN_MODEL	Recon2_PIPES					
GSMN EXT TAG	xt					

Plik kontrolny zawiera parametry dla symulacji, m.in. takie jak: model, w którym przeprowadzamy symulacje (wiersz "MODEL"), ile razy symulacja ma być przeprowadzona (wiersz "NUMBER_OF_SAMPLES"), czas trwania symulacji, czyli czas w którym będziemy obserwować zmiany poziomów metabolitów (wiersz "TIME_MAX). Jak możesz zauważyć, w wierszu "GSMN_EXT_TAG" jest także zdefiniowane rozszerzenie dla metabolitów zewnętrznych.

Gdy już wszystkie niezbędne pliki zostały załadowane, można przeprowadzić symulacje. Kliknij:

QSSPN -> Run

Po kliknięciu "Run" twój plik kontrolny automatycznie zmieni swój wygląd:

ا المعالم المعا							
File Edit View Analyse Solve QSSPN Help							
recon2_xt.PIPES.CORE.v1.stba_xOSSPN_model.tm_x							
PN nodes Interactions Metabolites Enzymes Control							
Parameters InitialStates Functions FluxMap							
Control parameter	Value						
MODEL	gsmn.tmp						
NUMBER_OF_SAMPLES	1						
SEED	761						
TIME_MAX	3000.0						
MAXIMAL_TIMESTEP	0.01						
MAX_CHANGE	0.01						
OUTPUT	./output.xls						
LOG	./log.txt						
MONITOR	100						
QSSPN_ALGORITHM	SIMULATION						
GSMN_MODEL	Recon2_PIPES						
GSMN EXT TAG	xt						

Gdy program zakończy niezbędne obliczenia, zobaczysz nowy wiersz w tabeli o nazwie "Output". Zawiera on dane dla wszystkich elementów sieci Petriego. Dane te możemy zwizualizować. Zaznacz kolumnę z wartościami dla poziomu kortyzolu we krwi:

🀇 JyMet2.34	1	-		1			_								
File Edit \	View Analy	se Solve	QSSPN Hel	p											
recon2_xt.	PIPES.CORE	v1.sfba x	NR_Reco	n2.v3.1 x	QSSPN_mo	del.tm x									
PN nodes	Interactio	ns Metab	olites En	zymes Co	ntrol Outr	nut x Pic	t trajectory	x							
I I I I I I I I I I I I I I I I I I I															
Sample1															
Time	Event	CYP3A4	GR	GR_cort	Glucose	Glucose_r	Lactate	Lactate_c	PXR	PXR_active	cortisol	cortisol_bl	estradiol	estradiol	ligand2
0	none	705.721	16.1833	9.4	0	0	10	0	50.2991	0.055	1.14	0	0.15	0	0.001
4.86952e	none	2	2	2	0	8.48994	2	-0.0565	2	0.0549476	1.14003	0	0.15	-2.27374e	0.00102677
1.31711e	none	2	2	2	0	8.48994	2	-0.0565	2	0.0548566	1.14007	0	0.15	-2.27374e	0.00107235
3.56253e	none	2	2	1.99999	0	8.48994	2	-0.0565	2	0.0546113	1.1402	0	0.15	-2.27374e	0.00119525
9.63591e	none	2	2	1.99998	0	8.48994	2	-0.0565	2	0.0539533	1.14054	0	0.15	-2.27374e	0.00152495
0.000260	none	2	2	1 00005	0	8 48004	2	-0.0565	2	0.0522120	1 14144	0	0.15	-2 273740	0.00230702

Następnie kliknij:

Plik zawierający wyniki jest automatycznie zapisywany w folderze MUFINS1.0 -> MUFINS1.0. Można go otworzyć, np. w programie Excel.

Wykres pokazuje, jak nadmiar kortyzolu jest degradowany w komórce. Następnie jego poziom osiąga nowy stan równowagi.

Wykonaj podobną operację (symulację) z użyciem danych poziomu mleczanu we krwi w czasie. Jakie wnioski wyciągniesz z tej obserwacji? Jak zmienia się stężenie mleczanu we krwi, przy zmianie stężenia kortyzolu?

Możesz przyjrzeć się sieci Petriego w programie Snoopy 1.21.

- 1. Uruchom program.
- Zainstaluj program (Uwaga: jeżeli pomimo zainstalowania programu, nie możesz otworzyć plików o rozszerzeniu SPEPT, znajdź na dysku nauczycielskim plik instalacyjny dla sterownika o nazwie vc_redist.x64 i zainstaluj go).
- 3. Snoopy 1.21

Snoopy umożliwia zapisanie modelu w formacie sieci Petriego oraz wizualizację grafów. Kluczowym elementem w symulacjach dynamicznych jest powodowanie perturbacji w systemie, aby obserwować zachodzące zmiany.

Włącz program Snoopy. Upewnij się, że po lewej stronie widzisz okno z napisem "Hierarchy". Jeżeli nie widzisz takiego okna, to kliknij:

View -> Toggle Hierarchy browser

Następnie znajdź folder **NR_Recon2** (ścieżka dostępu C:SurreyFBA\NR_Recon2) i załaduj plik **NR_Recon2.v3.1**

W oknie "Hierarchy" znajdź i kliknij dwa razy lewym przyciskiem myszy na cortisol_burst.

Powinno się pojawić nowe okienko, z tą podsiecią.