
Enterprise Electronization and Integration 213

Components and the Enterprise
As distributed applications are built from simple components and I nternet

protocols emerged, a new set of enterprise platform services for component
applications will be required. To address enterprise requirements for distrib-
uted component architecture without sacrificing rapid development and cost
effectiveness, Microsoft is integrating DCOM into the Active Server. The
Active Server is a series of technology services that speed deployment of
component-based applications for the Internet and corporate intranets. These
services include:

• Transactions—traditional rollback and recovery for component-based
applications in the event of system failure.

• Queuing—integration of component communication withreliablestore-
and-forward queues, which enables component applications to operate
on networks that are occasionally unavailable.

• Server scripting—easy integration of component applications on the
server with HTML-based Internet applications.

• Legacy access—integration of component applications with legacy
production systems, includingmainframesystemsrunningCICS and IMS.

The Active Server technologies use publicly obtainable Internet protocols
and are currently available5.

MICROSOFT .NET FRAMEWORK6

Microsoft evolves from the COM-DNA platform to the new .NET
platform designed to simplify application development in the highly distributed
environment of the Internet. This is atransformation from desktop applications
to the distributed GUI-based .NET applications. The .NET Framework
affects all of Microsoft's products, from operating systems, servers, and
middleware to applications. All these products are capable of handling and
processing .NET traffic and leveraging the .NET infrastructure. These prod-
ucts will transform to Windows.NET, Office.NET, MSN.NET, and so forth.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



214 Targowski

The .NET Framework is aimed to develop a new software platform that
is independent of an operating system, components, and applications that are
written to run on the virtual machine. The .NET virtual machine is Common
Language Runtime (CLR), which can be aplatform for applications written in
any language, unlike JVM (Java Virtual Machine) which accepts applications
written only in Java. Micosoft designed .NET to be a very friendly environment
for applications, particularly those written in Visual Basic and C#. The .NET
Framework supports any of a variety of languages. It also relies on XML
coupled with SOAP (Simple Object Access Protocol) to link components
running on distributed .NET platforms.

Since COM is too embedded in Windows, Microsoft is replacing DCOM
with XML and SOAP while transforming from Windows to the .NET Frame-
work7.

The architecture of the .NET Framework is shown in Figure 5-8.
The .NET Framework has four main components:

1. The Common Language Runtime (CLR)

2. The .NET Framework Class Library

3. Communication Protocols

4. VisualStudio.NET

Common Language Runtime (CLR)
The Common Language Runtime is the foundation of the .NET Frame-

work. You can think of the runtime as an agent that manages code at execution
time, providing core services such as memory management, thread manage-
ment, and remoting, while also enforcing strict safety and accuracy of the code.
In fact, the concept of code management is a fundamental principle of the
runtime. Code that targets the runtime is known as managed code; code that
does not target the runtime is known as unmanaged code.

Managed components are awarded varying degrees of trust, depending on
a number of factors that include their origin (such as the Internet, enterprise
network, or local computer). This means that a managed component might or
might not be able to perform file-access operations, registry-access opera-
tions, or other sensitive functions, even being used in the same active applica-
tion.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Enterprise Electronization and Integration 215

The runtime enforces security in a way that enables users to trust that
although an executable attached to an e-mail can play an animation on screen
or sing a song, it cannot access their personal data, file system, or network. The
security features of the runtime thus enable legitimate Internet-deployed
software to be exceptionally feature-rich. The runtime also enforces code
robustness by implementing a strict type- and code-verification infrastructure
called the common type system (CTS). The CTS ensures that all managed
code is self-describing. The various Microsoft and third-party language
compilers generate managed code that conforms to the CTS. This means that

Figure 5-8: The Architecture of Microsoft .NET Framework within the
Microsoft Software Tools Environment (The Targowski Model)

S
•5©.
3

Visual Studio NfT I
Enterprise Solutions

Enterprise Commerce Enterprise Management
Enterprise Components Enterprise Database

Enterprise Solutions & Integration

- A
—V

li
Smart Client

Web Interfaces Web Applications
Mobile Web Interfaces Mobile Applications

Windows Applications Windows Collaboration
;:,.••• . • , 3 i

II
XML Web Services and Server Components

Business Components Data Components Portal
Components

J±
Data Services

Data Workflow Data Access Database Data Integration
OLAP

-If. n
Common Languaae Runtime (CLR)

Visual Basic ;NET: Visual C#.NET visual C++ -NET Other

.NET Framework

,'Y,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



216 Targowski

managed code canconsume other managed classes, types, and objects, while
strictly enforcing type fidelity and type safety.

The runtime, coupled with the CTS, also accelerates developer produc-
tivity. For example, programmers can use their favorite development language,
being absolutely assured that they can still take full advantage of the runtime, the
class library, and components written in other languages by other developers.
Any compiler vendor who chooses to target the runtime can do so. Language
compilers that target the .NET Framework make the features of the .NET
Framework available to existing code written in that language, thus greatly
easing the migration process for existing applications.

Although the runtime is designed for the software of the future, it also
supports software of today and yesterday. Interoperability between managed
and unmanaged code enables developers to continue to use necessary COM
components and DLL's. The runtime is designed to enhance performance. A
feature called Just-In-Time (JIT) compiling enables all managed code to run in
the native machine language of the system on which it is executing.

Finally, the runtime can be hosted by high-performance, server-side
applications, such as Internet Information Services (IIS) and Microsoft® SQL
Server, (www.microsoft.com).

.NET Framework Class Library
The .NET Framework class library is a comprehensive, object-oriented

collection of reusable classes that you can use to develop applications ranging
from traditional command-line or graphical user interface (GUI) applications to
applications based on the latest innovations provided by ASP.NET and Web
Services. The class library builds on the object-oriented nature of the runtime,
providing types from which your own managed code can derive functionality.
This not only makes the .NET Framework types easy to use, but also reduces
the learning curve associated with using anew piece of code. In addition, third-
party components can integrate seamlessly with the classes in the .NET
Framework.

As you would expect from an object-oriented class library, the .NET
Framework types enable you to accomplish a range of common programming
tasks, including tasks such as string management, data collection, database
connectivity, and file access. In addition to these common tasks, the class
library includes types that support a variety of specialized development
scenarios.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Enterprise Electronization and Integration 217

For example, you can use the .NET Framework to develop the following
types of applications and services:

• Console applications

Scripted or hosted applications

• Windows GUI applications (Windows Forms)

• ASP.NET applications (Active Server Pages)

• Web Services

• Windows 2000 and Windows NT services

For example, the Windows Forms classes are a comprehensive set of
reusable types that vastly simplify Windows GUI development. If you are
writing an ASP.NET application or Web Service, on the other hand, you use
different classes, such as the Web Forms classes (www.microsoft.com).

Communication Protocols
The communication protocols form the foundation of the .NET Frame-

work, which develops distributed applications that inter-operate through the
Internet; therefore they must do this by complying with a common communica-
tion protocol. The current practice with the set of Remote Procedure Call
(RPC) technologies has too many limitations that make an application not fully
inter-operational. Rather than develop a brand-new protocol to overcome the
shortcomings of COM/DCOM and CORB A, Microsoft decided to build the
.NET Framework on top of a set of standard, open, XML-based protocol such
as Simple Object Access Protocol (SOAP), Universal Discovery, Description
and Integration (UDDI), and Web Service Definition Language (WSDL).

This protocol transmits SOAP, UDDI, and WSDL messages as a plain
text, so it is platform neutral. There is no need to write a bridge to translate a
method call from one Object RPC to another. A SOAP message looks the
same on Linux as it does on Windows as it does on AS/400. Since these
protocols are open standards, they can be implemented anywhere in the
manner that is most appropriate for the platform. On the Microsoft platform,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



218 Targowski

a SOAP server is targeted at IIS and written in either ASP or ISAPI
(www.microsoft.com).

Visual Studio .NET
To succeed in today' s business environment, applications must be more

scalable, reliable, and flexible than ever before. At the same time, the fast pace
of business change means that developers must design and launch enterprise
applications in days or weeks rather than months or years. Microsoft Visual
Studio is a complete enterprise-class development system that helps develop-
ers meet those demands by providing the tools to create powerful, mission-
critical applications—quickly and efficiently.

Visual Studio offers a wide range of features and tools designed specifi-
cally to support team-based application development efforts, including teams
that are geographically dispersed. The distributed Web project model uses
HTTP for all authoring operations, so that developers working in different
locations can collaborate on the creation of sophisticated Web applications.
With a Visual Component Manager, developers can find, track, catalog, and
reuse components easily. For better version control, Microsoft Visual
SourceSafe® provides complete code source control and file-locking features
forteam development projects fromany tool within the Visual Studio develop-
ment suite.

Developers can use a familiar, shared development environment and the
programming languages they already know. Pre-built components, program-
ming wizards, and the ability to reuse components written in any language can
cut the development cycle time significantly. IntelliSense®-based code comple-
tion enables developers to produce accurate code more quickly. Finally,
powerful end-to-end, cross-language debugging support, coupled with cross-
language debugging, helps development teams get applications up and running
more rapidly.

Increasingly, all business is e-business. Enterprises look to the Internet as
an essential medium not only for communications but also for commerce and
operational efficiency. The Visual Studio delivers highly scalable, data-driven
websites and applications. Its wide range of database programming and design
tools utilize the Microsoft Universal Data Access technology. Developers can
use powerful point-and-click database diagrams and graphical tools for
creating tables, relationships, stored procedures, and database functions for
Microsoft SQL Server™ and Oracle databases. ActiveX® Data Objects

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Enterprise Electronization and Integration 219

enable easy access to information from all industry-leading data sources,
including Microsoft SQL Server, Microsoft Access, Microsoft FoxPro®,
Oracle, and IBM mainframe and AS/400 databases. The Microsoft Data
Engine ensures full compatibility with large SQL Server databases.

Developers can also choose the programming language they know best—
and the language that is best suited to the solution, including Microsoft Visual
Basic®, Visual C++®, Visual J++®, and Visual FoxPro*.

Thin-client, HTML-based front ends make it easy to depl oy the results to
any desktops running virtually any operating system (www.microsoft.com).

Client Application Development in .NET
Client applications are the closest to a traditional style of application in

Windows-based programming. These are the types of applications that bring
up Windows or Forms on the desktop and which you use to perform a task.
Client applications include applications such as word-processors and spread-
sheets, as well as custom business applications such as data-entry tools,
reporting tools, and so on. Client applications usually employ windows, menus,
buttons, and other GUI elements, and they likely access local resources such
as the file system and peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now
replaced by the managed Windows Forms control) deployed over the Internet
as a Web page. These types of applications are much like other client
applications, in that they are executed natively, have access to local resources,
and include graphical elements.

In the past, developers created such applications using C/C++in conjunc-
tion with the Microsoft Foundation Classes (MFC) or with a rapid application
development (RAD) environment such as Microsoft® Visual Basic®. The
.NET Framework incorporates aspects of existing products into a single,
consistent development environment that simplifies the development of client
applications.

The Windows Forms classes contained in the .NET Framework are
designed to be used for GUI development. You can easily create command
windows, buttons, menus, toolbars, and other screen elements with the
flexibility necessary to accommodate shifting business needs.

For example, the visual attributes of forms often need to be modified during
the life of an application. Forms are implemented using a window from the
underlying operating system. However, some visual changes might not be

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



220 Targowski

supported by the underlying operating system for existing windows. Changes
to visual features of that type can require the creation of an entirely new
window. In unmanaged applications, such a visual feature wouldprobably be
discarded, due to the complexity of updating it. In managed code, however,
when you change a Windows Form object, the framework creates a new
operating system window object and automatically moves the relevant state
from the old window to the new window. This is j ust one of many examples of
the ways in which the framework homogenizes the developer interface, thus
making coding simpler and more consistent.

The runtime's built-in security and deployment features can revive the
client application in some innovative ways. For example, many applications
that once needed to be installed on a user's system can now be deployed
through the Web. This is possible because code-access security limits what a
piece of software can do, even though the software is running in native machine
language. In fact, a single Web-deployed application can comprise various
components distributed from any number of different websites. In such a case,
obj ect methods provided by one vendor can have different security rights than
object methods provided by a second vendor, even though they are used
together to create a single application running in a single system process.

Unlike ActiveX controls, Windows Forms controls enjoy semi-trusted
access to a user's machine. This means that binary or natively executing code
can access some of the resources on the user's system (such as GUI elements
and limited file access), without being able to undermine a user's system
(www.microsoft.com).

Server Application Development in .NET
Web Services, an important evolution in Web-based technology, are

distributed, server-side application components similar to common websites.
However, unlike Web-based applications, Web Services components have no
UI and are not targeted for browsers such as Internet Explorer and Netscape
Navigator. Instead, Web Services consist of reusable software components
designed to be consumed by other applications, such as traditional client
applications, Web-based applications, or even other Web Services. As a
result, Web Services technology is rapidly moving application development
and deployment into the highly distributed environment of the Internet.

ASP.NET (Active Server Pages) is the hosting environment that enables
developers to use the .NET Framework to target Web Services applications.
Both Web Forms and Web Services use Internet Information Server (IIS) as

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Enterprise Electronization and Integration 221

the publishing mechanism for applications, and both have a collection of
supporting classes in the .NET Framework. ASP.NET is more than the next
version of Active Server Pages (ASP); it is a unified Web development
platform thatprovides the services necessary for developers to build enter-
prise-class Web applications. While ASP.NET is largely syntax compatible
with ASP, it also provides a new programming model and infrastructure that
enables a powerful new class of applications.

ASP.NET has been designed to work seamlessly with WYSIWYG
PITML editors and other programming tools, including Microsoft Visual
Studio.NET. This makes Web development easier, but it also provides the
benefits that these tools have to offer, including a GUI that developers can use
to drop server controls onto a Web page, as well as fully integrated debugging
support.

Developers can choose from two programming models when creating an
ASP.NET application, or combine these in any way they see fit:

• Web Forms allows you to build powerful forms-based Web pages. When
building these pages, you can use ASP.NET server controls to create
common UI elements and program them for common tasks. These
controls allowyou to rapidly build up a Web Form out of reusable built-
in or custom components, simplifying the code of a page.

• A Web service is a way to access server functionality remotely. Using
services, businesses can expose programmatic interfaces to their data or
business logic, which in turn can be obtained and manipulated by client and
server applications. Web services enable the exchange of data in client-
server or server-server scenarios, using standards like HTTP and XML
messaging to move data across firewalls. Web services are not tied to a
particular component technology or object-calling convention. As a
result, programs written in any language, using any component model, and
running on any operating system can access Web services.

ASP.NET takes advantage of performance enhancements found in the
.NET Framework and runtime, and it has also been designed to offer perfor-
mance improvements over ASP and other Web development platforms. All
ASP.NET code is compiled rather than interpreted, which allows early binding,
strong typing, and just-in-time (JIT) compiling to native code, to name only a
few of its benefits. ASP.NET is also easily factorable, meaning that developers
can remove modules (a session module, for instance) that are not relevant to the

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



222 Targowski

application they are developing. ASP.NET configuration settings are stored in
XML-based files, which are human readable and writable. Each of your
applications can have a distinct configuration file and you can extend the
configuration scheme to suit your requirements. ASP.NET provides easy-to-
use Application and Session state facilities that are familiar to ASP developers
and are readily compatible with all other .NET Framework API's.

If you have used earlier versions of ASP technology, you will immediately
notice the improvements in Web Forms. For one thing, you can develop your
Web Forms pages in any language that supports the .NET Framework. In
addition, your code no longer needs to share the same file with your HTTP text
(although it can continue to do so if you prefer that structure). Web Forms
pages execute in native machine language because they take full advantage of
the runtime like any other managed application. Unmanaged ASP pages were
always scripted. In short, ASP.NET pages are faster, more functional, and
easier to develop because they interact with the runtime like any managed
application.

The .NET Framework also provides a collection of classes and tools to aid
in development and consumption of Web Services applications. Web Services
are built on standards such as SOAP (a remote procedure-call protocol), XML
(an extensible data format), and WSDL (Web Service Description Language).
The .NET Framework conforms to these standards to promote interoperability
with non-Microsoft solutions.

If you develop and publish your own Web Service, the .NET Framework
provides a set of classes that conform to all of the underlying communication
standards, such as SOAP, WSDL, and XML. Using those classes enablesyou
to focus on the logic of your service, without worrying about the communica-
tions infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your Web
Services will run with the speed of native machine language using the scalable
communication of IIS (www.microsoft.com).

XML STANDARD
When not pursuing wholly new application development, organizations

can be found attempting to create applications that aggregate several tradi-
tional, task-oriented applications into a single, composite application. This
sometimes includes integrating applications that exist within the boundaries of
a separate entity, such as another company or a service provider. However,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of idea Group Inc. is prohibited.



Enterprise Electronization and Integration 223

a still greater dilemma arises when attempting to integrate legacy applications
built using an assortment of technologies, object models, operating systems and
programming languages. How do you make them all work together? The
answer is the programmable Web.

XML (extensible Markup Language) as an open data description format
has given rise to the reality of a programmable Web. Just as TCP/IP provided
universal connectivity for the Internet and HTML provided a standardized
language to display information on a wide variety of platforms for human
consumption, XML provides a standardized language to exchange data for
automated consumption. This makes it possible to represent data in a widely
accepted format that enables computers to send and receive data in a
predictable style that enables programmability that extends beyond closed,
controlled systems. XML is liberating because its simplicity and extensibility
lets you define just about anything with room to expand later. One of the
fundamental building blocks of the programmable Web is Web Services.

XML is for documents containing structured information. Structured
information contains both content (words, pictures, etc.) and some indication
of what role that content play s (e.g., content in a section heading has a different
meaning from content in a footnote, which means something different than
content in a figure caption or content in a database table, etc.). Almost all
corporate documents have some structure. A markup language is a mechanism
to identify structures in a document. The XML specification defines a standard
way to add markup to documents. Among documents one can mention those
such as word processing, vector graphi cs, e-commerce transactions, math-
ematical equations, object metadata, and so forth.

XML was created so that richly structured documents could be used over
the Web. Its predecessor HTML, for the creation of homepages, does not
provide a way to define a structured document. The term markup comes from
the print profession where electronic documents are "marked up" with tags that
tell a computer what to do. It serves two purposes; to determine the formatting
and to define a document's structure and meaning. XML is a standardized set
of markup tags that conform to a defined syntax (grammar).

Every XML document has logical and physical structures. The former
defines a document's framework and the latter contains the actual data that fi Us
a document. In order to publish a document's "data" on a Web it is necessary
first to define its logical structure.

The main advantage of XML documents is their ability to be processed by
different enterprise-wide applications that are XML ready. XML documents
are particularly suitable for e-Document Management Systems, portals, call
centers, and so forth.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.


	ateesa - 0226
	ateesa - 0227
	ateesa - 0228
	ateesa - 0229
	ateesa - 0230
	ateesa - 0231
	ateesa - 0232
	ateesa - 0233
	ateesa - 0234
	ateesa - 0235
	ateesa - 0236

