Enterprise Electronization and Integration 199

components can communicate with each other across processes in a single
computer or between computers over the Internet.

However, components by themselves do not solve all of the issues of
enterprise application complexity. Forexample, suppose a business wants to
rapidly build and deploy a customer order entry application that involves five
differentareas of functionality: tax calculation, customer credit verification,
inventory management, warranty update, and orderentry. Theapplication will
bebuilt from five separate componentsand will operate ona Web server. How
does the developerhandle exceptions? System failures? Network outages?
Peaksin performance load? Must these be hand-coded into the application?
[tdefeats the two main goals of component-based development—fast time to
market and lower development costs—if companies are forced to hand-code
the mission-critical services that are required for online production systems.

Toaddress enterprise requirements foradistributed component architec-
ture without sacrificing rapid development and costeffectiveness, the following
standardized architectures support thisrequirement.

Hundreds of applications and thousands of their objects (components) are
distributed through the e-enterprise environment. To facilitate this distribution,
particularly among objects (components) from software developed by different
programmers and vendors, standards have been offered by some developers,
such as OMG (CORBA), Sun Microsystems (EJB), Microsoft (COM), and
others.

CORBA STANDARD

CORBA, which stands for Common Object Request Broker Architec-
ture, is an industry standard developed by the OMG (Object Management
Architecture Guide, a consortium of about 800 companies organized in 1989).
CORBA is open, vendor-independent architecture and infrastructure that
computer applications use to work together over networks. Using the standard
protocol IIOP, a CORBA-based program from any vendor, on almost any
computer, operating system, programming language, and network, can inter-
operate witha CORBA-based program from the same or another vendor, on
almost any other computer, operating system, programming language, and
network. Some large companies are embedding CORBA in networked
devices for finance and medical applications.

CORBA is useful in many situations. Because of the easy way that
CORBA integrates machines from so many vendors, with sizes ranging from

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group tnc. is prohibited.

200 Targowski

mainframes through minis and desktops to hand-held and embedded sy stems,
itis the middleware of choice for large (and even not-so-large) enterprises.
One of its most important, as well most frequent, uses is in servers that must
handle large numbers of clients, at high hit rates, with highreliability. CORBA
works behind the scenesin the computer rooms of many of the world’s largest
Websites, ones that you probably use every day. Specializations for scalability
and fault-tolerance support these systems. But it is not used just for large
applications; specialized versions of CORBA run real-time systems and small
embedded systems. In CORBA, client and object may be written in different
programming languages.

CORBA ’sarchitecture is based on Object Orientation, and built around
seven key building blocks (www.omg.org):

« OMG Interface Definition Language, OMG IDL —defines the types of
objects by defining their interfaces. Aninterface consists ofa setofnamed
operations and the parametersto those operations. Despite the fact that
IDL is similar to C++ and Java, IDL is not a programming language.
ThroughIDL, aparticular object implementation tells its potential clients
what operationsareavailable and how they should beinvoked. FromIDL
definitions, the CORBA objects are mapped into different programming
languages, suchas C, C++, Java, Smalltalk, LISP, and Python,

* DynamicInvocation Interface (DII)—itallows client applications touse
server objects without knowing the type of those objects at compile time,

* Dynamic SkeletonInterface (DSI)—itis a gateway to aserver,

» Interface Repository (IR) — it provides another way to specify the
interfacesto objects. Interfaces canbe added to the interface repository
service. Usingthe IR, aclient should be able to locate an object that is
unknown at the compile time, find information about its interface, then
build arequest to be forwarded through the OBR,

* Object Adapters (OA)—itisthe primary way that objectimplementation
access services are provided by the ORB. Such services include: object
reference generation and interpretation, invocation method, security of
interaction, and object implementation activation and deactivation,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 201

« The Object Request Broker or ORB is a software responsible for: 1)
finding the object implementation for the request, 2) preparing the object
implementation to receive the request, and 3) communicating the data
making up the request. A number of implementations existin the market
today, including ORBIX from IONA Technologies (www.iona.ie),
VisiBroker from Inprise (www.inprise.com), and Javal DL from JavaSoft
(www.java.sun.com/products/jdk.idl),

» Thestandard protocol IIOP (The Internet Inter-ORB Protocol) makes
sure thata client will be able to communicate with a server written for a
different ORB from a different vendor.

CORBA applications are composed of objects, individual units of running
software that combine functionality and data, and that frequently (but not
always) represent something in the real world. Typically, there are many
instances of anobject of a single type - forexample, youre-commerce website
would have many shopping cartobject instances, all identical in functionality but
differing in that each is assigned to a different customer, and contains data
representing the merchandise that its particular customer has selected. Foreach
objecttype, such as your shopping cart, you define its interface in OMG IDL.

Figure 5-3: A Request Passing from a Client to an Object’s Implementation

Client Qbject ‘
(X client's shoping |mp_lerr;16ntgt|on -
cart) (generic shoping cart)
IDL A
Stub IDL
(D) Skeleton
(DSI)

TR Request %.."4' 3

'(').bj_e'ct quues:t'k x>
‘Broker ..
ORB =

/ Interface Y
-| Repository
IR

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

202 Targowski

This fixes the operations it will perform and the parameters (input and
output) foreach. Thisinterface definition isindependent of your programming
language, but maps to all of the popular programming languages viaa setof
OMG standards: OMG has standardized mappings for C, C++, Java,
COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript.

Thisistheessence of CORBA -how itenables interoperability, with all of
the transparencies we have claimed. The interface to each objectis defined
very strictly. But, in contrast, the implementation of an object - itsrunning
code, and its data - is hidden from the rest of the system (that is, encapsulated)
behind aboundary that the client may notcross. Clients access objects only
through their advertised interface, invoking only those operations which that
object chooses to expose, with only those parameters (input and output) that
are included inthe invocation.

Figure 5-3 shows how everything fits together, at least withina single
process: Youcompile your IDL into client stubs asa Dynamic Invocation
Interface (DII) and object Dynamic Skeleton Interface (DSI) and write your
object (shown on theright) and a client for it (on the left). DIl uses the Interface
Repository (IR)to validate and retrieve the signature ofthe operations on which
arequestis made. Stubs and skeletons serve as proxies forclients and servers,
respectively. Because IDL defines interfaces so strictly, the stubon the client
side has no trouble meshing perfectly with the skeletonon the server side, even
ifthe two are compiled into different programming languages, or even running
ondifferent ORB’s fromdifferent vendors.

In CORBA, every objectinstance has its own unique object reference,
anidentifying electronictoken. Clients use the object references to direct their
invocations, identifying to the ORB the exact instance they want to invoke
(ensuring, for example, that the books you select go into your own shopping
cart, and not into your neighbor’s). The client acts as if it’s invoking an
operation on the object instance, butit’s actually invoking on the IDL stub
which acts asaproxy. Passing through the stub on the client side, the invocation
continues through the ORB (Object Request Broker) and the skeleton on the
implementation side to get to the object where itis executed.

How do remote invocations work? Figure 5-4 diagrams a remote
invocation. Inordertoinvoke theremote object instance, the client firstobtains
itsobjectreference. (There are many waystodo this, but we will not detail any
ofthem here.) To make the remote invocation, the client uses the same code
thatit used in the local invocation we just described, but substitutes the object
reference for the remote instance. When the ORB examines the object
reference and discovers that the target object is remote, it marshals the

Copyright © 2003, 1dea Group Inc. Copying or distributing in print or clectronic forms without written
permission of ldea Group Inc. is prohibited.

Enterprise Electronization and Integration 203

Figure 5-4: Inter-operability uses ORB-to-ORB Communication

l Client l I Object | Client Object

A 3

— ORB 1 ——» ORB2
' : i { [lOP o ,
. Private Network ot Inferngt . '—» — R, R S TR P J
5 b Ao o “ g T Protoco[! I gl Ay A :

arguments and routes the invocation out over the network to the remote
object’s ORB.

Why does this work? OMG has standardized this process at two key
levels: first, the client knows the type of object itis invoking (thatitis a shopping
cartobject, forinstance), and the client stub and object skeleton are generated
from the same /DL. Thismeansthat the client knowsexactly which operations
it may invoke, what the input parameters are, and where they have to go inthe
invocation; when the invocationreachesthe target, everything isthere and inthe
right place. We have already seen how OMG has defined this. Second, the
client’s ORB and object’s ORB must agree on a common protocol - that s,
arepresentation to specify the target object, operation, and all parameters
(inputand output) of every type that they may use. OMG has defined thisalso
- it’s the standard protocol [IOP. (ORB’s may use other protocols besides
IIOP, and many do for various reasons. But virtually all speak the standard
protocol ITOP for reasons of interoperability because it is required by OMG
forcompliance.)

Although the ORB can tell from the object reference that the target object
isremote, the client cannot. (The user may know thisalso because of other
knowledge - for instance, that all accounting objects run on the mainframe at
the main office in Tulsa.) There isnothing in the objectreference token thatthe
clientholds and uses at invocation time that identifies the location of the target

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

204 Targowski

object. This ensures location transparency - the CORBA principle? that
simplifies the design of distributed object computing applications.

Use of CORBA and UML (Universal Modeling Language) pays offin
many types of applications, but here is where the benefits compound:

« Ifyouuse CORBA inasmall client-server type of application, you will get
the benefits ofa sound, standard infrastructure, and if you use UML to
design before you start to code, you will be much more likely to get a final
application with the structure and functionality thatyou had in mind (or
would have asked for!) when youstarted. CORBA letsyoubuild and run
clientand serversides ondifterent platformsand in different programming
languages, so there are anumber of benefits that we can listeven for small
applications run alone on a network. But these are purely computer-
domain benefits; the business functionality of this type of application is the
same as if it had been written to sockets, ora proprietary call mechanism.

» Businesses benefit when all of their applications, with their diverse
functionality and data, work together. Forexample, a salesman on the
road in a customer’s office may need access to product description
information (from the catalog), producttechnical data (from engineering),
pricing (from the back office), stock (from the warehouse), production
scheduleifthere arenot enoughin stock (from the plant), order placement,
customer credit data, sales department totals and his own totals, and
more. Inthe old days, he used to collect this by telephone and memo,
moving to FAX as technology advanced, but now computer networks
give you an opportunity to make the diverse systems in all of these
departments work togetherto support your salesman as he generatesthe
income that, after all, keeps yourcompany in business. So you wrap these
legacy applications with OMG IDL interfaces and put them all onto your
network, accessible via CORBA object references. This lets your IT
department build a client that integrates information from all of them into
asales application. Yoursalespeople, online in their customers’ offices
viamodem or wireless connection, can answer questions immediately and
make more sales. Orders enter into your fulfillment sy stem as they are
taken, allowing youto schedule shipping (and production, if you need to)
and billing automatically and immediately.

* Thesales-peoples’ application could become a Web sales site, allowing
any potential customer with a browser to find and order your products

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 205

themselves. Becauseall of your supporting applications are available via
CORBA, itis easy to generate the application that drives the website, so
youdo this, and the sales start rolling in.

« Withso many customersoutthere, the load of product supportand repair
calls increase and, since support has always been a cost center, you
brainstorm to figure outa way to deal withit. Youfinally decide to design
acall-center supportapplicationaround your CORBA enterprise infra-
structure. By standardizing response to trouble calls, you deal with these
in less time, but the real benefit comes in parts and repair: with all of the
engineering diagrams online, your telephone staff can sell and ship parts
to customers with one or two clicks of a mouse, and with another click or
two, candispatch contracted repair vans to take care of the installation.
Income from parts and commission on repair calls turn this cost center into
a profit center, and customers’ satisfaction increases at the same time.
Integration of many applications around your enterprise that connect to
the call-center application, a potential nightmare, is straightforward
because they all have CORBA wrappersalready.

. With success, the load on your e-commerce website increases until it
outgrows the capacity of the mainframe applications thatsupported itat
start-up. Since CORBA has been so successful for you onyour network,
youdecideto build your server’s replacement object-oriented in CORBA
fromthe ground up. To start, youuse UML foryouranalysis and design:
it helps you gatherrequirements, work through use-cases, and set down
the functionality that the new server will provide. Then, class diagrams,
objectdiagrams, and action diagrams let you picture how it will work. By
the time you’re done, the UML diagrams that you have generated dictate
most of your OMG IDL and language code. Totake careof both current
and anticipated load, youdecide to buy an ORB that runsload-balanced
onaroomful of server machines. Itis based onOMG’s Portable Object
Adapter or POA, which helps you take the best advantage of your
hardware when you run heavy loads, like the ones that Web-based
applications generate. If yourapplicationneeds to stay up reliably (as it
would if you are running stock or bond trades, for example), you may
decide to use CORBA Fault Tolerance also. More than just load-
balancing, fault tolerance runs every object on two or more separate
machines at the same time and automatically switches tothe good one if
one fails. If you duplicate your hard ware (computers, networks, even

Copyright © 2003, Idea Group Inc. Copying or distributing in print or clectronic forms without wrilten
permission of Jdea Group Inc. is prohibited.

206 Targowski

power sources) also, youcan setup avery reliable server indeed. By the
way, you have not replaced all of your legacy systems (that is, the
functional systems that run your business!), and this serverstill needs to
access the onesthatare still around. Since they all retain their CORBA
wrappers, of course, thisisroutine. To maximize sales, you design the
front-end for this server to be accessible from as many customer client
types as possible: some customers come in via Web browsers, using
HTTP which your Web server translates into CGI invocations of your
CORBA frontend. Others use Java/CORBA clients for more sophisti-
cated programmaticaccess, while some users with direct network con-
nections use OMG’s standard COM/CORBA bridge to come in straight
from a Microsoft desktop. Type-specific adapters condense your
screens, eliminating graphics and isolating key lines oftext, enabling digital
PDA’s, pagers, and browser-capable cell phones to place orders using
your same business-logic architecture and implementation.

e Tokeepupwithdemand, you decide to automate your plant. Because of
the speed that parts travel around the assembly line, the control program
must run inreal-time, so you build this system onan ORB and operating
system thatconformto the CORBA real-time specification. Computers
on your shop-floor equipment also run CORBA (in real-time where
needed here too), so your plant hums smoothly along; in fact, some of the
processorson your shop floorrunminimal CORBA, OMG’s standard for
embedded ORB’s. Of course the plant doesn’trun inisolation: itneeds
stock, which needs to be bought, which costs money, and needs to be
broughttothe plant, whichneedslogistical coordination,so your automa-
tion system also talks to your supply and logistics applications over
CORBA interfaces, of course.

* Thenextaddition would be CORBA-based interfaces to your suppliers,
automating yourlogisticsout to their warehouse (and, within their enter-
prise, hopefully to their plant as well). This is nota purely hypothetical
example; Boeing Aircraftautomates its manufacturing system from order
entry through production and delivery, to maintenance, using CORBA.

So where’sthe payoff? Justasthe different departments and divisions that
make up your enterprise need to work togetherin order to maximize profit, their
computing applications also need to work together. CORBA letsyoudo this,
and thatis where standards pay offinabig way: you cannot limit the diversity

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 207

of computers in your enterprise - you need to pick different computers for
differentuses. Thisisclear on theshop floor, where equipment may come with
aprocessor built-in, orin the call center, where machines need to link uptothe
telephone system computer for both voice and datato take advantage of ID
information that comes with incoming calls. So, you pick a standard
interoperability infrastructure - CORBA! -to tieyour applications together.
You would like to use it for a/l of your applications, but sometimes this just is
not possible. I'or these cases, CORBA givesyouthe couplings you need: the
COM/CORBA interoperability standard to connect to the desktop that
everyone uses (and to Microsoft servers, too, if you have them); the reverse
Java-to-IDL language mapping and RMI/IIOP to connect to Java RMI objects
and EJB’s, and the mapping from XML to OMGIDL.,

How do they work together? You’ll want (and need, actually)to perform
ananalysisand design before starting any substantial software development
project. Forthis,youbuy and use atool based on UML, the Unified Modeling
Language. Using XML Metadata Interchange or XMI, you transfer your
model - which is the metadata for your application - into a standardized
repository based on the MOF, or Meta-Object Facility. Using XMl again, you
transfer your model from your MOF into a development environment that lets
you implement it as a CORBA application. You will generate OMG IDL
interfaces, which will map into the programming languages that you choose for
your clients and objects, using the OMG-standard language mappings. You
may design a scalable server-side architecture using features of the Portable
Object Adapter or POA, and augment CORBA’s support for load-balancing
with astandard Fault Tolerant infrastructure. You will surely want to design
your overall application around the CORBA services and possibly the Domain
CORBA facilities to reap the major gains possible from the buy-vs.-build
philosophy.

Who is using them, and what for? OMG has collected hundreds of design
wins and success stories from companies that use CORBA, and posted them
on our Website at attp://www.corba.org. For readers who do not want to surf
to that page now and get totally sidetracked, here are summaries of a few big
CORBA users’ applications:

« CNNusesanapplication based on the CORBA eventservice to distribute
news material that comes in from hundreds of sources, in many formats,
from many different machine types, to all of their news editors who run
automated filter programs that audit the incoming events and flag the
stories that qualify asimportant to each editor’s individual preferences.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without writien
permission of Idea Group Inc. is prohibited.

208 Targowski

» Boeingintegrated four “bestof breed” manufacturing applicationsintoa
comprehensive infrastructure that takes care of airplane configuration
from ordering, through manufacture, to maintenance.

. Charles Schwab and Company builta CORBA-based trading application
that they use for their 5,000 best customers, handling accounts worth
multiplebillions of dollars.

ENTERPRISE JAVABEANS (EJB) STANDARD

The application of the Internet and its Web technology has changed the
traditional client-server two-tier architecture into the four-tier architecture.
Sun Microsystems, which developed the Java language, supports thisarchitec-
ture on its servers. Web-driven applications use various plug-in extensions to
Web servers. These extensions invoke programs on the server that dynamically
construct HTML documents (“home pages”) from information stored in
corporate databases and vice versa, the Web server extensions also enter
information submitted in HTML forms into the corporate databases. An
example of such extensions is CGI-bin scripts, which stands for Common
Gateway Interface, and interface for developing HTML pages and Web
applications.

Figure 5-5 illustrates the so-called J2EE (Java 2 Enterprise Edition)
architecture which allows for the developmentand implementation of enter-
prise Web-oriented applications using the Java programming language.

Figure 5-5: The Four-Tier J2EE Architecture for Web-based Applications

Application-
Client

Web Conlainer EJB Container

Contai-
Applet)
: ner
Container T Web _1 Enterprise — %’:gg:i: ‘
Application Beans
Applet = _
— i

=

Client's Browser Web Server Application Server Database Server

Copyright © 2003, 1dea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

Enterprise Electronization and Integration 209

The J2EE platforms consist of four programming environments, called
containers:

+ The EJB Container — provides the environment for the development,
deployment, and runtime management of enterprise beans. Enterprise
beans are components that implement the business processes and entities
under the form ofapplications.

« The Web Container — provides the environment for the development,
deployment, and runtime managementof servlets and JavaServer Pages.
Servlets are specialized programs called pseudo applets (mini applica-
tions) that run on the serverside. Java Servlets are a popular choice for
building interactive Web applications, replacing the use of CGI scripts.
Servletsare similar to applets (generated from the browser) in that they
are runtime extensions of applications. Instead of working in browsers
(like applets), servlets run with Java Webservers, configuring or tailoring
the server.

* The Application-Client Container - provides the environment for execut-
ing J2EE application clients. Thisenvironment isessentially the Java 2
platform, Standard Edition.

+ The Applet Container — provides the environment for executing Java
applets. Thisenvironmentistypically embeddedina Web browser.

The J2EE Platform embraces the Common Object Request Broker
Architecture (CORBA). AllJ2EE Containersinclude a COBRA-compliant
Object Request Broker (ORB) module. The inter-operability protocol be-
tween EJB Containers from multiple vendorsis based on COBR A standards,
such as Remote Method Interaction over the Internet Inter-ORB protocol
(RMI-I10OP) and the Object Transaction Service (OTS).

The EJB architecture requires six roles of professionals:

1. Bean Developer —develops the enterprise applications’ components
(beans),

2. Application Assembler—putstogether different, butlogically interrelated
beans into a larger unit such as a subsystem or a system,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

210 Targowski

3. Deployer—deploysthe application withina particular computer operated
environment,

4, System Administrator — configurates and administers the Enterprise
Information Infrastructure,

5. EJBContainerProviderand EJB Server Provider—avendor specializing
in transactions and application management.

DNA - DCOM STANDARD?

The Distributed Component Object Model (DCOM) developed by
Microsoft has three strengths that make it a key technology
(www.msdn.microsoft/library.com):

+ DCOM isbased onthe most widely-used component technology today.
DCOM is simply “COM* with a longer wire”—a low-level extension of
the Component Object Model, the core object technology within
Microsoft® ActiveX® (COM enabled for the Internet). Major develop-
ment tools vendors—including Microsoft, Borland, Powersoft/Sybase,
Symantec, ORACLE, IBM, and Micro Focus—already sell software
development tools that produce ActiveX components. These tools and
the applications they produce automatically support DCOM, providing
the broadest possible industry support. Additionally,over 1,000 existing
commercial software components that will work with DCOM are already
available for use by developers.

+ DCOM extends componentapplications across the Internet. Because it
isan ActiveX technology, DCOM works natively with Internet technolo-
gieslike TCP/IP, Java, and HT'TP, enabling business applications to work
across the Web. DCOM enablesdistributed Javatoday without requiring
any communications-specific code oradd-ons.

* DCOMisanopen technology that runs on multiple platforms. Microsoft
is openly licensing DCOM technology to other software companies to run
on all of the major operating sy stems, including multiple implementations
of UNIX-based systems. Software AG has DCOM running on the
Solaris-based operating system today. Additionally, Microsoft ishanding

Copyright © 2003, 1dea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 211

over DCOM technology with other core ActiveX technologies to The
Open Group. The Internet Draft technical publication that contains a
publicly available description of the DCOM network protocol can be
found at http://'www.dc.luth.se/doc/id/draft-brown-dcom-v-spec-
00.txt.

The combination of these three factors—the largestinstalled base, native
support for Internet protocols, and open support for multiple platforms—
means that businesses can gain the benefits of amodern componentapplication
architecture withouthaving toreplace investments inexisting systems, staff, or
infrastructure.

DCOM Architecture

DCOM is an extension of the Component Object Model (COM). COM
defineshow components and theirclients interact. Thisinteractionis defined
such that the client and the component can connect without the need of any
intermediary system component. The client calls methods inthe component
withoutany overhead whatsoever.

Intoday’s operating systems, processes are shielded from each other. A
client that needs to communicate with acomponent in another process cannot
call the component directly, but has to use some form of inter-process
communication provided by the operating system. COM provides this
communication inacompletely transparent fashion: itintercepts calls fromthe
client and forwards them to the component in another process. Figure 5-6
illustrates how the COM/DCOM run-time libraries provide the link between
clientand component.

Figure 5-6: DCOM: COM Components in Different Processes (DCE-
Distributed Computing Environment, RPC—Remote Procedure Call, LPC—
Local Procedure Call)

l Cl.ien ' l COM l | CcoM '
! i Ssiss ey

Provider DCE RPC Provider J DCE RPC

LPC - LPC

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms withoul wriilen
permission of Idea Group Inc. is prohibited.

212 Targowski

Figure 5-7: DCOM: COM Components on Different Machines

l I COM l COom ' Com
ponent
v il run-time run-time -

Provider DCE RPC Provider DCERPC

Protocol Stack Protocol Stack

DCOM
Network
Protocol

When clientand component reside on different machines, DCOM simply
replaces the local inter-process communication with a network protocol.
Neither the client nor the component is aware that the wire that connects them
has just become a little longer. Figure 5-7 shows the overall DCOM
architecture: the COM run-time provides object-oriented services to clients
and components and uses RPC and the security provider to generate standard
network packets that conform to the DCOM wire-protocol standard.

Components and Reuse

Most distributed applications are not developed from scratch and ina
vacuum. Existing hardware infrastructure, existing software, and existing
components, as well as existing tools, need to be integrated and leveraged to
reduce development and deployment time and cost. DCOM directly and
transparently takesadvantage of any existing investment in COM components
and tools. A huge market for off-the-shelf components makesit possible to
reduce development time by integrating standardized solutions into a custom
application.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 213

Components and the Enterprise

Asdistributed applications are builtfrom simple components and Internet
protocols emerged, a new setof enterprise platform services for component
applications will be required. Toaddress enterprise requirements for distrib-
uted componentarchitecture without sacrificing rapid development and cost
effectiveness, Microsoft is integrating DCOM into the Active Server. The
Active Server is a series of technology services that speed deployment of
component-based applications for the Internet and corporate intranets. These
servicesinclude:

« Transactions—traditional rollback and recovery for component-based
applications inthe eventof'system failure.

« Queuing—integration of component communication with reliable store-
and-forward queues, which enables component applications to operate
onnetworks that are occasionally unavailable.

« Server scripting—easy integration of componentapplications on the
server with HTML-based Internetapplications.

+ Legacy access—integration of component applications with legacy
production systems, including mainframe sy stems running CICS and IMS.

The Active Servertechnologies use publicly obtainable Internet protocols
and are currently available’.

MICROSOFT .NET FRAMEWORK®

Microsoft evolves from the COM-DNA platform to the new .NET
platform designed to simplify application developmentin the highly distributed
environment ofthe Internet. Thisisatransformationfrom desktop applications
to the distributed GUI-based .NET applications. The .NET Framework
affects all of Microsoft’s products, from operating systems, servers, and
middleware to applications. All these products are capable of handling and
processing .NET traffic and leveraging the NET infrastructure. These prod-
ucts will transform to Windows.NET, Office NET, MSN.NET, and so forth.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

	ateesa - 0212
	ateesa - 0213
	ateesa - 0214
	ateesa - 0215
	ateesa - 0216
	ateesa - 0217
	ateesa - 0218
	ateesa - 0219
	ateesa - 0220
	ateesa - 0221
	ateesa - 0222
	ateesa - 0223
	ateesa - 0224
	ateesa - 0225
	ateesa - 0226

