
Enterprise Electronization and Integration 199

components can communicate with each other across processes in a single
computer or between computers over the Internet.

However, components by themselves do not solve all of the issues of
enterprise application complexity. For example, suppose a business wants to
rapidly build and deploy a customer order entry application that involves five
different areas of functionality: tax calculation, customer credit verification,
inventory management, warranty update, and order entry. The application will
be built from five separate components and will operate on a Web server. How
does the developer handle exceptions? System failures? Network outages?
Peaks in performance load? Must these be hand-coded into the application?
It defeats the two main goals of component-based development—fast time to
market and lower development costs—if companies are forced to hand-code
the mission-critical services that are required for online production systems.

To address enterprise requirements for a distributed component architec-
ture without sacrificing rapid development and cost effectiveness, the following
standardized architectures support this requirement.

Hundreds of applications and thousands of their obj ects (components) are
distributed through the e-enterprise environment. To facilitate this distribution,
particularly among obj ects (components) from software developed by different
programmers and vendors, standards have been offered by some developers,
such as OMG (CORBA), Sun Microsystems (EJB), Microsoft (COM), and
others.

CORBA STANDARD
CORBA, which stands for Common Object Request Broker Architec-

ture, is an industry standard developed by the OMG (Object Management
Architecture Guide, a consortium of about 800 companies organized in 1989).
CORBA is open, vendor-independent architecture and infrastructure that
computer applications use to work together over networks. Using the standard
protocol HOP, a CORB A-based program from any vendor, on almost any
computer, operating system, programming language, and network, can inter-
operate with a CORB A-based program from the same or another vendor, on
almost any other computer, operating system, programming language, and
network. Some large companies are embedding CORBA in networked
devices for finance and medical applications.

CORBA is useful in many situations. Because of the easy way that
CORBA integrates machines from so many vendors, with sizes ranging from

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

200 Targowski

mainframes through minis and desktops to hand-held and embedded systems,
it is the middleware of choice for large (and even not-so-large) enterprises.
One of its most important, as well most frequent, uses is in servers that must
handle large numbers of clients, at highhitrates, withhighreliability. CORBA
works behind the scenes in the computer rooms of many of the world's largest
Websites, ones that you probably use every day. Specializations for scalability
and fault-tolerance support these systems. But it is not used just for large
applications; specialized versions of CORB A run real-time systems and small
embedded systems. In CORBA, client and obj ect may be written in different
programming languages.

CORBA's architecture is based on Object Orientation, and built around
seven key building blocks (www.omg.org):

• OMG Interface Definition Language, OMGIDL - defines the types of
objects by defining their interfaces. An interface consists of a set of named
operations and the parameters to those operations. Despite the fact that
IDL is similar to C++ and Java, IDL is not a programming language.
Through IDL, aparticular obj ect implementation tells its potential clients
what operations are available and howthey should be invoked. From IDL
definitions, the CORBA objects are mapped into different programming
languages, such as C, C++, Java, Smalltalk, LISP, and Python,

• Dynamic Invocation Interface (DII) - it allows client applications to use
server objects without knowing the type of those objects at compile time,

• Dynamic Skeleton Interface (DSI) - it is a gateway to a server,

• Interface Repository (IR) — it provides another way to specify the
interfaces to objects. Interfaces can be added to the interface repository
service. Using the IR, a client should be able to locate an object that is
unknown at the compile time, find information about its interface, then
build a request to be forwarded through the OBR,

• Object Adapters (O A) - it is the primary way that obj ect implementation
access services are provided by the ORB. Such services include: object
reference generation and interpretation, invocation method, security of
interaction, and object implementation activationand deactivation,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 201

The Object Request Broker or ORB is a software responsible for: 1)
finding the object implementation for the request, 2) preparing the object
implementation to receive the request, and 3) communicating the data
making up the request. A number of implementations exist in the market
today, including ORBIX from IONA Technologies (www.iona.ie),
VisiBroker from Inprise (www. inprise. com), and JavalDL from JavaSoft
(www.Java. sun. com/products/jdk. idl),

The standard protocol HOP (The Internet Inter-ORB Protocol) makes
sure that a client will be able to communicate with a server written for a
different ORB from a different vendor.

CORB A applications are composed of'objects, individual units of running
software that combine functionality and data, and that frequently (but not
always) represent something in the real world. Typically, there are many
instances of an object of a single type - for example, your e-commerce website
would have many shopping cart object instances, all identical in functionality but
differing in that each is assigned to a different customer, and contains data
representing the merchandise that its particular customer has selected. For each
object type, such as your shopping cart, you define its interface in OMG IDL.

Figure 5-3: A Request Passing from a Client to an Object's Implementation

Client
(X client's shoping

cart)

IDL
Stub
(Dli)

Object
Implementation

(generic shoping cart)

Request

Object Request
Broker
ORB

IDL
Skeleton

(DSI)

Copyrighl © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

202 Targowski

This fixes the operations it will perform and the parameters (input and
output) for each. This interface definition is independent of your programming
language, but maps to all of the popular programming languages via a set of
OMG standards: OMG has standardized mappings for C, C++, Java,
COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript.

This is the essence ofCORBA-how it enables interoperability, with all of
the transparencies we have claimed. The interface to each object is defined
very strictly. But, in contrast, the implementation of an object - its running
code, and its data - is hidden from the rest of the system (that is, encapsulated)
behind a boundary that the client may not cross. Clients access objects only
through their advertised interface, invoking only those operations which that
object chooses to expose, with only those parameters (input and output) that
are included in the invocation.

Figure 5-3 shows how everything fits together, at least within a single
process: You compile your IDL into client stubs as a Dynamic Invocation
Interface (DII) and obj ect Dynamic Skeleton Interface (DSI) and write your
object (shown on the right) and a client for it (on the left). DII uses the Interface
Repository (IR) to validate and retrieve the signature of the operations on which
a request is made. Stubs and skeletons serve as proxies for clients and servers,
respectively. Because IDL defines interfaces so strictly, the stub on the client
side has no trouble meshing perfectly with the skeleton on the server side, even
if the two are compiled into different programming languages, or even running
on different ORB' s from different vendors.

In CORBA, every object instance has its own unique object reference,
an identifying electronic token. Clients use the object references to direct their
invocations, identifying to the ORB the exact instance they want to invoke
(ensuring, for example, that the books you select go into your own shopping
cart, and not into your neighbor's). The client acts as if it's invoking an
operation on the object instance, but it's actually invoking on the IDL stub
which acts as a proxy. Passing through the stub on the client side, the invocation
continues through the ORB (Obj ect Request Broker) and the skeleton on the
implementation side to get to the object where it is executed.

How do remote invocations work? Figure 5-4 diagrams a remote
invocation. In order to invoke the remote object instance, the client first obtains
its obj ect reference. (There are many ways to do this, but we will not detail any
of them here.) To make the remote invocation, the client uses the same code
that it used in the local invocation we just described, but substitutes the object
reference for the remote instance. When the ORB examines the object
reference and discovers that the target object is remote, it marshals the

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 203

Figure 5-4: Inter-operability uses ORB-to-ORB Communication

Client 1

r S

Object

b A

•*- ORB 1

Private Network or Interne •

HOP 7

Protocol
Sunn m M ^ ^

Client Objecl

i

arguments and routes the invocation out over the network to the remote
object's ORB.

Why does this work? OMG has standardized this process at two key
levels: first, the client knows the type of obj ect it is invoking (that it is a shopping
cart object, for instance), and the client stub and object skeleton are generated
from the same IDL. This means that the client knows exactly which operations
it may invoke, what the input parameters are, and where they have to go in the
invocation; when the invocation reaches the target, everything is there and in the
right place. We have already seen how OMG has defined this. Second, the
client's ORB and object's ORB must agree on a common protocol - that is,
a representation to specify the target object, operation, and all parameters
(input and output) of every type thatthey may use. OMG has defined this also
- it's the standard protocol HOP. (ORB's may use other protocols besides
HOP, and many do for various reasons. But virtually all speak the standard
protocol HOP for reasons of interoperability because it is required by OMG
forcompliance.)

Although the ORB can tell from the obj ect reference that the target obj ect
is remote, the client cannot. (The user may know this also because of other
knowledge - for instance, that all accounting objects run on the mainframe at
the main office in Tulsa.) There is nothing in the object reference token that the
client holds and uses at invocation time that identifies the location of the target

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

204 Targowski

object. This ensures location transparency - the CORBA principle2 that
simplifies the design of distributed object computing applications.

Use of CORBA and UML (Universal Modeling Language) pays off in
many types of applications, but here is where the benefits compound:

• If you use CORBA in a small client-server type of application, you will get
the benefits of a sound, standard infrastructure, and if you use UML to
design before you start to code, you will be much more likely to get a final
application with the structure and functionality that you had in mind (or
wouldhave asked for!) when you started. CORBA letsyoubuild and run
client and server sides on different platforms and in different programming
languages, so there are a number of benefits that we can list even for small
applications run alone on a network. But these are purely computer-
domain benefits; the business functionality of this type of application is the
same as if it had been written to sockets, or a proprietary call mechanism.

• Businesses benefit when all of their applications, with their diverse
functionality and data, work together. For example, a salesman on the
road in a customer's office may need access to product description
information (from the catalog), product technical data (from engineering),
pricing (from the back office), stock (from the warehouse), production
schedule if there are not enough in stock (from the plant), order placement,
customer credit data, sales department totals and his own totals, and
more. In the old days, he used to collect this by telephone and memo,
moving to FAX as technology advanced, but now computer networks
give you an opportunity to make the diverse systems in all of these
departments work together to support your salesman as he generates the
income that, after all, keeps your company in business. So you wrap these
legacy applications with OMGIDL interfaces and put them all onto your
network, accessible via CORBA object references. This lets your IT
department build a client that integrates information from all of them into
a sales application. Your salespeople, online in their customers' offices
via modem or wireless connection, can answer questions immediately and
make more sales. Orders enter into your fulfillment system as they are
taken, allowingyou to schedule shipping (and production, if youneed to)
and billing automatically and immediately.

The sales-peoples' application could become a Web sales site, allowing
any potential customer with a browser to find and order your products

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 205

themselves. Because all of your supporting applications are available via
CORB A, it is easy to generate the application that drives the website, so
you do this, and the sales start rolling in.

With so many customers out there, the load of product support and repair
calls increase and, since support has always been a cost center, you
brainstorm to figure out a way to deal with it. You finally decide to design
a call-center support application around your CORB A enterprise infra-
structure. By standardizing response to trouble calls, you deal with these
in less time, but the real benefit comes in parts and repair: with all of the
engineering diagrams online, your telephone staff can sell and ship parts
to customers with one or two clicks of a mouse, and with another click or
two, can dispatch contracted repair vans to take care of the installation.
Income from parts and commission on repair calls turn this cost center into
a profit center, and customers' satisfaction increases atthe same time.
Integration of many applications around your enterprise that connect to
the call-center application, a potential nightmare, is straightforward
because they all have CORB A wrappers already.

With success, the load on your e-commerce website increases until it
outgrows the capacity of the mainframe applications that supported it at
start-up. Since CORB A has been so successful for you on your network,
you decide to build your server' s replacement object-oriented in CORB A
from the ground up. To start, you use UML for your analysis and design:
it helps you gather requirements, work through use-cases, and set down
the functionality that the new server will provide. Then, class diagrams,
object diagrams, and action diagrams let you picture how it will work. By
the time you' re done, the UML diagrams that you have generated dictate
most of your OMGIDL and language code. To take care of both current
and anticipated load, you decide to buy an ORB that runs load-balanced
on a roomful of server machines. It is based on OMG's Portable Object
Adapter or POA, which helps you take the best advantage of your
hardware when you run heavy loads, like the ones that Web-based
applications generate. If your application needs to stay up reliably (as it
would if you are running stock or bond trades, for example), you may
decide to use CORBA Fault Tolerance also. More than just load-
balancing, fault tolerance runs every object on two or more separate
machines at the same time and automatically switches to the good one if
one fails. If you duplicate your hardware (computers, networks, even

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

206 Targowski

power sources) also, you can setup a very reliable server indeed. By the
way, you have not replaced all of your legacy systems (that is, the
functional systems that run your business!), and this server still needs to
access the ones that are still around. Since they all retain their CORB A
wrappers, of course, this is routine. To maximize sales, you design the
front-end for this server to be accessible from as many customer client
types as possible: some customers come in via Web browsers, using
HTTP which your Web server translates into CGI invocations of your
CORB A front end. Others use Java/CORB A clients for more sophisti-
cated programmatic access, while some users with direct network con-
nections use OMG' s standard COM/CORB A bridge to come in straight
from a Microsoft desktop. Type-specific adapters condense your
screens, eliminating graphics and isolating key lines of text, enabling digital
PDA's, pagers, and browser-capable cell phones to place orders using
your same business-logic architecture and implementation.

• To keep up with demand, you decide to automate your plant. Because of
the speed that parts travel around the assembly line, the control program
must run in real-time, so you build this system on an ORB and operating
system that conform to the CORBA real-time specification. Computers
on your shop-floor equipment also run CORBA (in real-time where
needed here too), so your plant hums smoothly along; in fact, some of the
processors on your shop floor run minimal CORBA, OMG's standard for
embedded ORB' s. Of course the pi ant doesn' t run in isolation: it needs
stock, which needs to be bought, which costs money, and needs to be
brought to the plant, which needs logistical coordination, so your automa-
tion system also talks to your supply and logistics applications over
CORBA interfaces, of course.

• The next addition would be CORB A-based interfaces to your suppliers,
automating your logistics out to their warehouse (and, within their enter-
prise, hopefully to their plant as well). This is not a purely hypothetical
example; Boeing Aircraft automates its manufacturing system from order
entry through production and delivery, to maintenance, using CORBA.

So where' s the payoff? Just as the different departments and divisions that
make up your enterprise need to work together in order to maximize profit, their
computing applications also need to work together. CORBA lets you do this,
and that is where standards pay off in a big way: you cannot limit the diversity

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 207

of computers in your enterprise - you need to pick different computers for
different uses. This is clear on the shop floor, where equipment may come with
aprocessor built-in, or in the call center, where machines need to link up to the
telephone system computer for both voice and data to take advantage of ID
information that comes with incoming calls. So, you pick a standard
interoperability infrastructure - CORB A! - to tie your applications together.
You would like to use it for all of your applications, but sometimes this just is
notpossible. For these cases, CORBA gives youthe couplings you need: the
COM/CORBA interoperability standard to connect to the desktop that
everyone uses (and to Microsoft servers, too, if you have them); the reverse
Java-to-IDL language mapping and RMI/IIOP to connect to Java RMI objects
and EJB's, and the mapping from XML to OMGIDL.

How do they work together? You' 11 want (and need, actually) to perform
an analysis and design before starting any substantial software development
project. For this, you buy and use a tool based on UML, the Unified Modeling
Language. Using XML Metadata Interchange or XMI, you transfer your
model - which is the metadata for your application - into a standardized
repository based on the MOF, or Meta-Object Facility. Using XMI again, you
transfer your model from your MOF into a development environment that lets
you implement it as a CORBA application. You will generate OMG IDL
interfaces, which will map into the programming languages that you choose for
your clients and obj ects, using the OMG-standard language mappings. You
may design a scalable server-side architecture using features of the Portable
Object Adapter or POA, and augment CORB A's support for load-balancing
with a standard Fault Tolerant infrastructure. You will surely want to design
your overall application around the CORBA services and possibly the Domain
CORBA facilities to reap the major gains possible from the buy-vs.-build
philosophy.

Who is using them, and what for? OMG has collected hundreds of design
wins and success stories from companies that use CORBA, and posted them
on our Website athttp://www. corba.org. For readers who do not want to surf
to that page now and get totally sidetracked, here are summaries of a few big
CORBA users' applications:

CNN uses an application based on the CORBA event service to distribute
news material that comes in from hundreds of sources, in many formats,
from many different machine types, to all of their news editors who run
automated filter programs that audit the incoming events and flag the
stories that qualify as important to each editor's individual preferences.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

208 Targowski

Boeing integrated four "best of breed" manufacturing applications into a
comprehensive infrastructure that takes care of airplane configuration
from ordering, through manufacture, to maintenance.

Charles Schwab and Company built a CORB A-based trading application
that they use for their 5,000 best customers, handling accounts worth
multiple billions of dollars.

ENTERPRISE JAVABEANS (EJB) STANDARD
The application of the Internet and its Web technology has changed the

traditional client-server two-tier architecture into the four-tier architecture.
Sun Microsystems, which developed the Java language, supports this architec-
ture on its servers. Web-driven applications use various plug-in extensions to
Web servers. These extensions invoke programs on the server that dynamically
construct HTML documents ("home pages") from information stored in
corporate databases and vice versa, the Web server extensions also enter
information submitted in HTML forms into the corporate databases. An
example of such extensions is CGI-bin scripts, which stands for Common
Gateway Interface, and interface for developing HTML pages and Web
applications.

Figure 5-5 illustrates the so-called J2EE (Java 2 Enterprise Edition)
architecture which allows for the development and implementation of enter-
prise Web-oriented applications using the Java programming language.

Figure 5-5: The Four-Tier J2EE Architecture for Web-based Applications

Application-
Client

Contai-
ner

Web Container

Web
I Application!

EJB Container

| Enterprise |
Beans

(Enterprise I I
Database I I

nternet-H

Client's Browser Web Server Application Server Database Server

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 209

The J2EE platforms consist of four programming environments, called
containers:

The EJB Container - provides the environment for the development,
deployment, and runtime management of enterprise beans. Enterprise
beans are components that implement the business processes and entities
under the form of applications.

The Web Container - provides the environment for the development,
deployment, and runtime management of servlets and JavaServer Pages.
Servlets are specialized programs called pseudo applets (mini applica-
tions) that run on the server side. Java Servlets are a popular choice for
building interactive Web applications, replacing the use of CGI scripts.
Servlets are similar to applets (generated from the browser) in that they
are runtime extensions of applications. Instead of working in browsers
(like applets), servlets run with Java Web servers, configuring or tailoring
the server.

• The Application-Client Container-provides the environment for execut-
ing J2EE application clients. This environment is essentially the Java 2
platform, Standard Edition.

• The Applet Container - provides the environment for executing Java
applets. This environment is typically embedded in a Web browser.

The J2EE Platform embraces the Common Object Request Broker
Architecture (CORBA). All J2EE Containers include a COBRA-compliant
Object Request Broker (ORB) module. The inter-operability protocol be-
tween EJB Containers from multiple vendors is based on COBRA standards,
such as Remote Method Interaction over the Internet Inter-ORB protocol
(RMI-IIOP) and the Object Transaction Service (OTS).

The EJB architecture requires six roles of professionals:

1. Bean Developer - develops the enterprise applications' components
(beans),

2. Application Assembler-puts together different, but logically interrelated
beans into a larger unit such as a subsystem or a system,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

210 Targowski

3. Deploy er- deploys the application within a particular computer operated
environment,

4. System Administrator - configurates and administers the Enterprise
Information Infrastructure,

5. EJB Container Provider and EJB Server Provider-avendorspecializing
in transactions and application management.

DNA - DCOM STANDARD3

The Distributed Component Object Model (DCOM) developed by
Microsoft has three strengths that make it a key technology
(www. msdn. microsoft/library, com):

DCOM is based on the most widely-used component technology today.
DCOM is simply "COM4 with a longer wire"—alow-level extension of
the Component Object Model, the core object technology within
Microsoft® ActiveX® (COM enabled for the Internet). Major develop-
ment tools vendors—including Microsoft, Borland, Powersoft/Sybase,
Symantec, ORACLE, IBM, and Micro Focus—already sell software
development tools that produce ActiveX components. These tools and
the applications they produce automatically support DCOM, providing
the broadest possible industry support. Additionally, over 1,000 existing
commercial software components that will work with DCOM are already
available for use by developers.

• DCOM extends component applications across the Internet. Because it
is an ActiveX technology, DCOM works natively with Internet technolo-
gies like TCP/IP, Java, and HTTP, enabling business applications to work
across the Web. DCOM enables distributed Java today without requiring
any communications-specific code or add-ons.

• DCOM is an open technology that runs on multiple platforms. Microsoft
is openly licensing DCOM technology to other software companies to run
on all of the maj or operating systems, including multiple implementations
of UNIX-based systems. Software AG has DCOM running on the
Solaris-based operating system today. Additionally, Microsoft is handing

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 211

over DCOM technology with other core ActiveX technologies to The
Open Group. The Internet Draft technical publication that contains a
publicly available description of the DCOM network protocol can be
found at http://www.dc.luth.se/doc/id/draft-brown-dcom-vl-spec-
OO.txt.

The combination of these three factors—the largest installed base, native
support for Internet protocols, and open support for multiple platforms—
means that businesses can gain the benefits ofamodern component application
architecture without having to replace investments in existing systems, staff, or
infrastructure.

DCOM Architecture
DCOM is an extension of the Component Object Model (COM). COM

defines how components and their clients interact. This interaction is defined
such that the client and the component can connect without the need of any
intermediary system component. The client calls methods in the component
without any overhead whatsoever.

In today's operating systems, processes are shielded from each other. A
client that needs to communicate withacomponent in anotherprocess cannot
call the component directly, but has to use some form of inter-process
communication provided by the operating system. COM provides this
communication in a completely transparent fashion: it intercepts calls from the
client and forwards them to the component in another process. Figure 5-6
illustrates how the COM/DCOM run-time libraries provide the link between
client and component.

Figure 5-6: DCOM: COM Components in Different Processes (DCE-
Distributed Computing Environment, RPC~Remote Procedure Call, LPC-
Local Procedure Call)

c Clien
t

COM
run-time

Provider DCE RPC

LPC

COM I
run-time

Provider DCE RPC

LPC

Component

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without vvrilten
permission of Idea Group Inc. is prohibited.

212 Targowski

Figure 5-7: DCOM: COM Components on Different Machines

I Client —^ COM j
run-time

Provider DCE RPC

Protocol Stack

COM 1
run-time I

Provider DCE RPC

Protocol Stack

Component

When client and component reside on different machines, DCOM simply
replaces the local inter-process communication with a network protocol.
Neitherthe client nor the component is aware that the wire that connects them
has just become a little longer. Figure 5-7 shows the overall DCOM
architecture: the COM run-time provides object-oriented services to clients
and components and uses RPC and the security provider to generate standard
network packets that conform to the DCOM wire-protocol standard.

Components and Reuse
Most distributed applications are not developed from scratch and in a

vacuum. Existing hardware infrastructure, existing software, and existing
components, as well as existing tools, need to be integrated and leveraged to
reduce development and deployment time and cost. DCOM directly and
transparently takes advantage of any existing investment in COM components
and tools. A huge market for off-the-shelf components makes it possible to
reduce development time by integrating standardized solutions into a custom
application.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enterprise Electronization and Integration 213

Components and the Enterprise
As distributed applications are built from simple components and I nternet

protocols emerged, a new set of enterprise platform services for component
applications will be required. To address enterprise requirements for distrib-
uted component architecture without sacrificing rapid development and cost
effectiveness, Microsoft is integrating DCOM into the Active Server. The
Active Server is a series of technology services that speed deployment of
component-based applications for the Internet and corporate intranets. These
services include:

• Transactions—traditional rollback and recovery for component-based
applications in the event of system failure.

• Queuing—integration of component communication withreliablestore-
and-forward queues, which enables component applications to operate
on networks that are occasionally unavailable.

• Server scripting—easy integration of component applications on the
server with HTML-based Internet applications.

• Legacy access—integration of component applications with legacy
production systems, includingmainframesystemsrunningCICS and IMS.

The Active Server technologies use publicly obtainable Internet protocols
and are currently available5.

MICROSOFT .NET FRAMEWORK6

Microsoft evolves from the COM-DNA platform to the new .NET
platform designed to simplify application development in the highly distributed
environment of the Internet. This is atransformation from desktop applications
to the distributed GUI-based .NET applications. The .NET Framework
affects all of Microsoft's products, from operating systems, servers, and
middleware to applications. All these products are capable of handling and
processing .NET traffic and leveraging the .NET infrastructure. These prod-
ucts will transform to Windows.NET, Office.NET, MSN.NET, and so forth.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

	ateesa - 0212
	ateesa - 0213
	ateesa - 0214
	ateesa - 0215
	ateesa - 0216
	ateesa - 0217
	ateesa - 0218
	ateesa - 0219
	ateesa - 0220
	ateesa - 0221
	ateesa - 0222
	ateesa - 0223
	ateesa - 0224
	ateesa - 0225
	ateesa - 0226

