
Part IV

IT
Development

and
Management

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



290 Targowski

Chapter VII

IT Development

INTRODUCTION
In this chapter trends of IT-driven enterprise development are presented.

These trends compete among themselves for supremacy. They do not create
a well integrated set of techniques; vice-versa, this set is very eclectic and
contains techniques very old and still applicable, like the System Development
Life Cycle, and new ones, like Web technologies. These trends are extended
into issues of an IT vision for the 21st century, IT skills, and computer
controversies that may influence IT developers' awareness about how to
pursue IT developmental proj ects.

IT CENTERS
The IT Centers' concept characterizes the main areas of tasks, knowledge

and skills that are necessary to develop, operate, and manage EII. Table 7-1
illustrates each center's methodology, examples of projects, and examples of
outcomes.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



IT Development 291

Table 7-1: The Characteristics of IT Centers

IT Center
PLANNING

DEVELOPMENT

MAINTENANCE

INFORMATION
DATA

NETWORK

Methodology
Information
Engineering,
System
Engineering
Information
Engineering,
Software
Engineering

Software
Engineering
Help Desk
Operations
Management
Topology
Planning,
Network
Administration

Projects
Enterprise-wide Systems
Configuration Management

System Analysis and Design
Business Process
Reengineering
Business Process
Integration
Workflow Integration
B2B Integration
e-Market Integration
Code Improvements
Legacy Systems Integration
Problem Solving
Productivity,
Security
Network Services
Network Security
Network Throughput
Mobil Integration

Outcomes
Systems Federations
Systems Integration
Hardware/Network/Soft
-ware Configurations
Objects
Applets
Components
Subsystems
Systems

Code List, Subroutines,
Objects, Components
Problem Solved
Data, Information,
Knowledge Processing
LAN, MAN, WAN, GAN
Private or Public

IT DEVELOPMENT CENTER
EII Development Methodologies

To develop an EII one can apply the following methodologies:

• Information engineering - to analyze information needs, integrate
business and system strategies, and design logic of information systems.

• System engineering - to select computer platforms, software pack-
ages, and computer/telecommunication networks, and design their con-
figurations.

• Software engineering - to buy or design software systems and program
their components.

The developmental activities are guided by the System Life Cycle as
illustrated in Figure 7-1.

In the EII System Life Cycle, the stage of system construction is replaced
by system programming in computer languages or automating editors (CASE-
Computer Aided Software Engineering).

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



292 Targowski

Figure 7-1: The Ell System Life Cycle

System Generation NSystem Generation N-1

Time

EII Development Strategies

In designing an IS one can apply one of three strategies:

Bottom-up strategy.

• Top-down strategy.

• Mixed strategy.

The bottom-up strategy used to be the most popular one. It is based on
the so-called Application Portfolio Methodology (McFarlan, 1981), which
contains only those system projects that are characterized by low risk and
useful benefits coming from their implementation. However, this strategy
encourages the development of "sure" applications such as "payroll," "inven-
tory control," and "customer orders." This strategy fosters selection of
"subsystems" based on the capabilities of individual applications. The appli-
cation portfolio methodology does not consider holistic issues of Enterprise
Information Infrastructure. Therefore this methodology has developed a lot of
so-called "legacy systems" that are the subject of reengineering process
projects.

The top-down strategy is based on the Federated Systems Methodology
(Targowski, 1990), which accepts the premise that the number of information

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



IT Development 293

systems/services and their subsystems in the enterprise is, to a certain degree,
finite. Each system has its own generic architecture (see Part II of this book),
which defines its major components and establishes their relationships formu-
lated by the list of parts, sub-assemblies, and assemblies (called a Bill of System
Processor). System federations are enterprise-wide driven, but systems and
subsystems are business process-driven.

The mixed strategy is a combination of bottom-up and top-down strate-
gies. The mix strategy is the most realistic strategy. The top-down strategy is
the most idealistic strategy which can be applied in the development of a
completely new enterprise environment. Such a situation is rare, because in the
1990's practice, we can always find an existing IS. These may be legacy but
they are still functioning. In such a case the reengineering process will improve
the legacy system according to the ideal istic system, expressed under the form
of the top-down strategy.

In the 1970' s when the maintenance load at Data Processing departments
increased from a modest 20% to 80%, many practitioners and theoreticians
began looking for the cause behind this reality. Three different causes were
discovered:

1. The linear system life-cycle presented a linear way of developing an IS.
It was based on the premise that every next step may add new improve-
ments ; however, it was not the practi ce to return to the previous stage and
introduce changes into a specification of a given IS. This caused many
errors that later were discovered in the operational stage and required
additional maintenance activities.

2. The linear system life-cycle was applied on the premise that a system
designer can develop a correct IS for a given business process. In fact,
this has never happened since this business process is not static, has
changed and as a result, has required more maintenance tasks.

3. The linear system life-cycle was applied to the individual application
system, without taking into account the complexity of the existing appli-
cation portfolio, which had to be adapted or vice versa to anew IS. This
adaptation required more and more maintenance tasks.

As a result of these false methodological premises, in the 1980's the
backlog in system development reached from two to five years at maj or DP

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



294 Targowski

departments. As a response to this backlog, several new methodological
activities have been established in the IS developmental practice:

• System quality assurance was developed as a corporate set of policies
containing standards for the system's life cycle stages.

• Quality control was introduced at the level of the individual IS develop-
mental process, through the evaluation of every major step's internal
solution and its influence upon the adjacent stages of the system's life
cycle.

• The system prototyping stage was introduced to discover early errors in
the system logic, programming or integration.

• Joint Application Development (JAD) methodology was introduced,
which put together system designers and system users.

• Application software packages became more popular than the approach
of designing a proprietary IS.

As a result of these new approaches, a "user friendly" software concept
(menu-driven) was created and the help function was expanded, including the
application of artificial intelligence that can create so-called "wizards" in
customizing the user's needs.

STRATEGIC USE OF IT
In the 1960's and 1970's during the early stages of applying information

systems, IT was treated as a means of automating clerical routines and reducing
employment of clerks. In the 1980's with the emergence of microcomputers
and its quiet, creeping revolution, information systems emerged from back
offices to front offices and began to affect the competitive positions of
businesses.

This type of information system was named strategic information systems
(SIS). They differed from the internal organizational IS since they mostly were
interfacing a given business with its customers, suppliers, and distributors. In
other words, these IS are of an inter-organizational nature.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



IT Development 295

Parson (1987) identifies (based on Porter's 1980 theory) and this author
(A. Targowski) exemplifies the impact of SIS on the business environment at
the following levels:

1. The industry level:
A product/service can be enhanced by improving its functionality
(embedded chips that make a product smart) and as a result, a given
firm has a new competitive advantage among its competitors.
A product's life-cycle can be shortened by the application of CAD
and CAM/CAP (Process) systems and new innovations can be
implemented sooner, giving a firm a competitive advantage.

• The speed of distribution can be accelerated by the system integra-
tion of a producer with a distributor through the Extranet, providing
a firm with a new competitive advantage (for example, an electronic
bookstore www.amazon.com).

2. The firm's inter-organizational level:
• Buyers using SIS can influence a supplier's selection and their

prices. An example is a system of searching electronic catalogs on
the Internet.

• Suppliers can reduce prices and increase customer satisfaction by
the application of an agile factory, which supports mass customization.
New entrants using SIS, particularly in the area of e-commerce, can
reduce entry barriers and limit entry deterrence.

• Substitution of products and services represents opportunities for a
firm or a consumer. An Internet service provider substitutes e-mail
for snail mail or an e-retailer for a traditional retailer.

• Rivalry - a firm having access to its own or commercial databases
and knowledge bases may establish effective links within the indus-
try and gain a better competitive position among the industry
rivalries.

3. The firm's strategy level:
SIS can be applied to reduce the overall cost so a firm can gain in
cost leadership within an industry. Such is the case of the Japanese
auto companies that in the 1980's applied robots, just-in-time
inventories, and strong quality controls and were selling cars at very
competitive prices.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



296 Targowski

• SIS can be applied to achieve a firm's product/service differentia-
tion among the industry' s producers. For example, the electronic
Amazon bookstore provides excellent customer service and traces
customers' behavior (knowledge management SIS), so it can offer
additional book choices when the customer orders a given book.
Due to this service, the customer returns to Amazon to buy more
books.

• SIS can be applied to focus on aparticular market/product niche.
For example, Microsoft gained its very high competitive advantage
in the software industry because it specialized in a desktop operating
system.

The above mentioned examples of SIS can provide a strategic position for
a firm as long as its competitors do not implement similar systems.

In the 1990' s the strategic perspective on information systems' role within
enterprise operations recognized three trends:

1. The development of a singular SIS as it has been exemplified above.

2. The development of the strategic Enterprise Information Infrastructure
architecture.

3. The development of strategic system-driven inter-organizational informa-
tion systems and services.

The development of the strategic Enterprise Information Infrastruc-
ture architecture is based upon choice among media-oriented enterprise

Table 7-2: The Choice of a Mediated Enterprise Type

I
rOff-line
On-line
Integrated
Agile
Informated: :

^Cpmmuhi-
c a t e d . : ••.:.;;•'

Mobile
Electronic ^
Virtual

Local

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes

Motional

Yes . :
S e s •.'" • ;<>
Y e s - : •• •• 'i

Yes
Yes : •;.!

sYes.-''
Yes • :
Yes

International

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes

Multi-
domestic

•Yes . :

§nYes

Yes
SYes
Yes

Global

Yes

Yes
Yes

Yes
Yes
Yes

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



IT Development 297

types. Table 7-2 identifies such choices for a given geography-oriented
enterprise.

Once a mediated enterprise type has been chosen, its type characterizes
the kind of an enterprise configuration, as it has been presented in Chapter 2.

DEVELOPMENT OF SUBROUTINE, OBJECT
AND COMPONENT

Computer programming was first introduced by Ada Lowelace, a collabo-
rator of Charles Babbage, who both developed the first programmable
"analytical engine" in 1832. Forthelast 150 years programming techniques
were aimed at the development of convenient instruction sets.

In the 1970' s the structuredprogrammingtechnique was introduced to
minimize the negative effects of "spaghetti" like program codes full of "go to"
instructions that call for subroutines.

In the 1990' s the objectprogrammingtechnique was introduced to make
self-dependent code modules=objects more reusable. The term object refers
to people, places, things, or transactions about which data is maintained. For
example, CUSTOMER, STUDENT, and TAXPAYER are all examples of
people objects; similarly, BUILDING, INVOICE, and REGISTRATION are
examples of place objects, and transactions objects, respectively. New
software solutions are collections of objects that incorporate both data
structure and behavi or which contains instructions for operating on data (hire,
fire, pay-dividend, open, close, change-job, change-address, close, hide,
redisplay, etc.). This is in contrast to conventional programming in which data
structure and behavior are only loosely connected. Most object-oriented
software solutions were developed with object-oriented programming lan-
guages such as Smalltalk, C++, Object COBOL, Visual Basic, and Java.

In the 2000's now emerges the component programming technique
which relies on some object-oriented techniques, since a component can be
perceived as a set of objects. However, a component is designed to be reused
and customized without access or modification of the component's source
code, unlike obj ects, which often come in the form of a class library and whi ch
are meant to be customized by subclassing the source code. On the other hand,
components have varying granularity and can consist of only one class, a
composite of many classes, or an entire application.

Most components cannot process code by themselves, but require a
module called a "container," which provides an application context for one or

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



298 Targowski

more components and which also secures control services for the components.
The container operates as an operating system, which executes the code within
the component. The first commercial component system MS COM was
created by Microsoft, which incorporated it into its Windows as Object
Linking and Embedding (OLE). OLE was designed to make it possible to
embed modules from one program into another. For example, when a user of
Word clicks on the Excel icon in the menu bar, this icon has the embedded
container controlling access to a spreadsheet program. Object applications are
the most successful in such cases as is shown in this example. In typical
software programming, the reuse of objects is rather rare and in practice, this
academic approach did not deliver solutions as was expected. The industrial-
ized obj ect programming led to the emergence of component programming,
where objects became less universal and more application-centric.

Components are based on the premise that users can wrap a code module
and create an interface (for example in a GUI style) that will respond to their
messages (commands). Users are not involved in the manipulations of the
internal code of a component. Just the interface intercepts commands directed
to the component (in our example to Excel) and then does whatever is
necessary to trigger that component's operations. In the object programming,
objects must be programmed in the same language (e.g., C++ or Java) in order
to interact between themselves. In component programming, two components
can be programmed in different languages, since their interaction is secured by
the container (interface). However, to ensure a smooth environment for
different components' interaction, they should be developed according to
standards of CORB A (Common Object Request Broker Architecture) with
the Internet Inter ORB Protocol (HOP) or COM/DNA (Microsoft's Compo-
nent Object Model - Distributed InterNetwork Application Architecture), or
in J2EE (Sun's Java 2 Enterprise Edition architecture, also called Enterprise
Java Beans - EJB, where a bean is a kind of self-describing object). Sun's EJB
was designed to interact with MS' COM/DNA; on the other hand EJB interacts
with CORB A components, thus in such a manner all standardized components
can interact among themselves.

MIDDLEWARE-DRIVEN INTERFACING
Middleware systems link a variety of different applications or their

components from different computer/software platforms. Middleware keeps
track of the locations of the software modules that need to link to each other,

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



IT Development 299

and thus manages the actual exchange of information. Because of that, the
location of modules is transparent for users. Each linked component must have
a standardized interface.

The major types of middleware are as follows:

• Database middleware (DBM)-translates SQL requests from applica-
tions into the native tongue of the target database;

• Transaction processing middleware (TPM) - facilitates updating of
multiple databases by a transaction-oriented application;

• Remote Procedure Call (RPC) middleware - allows an application
executed on one computer platform to call a procedure and/or send data
to an application running on another computer platform;

• Message-oriented middleware (MOM) - lets applications on differ-
ent computing platforms (mostly in the client/server configuration) and
networks exchange data reliably and securely. Messages are sent and
received through an independent layer in the asynchronous mode, which
is backed by the buffer capacity;

• Distributed component middleware (DCM) - moves messages be-
tween components of applications and provides services in security and
transaction processing, applying RPC and MOM styles;

• Distributed object middleware (DOM) - moves objects of applica-
tions between applications and provides services in security and transac-
tion processing, applying RPC and MOM styles;

• Application server middleware (ASM) -builds application servers in
the n-tier server architecture (client-application-database-directory ser-
vices-internet-security) which provides such services as: transactions
processing, persistence and data biding (data integrity in multi-user
environment), security support, directories, and load balancing as well as
the inclusion of all the above middleware types.

Middleware is primarily applied by companies implementing their own
application integration. Those companies that buy complete software or
outsource their information infrastructure used to ignore middleware applica-

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



300 Targowski

tions. Now, with the emergence of object and component-based solutions,
almost every computerized organization will sooner or later be using client
software which has incorporated object/component solutions that must be
linked with other object/components, even with those which are outsourced.

EAI - ENTERPRISE APPLICATIONS
INTEGRATION

Integrating information across the enterprise should be at the top of a Chief
Information Officer's (CIO) agenda. The information integration goal should
be the linkage among business units, applications, data architectures, computer
platforms, network topologies, websites, suppliers, customers, etc. An
integration strategy can send a company one step forward or two steps
backward.

EAI focuses on solving the integration of multiple applications that were
independently developed within the enterprise, may use incompatible informa-
tion technology, and may remain independently managed. For example, SAP
applications can be integrated with Peoplesoft applications that are used in
different locations, including different countries. EAI aims at the linkage
between different application semantics in order to move information seamlessly
between systems in short time frames. For instance, within a short transaction,
information exchange takes place to support a discrete event, such as the
addition of a customer in one application while automatically updating another.

EAI requires layers of data transformation, metadata administration,
software adapters and connectors, network connectivity, and integration
administration. The EAI integration scenario is about how information is
updated between sources and targets within a given organization.

In an average corporation there are about 50 applications developed
internally, installed by ERP software or delivered by the third-party, that should
be integrated. Major ERP vendors publish application programming interface
(API) to enable connectivity with the third-party applications.

The integration between two applications typically occurs at several levels
concurrently. Table 7-3 illustrates seven different levels of integration; each
level based on services provided by the lower levels.

In the industrial practice of applying EAI one can recognize four levels of
possible solutions delivery:

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.


	ateesa - 0302
	ateesa - 0303
	ateesa - 0304
	ateesa - 0305
	ateesa - 0306
	ateesa - 0307
	ateesa - 0308
	ateesa - 0309
	ateesa - 0310
	ateesa - 0311
	ateesa - 0312
	ateesa - 0313

