Part IV

IT
Development
and
Management

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

290 Targowski

Chapter VII

IT Development

INTRODUCTION

In this chapter trends of IT-driven enterprise development are presented.
These trends compete among themselves for supremacy. They do notcreate
a well integrated set of techniques; vice-versa, this set is very eclectic and
contains techniques very old and still applicable, like the System Development
Life Cycle,and new ones, like Web technologies. These trends are extended
into issues of an IT vision for the 21% century, IT skills, and computer
controversies that may influence [T developers’ awareness about how to
pursue IT developmental projects.

IT CENTERS

ThelT Centers’ concept characterizes the main areas oftasks, knowledge
and skills that are necessary to develop, operate, and manage EII. Table 7-1
illustrates each center’s methodology, examples of projects, and examples of
outcomes.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group [nc. is prohibited.

Table 7-1: The Characteristics of IT Centers

IT Development 291

T Center Methodology _ Projects Outcomes
PLANNING Information Enterprise-wide Systems Systems Federations
Engineering, Configuration Management Systems Integration
System Hardware/Network/Soft
Engineering -ware Configurations
DEVELOPMENT Information System Analysis and Design Objects
Engineering, Business Process Applets
Software Reengineering Components
Engineering Business Process Subsystems
Integration Systems
Workflow Integration
B2B Integration
e-Market Integration
MAINTENANCE Software Code Improvements Code List, Subroutines,
Engineering Legacy Systems Integration ~ Objects, Components
INFORMATION Help Desk Problem Solving Problem Solved
DATA Operations Productivity, Data, information,
Management Security Knowledge Processing
NETWORK Topology Network Services LAN, MAN, WAN, GAN
Planning, Network Security Private or Public
Network Network Throughput -

Administration

Mobil Integration

IT DEVELOPMENT CENTER
EIl Development Methodologies

To develop an EIl one can apply the following methodologies:

Information engineering — to analyze information needs, integrate

business and system strategies, and design logic of information systems.

System engineering — to select computer platforms, software pack-

ages, and computer/telecommunication networks, and design their con-

figurations.

» Software engineering —to buy or design software systems and program
their components.

The developmental activities are guided by the System Life Cycle as
illustrated in Figure 7-1.

Inthe EII System Life Cycle, the stage of system construction isreplaced
by system programmingin computer languages or automating editors (CASE-
Computer Aided Software Engineering).

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without writien
permission of Idea Group Inc. is prohibited.

292 Targowski

Figure 7-1: The EII System Life Cycle

Cost
System Generation N-1 System Generation N
=)
o c
= L1 1
§E £ 5 S
2 c i =
28fEw | Ec £§ E@ | E2|EE
nop L= 2D 85 2wl 85 2@
o ® | @ D o R RR a .
> C > > = > O = ystem
<< | hAa ha N |- = Operations 4,

Time

EII Development Strategies
Indesigning anIS one can apply one of three strategies:

* Bottom-upstrategy.
* Top-downstrategy.
* Mixedstrategy.

The bottom-up strategy used to be the most popular one. Itis based on
the so-called Application Portfolio Methodology (McFarlan, 1981), which
contains only those system projects that are characterized by low risk and
useful benefits coming from their implementation. However, this strategy
encourages the development of ““sure” applications such as “payroll,” “inven-
tory control,” and “customer orders.” This strategy fosters selection of
“subsystems” based on the capabilities of individual applications. The appli-
cation portfolio methodology does not consider holistic issues of Enterprise
Information Infrastructure. Therefore this methodology hasdevelopedalot of
so-called “legacy systems” that are the subject of reengineering process
projects.

The top-down strategy is based on the Federated Systems Methodology
(Targowski, 1990), which acceptsthe premise that the number of information

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IT Development 293

systems/services and their subsystems in the enterprise is, to a certain degree,
finite. Each system has its own genericarchitecture (see Part Il of this book),
which defines its major components and establishes their relationships formu-
lated by the listof parts, sub-assemblies, and assemblies (called a Bill of System
Processor). System federations are enterprise-wide driven, but systems and
subsystems are business process-driven.

The mixed strategy is a combination of bottom-up and top-down strate-
gies. The mix strategy is the most realistic strategy. The top-down strategy is
the most idealistic strategy which can be applied in the development of a
completely new enterprise environment. Sucha situationisrare, because in the
1990’s practice, we canalways find an existing [S. These may be legacy but
they are still functioning. Insuchacase the reengineering process will improve
the legacy system according to the idealistic system, expressed under the form
of the top-down strategy.

Inthe 1970’s when the maintenance load at Data Processing departments
increased from a modest 20% to 80%, many practitioners and theoreticians
began looking for the cause behind thisreality. Three different causes were
discovered:

1. Thelinear system life-cycle presented alinear way of developinganIS.
It was based on the premise that every next step may add new improve-
ments; however, it was not the practice to return to the previous stage and
introduce changes into a specificationofagivenIS. This caused many
errors that later were discovered in the operational stage and required
additional maintenance activities.

2. The linear system life-cycle was applied on the premise that a system
designer can develop acorrect IS for a given business process. In fact,
this has never happened since this business process is not static, has
changed and as aresult, has required more maintenance tasks.

3. Thelinear system life-cycle was applied to the individual application
system, without taking into account the complexity of the existing appli-
cation portfolio, which had to be adapted or vice versato anew IS. This
adaptation required more and more maintenance tasks.

As a result of these false methodological premises, in the 1980°s the
backlog in system development reached from two to five years at major DP

Copyright © 2003, [dea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

294 Targowski

departments. As a response to this backlog, several new methodological
activitieshave been established in the [S developmental practice:

+ System quality assurance was developed as a corporate set of policies
containing standards for the system’s life cycle stages.

» Quality control was introduced atthe level of the individual IS develop-
mental process, through the evaluation of every major step’s internal
solution and its influence upon the adjacent stages of the system’s life
cycle.

+ Thesystem prototyping stage was introduced to discover early errors in
the system logic, programming or integration.

» Joint Application Development (JAD) methodology was introduced,
which puttogether system designers and system users.

» Application software packages became more popular than the approach
of designing a proprietary IS.

Asaresult of these new approaches, a “user friendly” software concept
(menu-driven) was created and the help function was expanded, including the
application of artificial intelligence that can create so-called “wizards” in
customizing the user’s needs.

STRATEGIC USE OF IT

Inthe 1960’sand 1970’s during the early stages of applying information
systems, IT was treated asameans of automating clerical routines and reducing
employmentofclerks. Inthe 1980°s with the emergence of microcomputers
and its quiet, creeping revolution, information systems emerged from back
offices to front offices and began to affect the competitive positions of
businesses.

Thistype of information system was named strategic information systems
(SIS). They differed fromthe internal organizational IS since they mostly were
interfacing a given business withits customers, suppliers, and distributors. In
other words, these IS are of an inter-organizational nature.

Copyright © 2003, 1dea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IT Development 295

Parson (1987) identifies (based on Porter’s 1980 theory) and this author
(A. Targowski) exemplifies the impact of SIS on the business environment at
the following levels:

1. Theindustrylevel:

A product/service can be enhanced by improving its functionality
(embedded chips that make a product smart) and asaresult, a given
firm hasa new competitive advantage among its competitors.

A product’slife-cycle can be shortened by the application of CAD
and CAM/CAP (Process) systems and new innovations can be
implemented sooner, giving a firm a competitive advantage.

The speed of distribution can be accelerated by the system integra-
tion of'a producer with adistributor through the Extranet, providing
afirm with anew competitive advantage (forexample, an electronic
bookstore www.amazon.com).

2. Thefirm’sinter-organizational level:

Buyers using SIS can influence a supplier’s selection and their
prices. Anexample isasystem of searching electronic catalogs on
the Internet.

Suppliers can reduce prices and increase customer satisfaction by
the application ofan agile factory, which supports mass customization.
New entrants using SIS, particularly inthe area ofe-commerce, can
reduce entry barriers and limitentry deterrence.

Substitution of products and services represents opportunities fora
firm ora consumer. AnInternet service provider substitutes e-mail
for snail mail or an e-retailer for atraditional retailer.

Rivalry —a firm having access to its own or commercial databases
and knowledge bases may establish eftective links within the indus-
try and gain a better competitive position among the industry
rivalries.

3. Thefirm’sstrategy level:

SIS can be applied to reduce the overall cost so a firm can gain in
cost leadership withinan industry. Such is the case ofthe Japanese
auto companies that in the 1980°s applied robots, just-in-time
inventories, and strong quality controls and were selling cars at very
competitive prices.

Copyright © 2003, Idea Group lnc. Copying or distributing in print or electronic forms without wrillen
permission of Idea Group Inc. is prohibited.

296 Targowski

SIS canbe applied to achieve a firm’s product/service differentia-
tionamong the industry’s producers. Forexample, the electronic
Amazonbookstore provides excellentcustomer service and traces
customers’ behavior (knowledge management SIS), so it can offer
additional book choices when the customer orders a given book.
Due to this service, the customer returns to Amazon to buy more
books.

SIS can be applied to focus on a particular market/product niche.
Forexample, Microsoft gained its very high competitive advantage
inthe software industry because it specialized in a desktop operating
system.

The above mentioned examples of SIS can provide a strategic position for
afirm as long as its competitors do notimplement similar systems.

Inthe

1990’ s the strategic perspective on information systems’ role within

enterprise operationsrecognized three trends:

1. Thedevelopmentofasingular SIS asithasbeenexemplified above.

2. Thedevelopment ofthe strategic Enterprise Information Infrastructure
architecture.

3. Thedevelopmentofstrategic system-driven inter-organizational informa-
tion systems and services.

The development of the strategic Enterprise Information Infrastruc-
ture architecture is based upon choice among media-oriented enterprise

Table 7-2: The Choice of a Mediated Enterprise Type
i ' Local National' - " . International . Global
- Off-line . Yes

On-tine - Yes | Yes

Integrated - Yes i Yes

‘Agile ‘ Yes . Yes

“Informated: _ Yes { Yes

sCommuni- : Yes Yes

“cated 1

‘Mobile ~ . Yes © Yes

- Electronic = Yes = Yes

NMityal - Yes ..1es

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

IT Development 297

types. Table 7-2 identifies such choices for a given geography-oriented
enterprise.

Once amediated enterprise type has been chosen, its type characterizes
the kind of an enterprise configuration, as it has been presented in Chapter 2.

DEVELOPMENT OF SUBROUTINE, OBJECT
AND COMPONENT

Computer programming was first introduced by Ada Lowelace,a collabo-
rator of Charles Babbage, who both developed the first programmable
“analytical engine” in 1832. For the last 1 50 years programming techniques
were aimed at the development of convenient instruction sets.

Inthe 1970°s the structured programming technique was introduced to
minimize the negative effects of “spaghetti” like program codes full of “go to”
instructions that call for subroutines.

Inthe 1990’s the object programming technique was introduced to make
self-dependent code modules=objects more reusable. The term object refers
to people, places, things, or transactions about which data is maintained. For
example, CUSTOMER, STUDENT, and TAXPAYER areall examples of
people objects; similarly, BUILDING, INVOICE, and REGISTRATION are
examples of place objects, and transactions objects, respectively. New
software solutions are collections of objects that incorporate both data
structure and behavior which contains instructions for operating on data (hire,

fire, pay-dividend, open, close, change-job, change-address, close, hide,
redisplay, etc.). Thisisincontrasttoconventional programming in which data
structure and behavior are only loosely connected. Most object-oriented
software solutions were developed with object-oriented programming lan-
guages such as Smalltalk, C++, Object COBOL, Visual Basic, and Java.

In the 2000°s now emerges the component programming technique
whichrelies on some object-oriented techniques, since a component can be
perceived asa setof objects. However, acomponent is designed to be reused
and customized without access or modification of the component’s source
code, unlike objects, which often come in the form of a class library and which
are meant to be customized by subclassing the source code. On the other hand,
components have varying granularity and can consist of only one class, a
composite of many classes, or an entire application.

Most components cannot process code by themselves, but require a
module called a “container,” which provides an application context for one or

Copyright © 2003, ldea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

298 Targowski

more components and which also secures control services for the components.
The container operates asan operating system, which executes the code within
the component. The first commercial component system MS COM was
created by Microsoft, which incorporated it into its Windows as Object
Linking and Embedding (OLE). OLE was designed to make it possible to
embed modules from one program into another. For example, when a user of
Word clicks on the Excel icon in the menu bar, this icon has the embedded
container controlling access to a spreadsheet program. Objectapplications are
the most successful in such cases as is shown in this example. In typical
software programming, the reuse of objects is rather rare and in practice, this
academic approach did not deliver solutions as was expected. The industrial-
ized object programming led to the emergence of component programming,
where objects became less universal and more application-centric.

Components are based on the premise that users can wrap a code module
and create an interface (for example ina GUI style) that will respond to their
messages (commands). Users are not involved in the manipulations of the
internal code ofacomponent. Just the interface intercepts commands directed
to the component (in our example to Excel) and then does whatever is
necessary to trigger that component’s operations. Inthe object programming,
objects must be programmed in the same language (e.g., C++or Java) in order
to interact between themselves. In component programming, two components
canbe programmed indifferent languages, since their interaction is secured by
the container (interface). However, to ensure a smooth environment for
different components’ interaction, they should be developed according to
standards of CORBA (Common Object Request Broker Architecture) with
the Internet Inter ORB Protocol (IIOP) or COM/DNA (Microsoft’s Compo-
nent Object Model - Distributed InterNetwork Application Architecture), or
inJ2EE (Sun’sJava2 Enterprise Edition architecture, also called Enterprise
JavaBeans—EJB, where abeanisakind of self-describing object). Sun’s EIB
wasdesigned to interact with MS’ COM/DNA,; on the other hand EJB interacts
with CORBA components, thusin such a manner all standardized components
caninteractamong themselves.

MIDDLEWARE-DRIVEN INTERFACING

Middleware systems link a variety of different applications or their
components from different computer/software platforms. Middleware keeps
track of the locations of the software modules that need to link to each other,

Copyright © 2003, ldea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

IT Development 299

and thus manages the actual exchange of information. Because ofthat. the
location ofmodules istransparent for users. Each linked component musthave
astandardized interface.

The major types of middieware are as follows:

« Database middleware (DBM)—translates SQL requests from applica-
tions into the native tongue of the target database;

« Transaction processing middleware (TPM) - facilitates updating of
multiple databases by a transaction-oriented application;

+ RemoteProcedure Call (RPC) middleware—allows an application
executed on one computer platform to call a procedure and/or send data
to an application running onanother computer platform;

* Message-oriented middleware (MOM) - lets applications on differ-
ent computing platforms (mostly in the client/server configuration) and
networks exchange datareliably and securely. Messages are sentand
received through an independent layer in the asynchronous mode, which
is backed by the buffer capacity;

* Distributed component middleware (DCM)—moves messages be-
tween components of applications and provides services in security and
transaction processing, applying RPC and MOM styles;

» Distributed object middleware (DOM) —moves objects of applica-
tions between applications and provides services in security and transac-
tionprocessing, applying RPCand MOM styles;

* Applicationserver middleware (ASM)—builds application servers in
the n-tier server architecture (client-application-database-directory ser-
vices-Internet-security) which provides such services as: transactions
processing, persistence and data biding (data integrity in multi-user
environment), security support, directories, and load balancing aswell as
the inclusion ofall the above middleware types.

Middleware is primarily applied by companies implementing their own
application integration. Those companies that buy complete software or
outsource their information infrastructure used to ignore middleware applica-

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.

300 Targowski

tions. Now, with the emergence of object and component-based solutions,
almost every computerized organization will sooner or later be using client
software which has incorporated object/component solutions that must be
linked with other object/components, even with those which are outsourced.

EAI - ENTERPRISE APPLICATIONS
INTEGRATION

Integrating information across the enterprise should be at the top of a Chief
Information Officer’s (CIO) agenda. The information integration goal should
be the linkage among business units, applications, data architectures, computer
platforms, network topologies, websites, suppliers, customers, etc. An
integration strategy can send a company one step forward or two steps
backward.

EAl focuses on solving the integration of multiple applications that were
independently developed within the enterprise, may use incompatible informa-
tiontechnology, and may remain independently managed. Forexample, SAP
applications can be integrated with Peoplesoft applications that are used in
different locations, including different countries. EAl aims at the linkage
between different application semantics in orderto move information seamlessly
between systems inshorttime frames. Forinstance, within a short transaction,
information exchange takes place to support a discrete event, such as the
additionof'a customer in one application while automatically updating another.

EAl requires layers of data transformation, metadata administration,
software adapters and connectors, network connectivity, and integration
administration. The EAI integration scenario is about how information is
updated between sources and targets within a given organization.

In an average corporation there are about 50 applications developed
internally, installed by ERP software or delivered by the third-party, that should
be integrated. Major ERP vendors publish application programming interface
(API) to enable connectivity with the third-party applications.

Theintegration between two applications typically occurs at several levels
concurrently. Table 7-3 illustrates seven different levels of integration; each
level based on services provided by the lowerlevels.

Inthe industrial practice of applying EAI one canrecognize fourlevels of
possible solutionsdelivery:

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without writtcn
permission of Idea Group Inc. is prohibited.

	ateesa - 0302
	ateesa - 0303
	ateesa - 0304
	ateesa - 0305
	ateesa - 0306
	ateesa - 0307
	ateesa - 0308
	ateesa - 0309
	ateesa - 0310
	ateesa - 0311
	ateesa - 0312
	ateesa - 0313

