CAŁOŚĆ I ROZWÓJ W ŚWIETLE CYBERNETYKI

Henryk Greniewski

Pierwsza uwaga, która mi się nasunęła przy czytaniu książki prof. Langego — to zadziwiająca wydajność stosowanej przez autora prostej aparatury pojęciowej. Ta aparatura to, po prostu, pojęcie układu względnie odosobnionego (wraz, oczywiście, z pojęciami wejścia, wyjścia, determinatora itp.) oraz pojęcie sprzężenia (szeregowego i zwrotnego).

Prof. Lange mówi o „elementach względnie odosobnionych“, podczas gdy ja pisałem o „układach względnie odosobnionych“, ale nie upieram się wcale przy swojej terminologii. W ogóle pojęcie to jest bardzo stare, bo sięga „korpusu hipokratejskiego“. Tam jest ustęp, gdzie jest mowa o tym, jak ma postępować obcy lekarz po przybyciu do miasta, w którym panuje jakaś choroba, żeby ustalić przyczynę tej choroby. Już to była metodologia badania „elementów względnie odosobnionych“. To pojęcie nie było jeszcze precyzyjnie ujęte, przez długie wieki ono się kształtowało.

Chciałbym jeszcze wyjaśnić, skąd się wzięła ta różnica terminologiczna. Długo nie zdawałem sobie sprawy, dlaczego ja pisałem „układ względnie odosobniony“, a prof. Lange z miejsca „element“.

Dopiero niedawno, przygotowując się do tej dyskusji, zrozumiałem, o co chodzi. Gdy wprowadziłem termin „układ względnie odosobniony“, jeszcze mi nie przychodziło do głowy, że trzeba badać sprzężenia układów, ich „sieci“ itd.

A właśnie pojęcie układu czy „funkcyjnej sieci“ elementów sprzężonych odgrywa w książce prof. Langego rolę zasadniczą. Jest to zresztą również dość stare pojęcie, znane z rachunku relacji.

Gdy teraz powtórnie starałem się krytycznie czytać książkę prof. Langego, stwierdziłem coś zupełnie niespodziewanego: bogactwo wyników zawdzięczam się tu pewnemu założeniu, które wydaje się na pierwszy rzut oka zbyt specjalne, mianowicie założeniu, że repertuar, tzn. zbiór wszystkich możliwych stanów wejść czy wyjść jest podzbiorem niepus-
tym liczb rzeczywistych. Dzięki temu złożenie okazuje się, że można stosować matematykę klasyczną. W sumie; aparatura pojęciowa zastosowana przez profesora Langego, tj. podstawowy zestaw pojęć elementarnej cybernetyki wzaboga o złożenie liczbowego charakteru repetuarów wejść i wyjść, umożliwia autorowi przeprowadzenie płynnych rozumowań dotyczących głównie zagadnień rozwoju.

Na zakończenie pewna uwaga natury filozoficznej. Pod względem filozoficznym praca nie powinna być oceniana tylko z tego punktu wi- dzenia, że daje oraz pewną ściśłą metodę dialektycznego wypięzenia. Pozosta to ma ona jeszcze inny aspekt filozoficzny, o którym mówi autor. To jest tam odczepnie w redakcji czasopisma filozoficznego mówić. Chodzi mi o to, że książka ta jest w pewien sposób „antyfilozoficzna”, uderza mianowicie w taki reżim, w którym się mówi, że istnieją tylko rzeczy, a każda z re-
Cząstki te mogą też tworzyć względnie trwałe makroskopowe układy. Oto mechanicya z reguli doskonale rozumie, że właściwości i kierunek ewolucji owych złożonych układów w każdej chwili nie zależą jedynie od jakości poszczególnych cząstek elementarnych wchodzących w ich skład, ale i od relacji, mianowicie przestrzennych, pomiędzy tymi elementarnymi cząstkami. Właściwości obiektu zależą od tego, jak jego elementy na siebie aktywnie oddziaływać - to zaś z kolei zależy nie tylko od ich niemierzonej wewnętrznej dyspozycji, ale i o sytuacji, którą one dla siebie wywarły przez swą współczesność stwarzającą. Na tym gruncie mechanicy, właściwie już od czasów demokratycznych, podejmuje problematykę jakościowe swoistości układów złożonych w stosunku do ich izolowanych elementów.

Kolejnym donośnym metodologicznym założeniem mechanicyzm jest przekonanie o nieograniczonych możliwościach pewnego sposobu korzysnego aproksymacyjnego opisu prawidłowej struktury świata. Nie zakładając bynajmniej istnienia skończonej liczby cząstek elementarnych, nie zakładając istnienia jakichkolwiek układów odwrotnie i na wieko izolowanych, nie zakładając istnienia skończonej liczby jakościowo odmieneni ładunków (skończone liczby rozmaitych „all properties”) mechaniczny wierzy, że by to fizyczny można coraz lepiej, coraz dokładniej opisywać w terminach coraz obszerniejszych układów i rozwiązywanych, złożonych z skończonej liczby cząstek elementarnych, pomiędzy którymi działają (na odległość) takie określone siły, że w porównaniu z innymi siły można zaniedbać przy danym stopniu dokładności w rozwiązaniu problemu. Mechanicy sprzeciwia się więc, m. in., metodologii poostulującej coraz pełniejszy aproksymatywny opis byłu fizycznego w terminach układów z skończonej (i niemiernej) w toku opisywanej ewolucji liczbe stopni swobody.

Nie pretenduję te bynajmniej do pełnej charakterystyki metodologii mechanicznej. Jednakże myślę, że wskazałem pewne jej zysy istotne - i to także, które, z jednej strony, tłumaczą przewodzącą wśród współczesnych fizyków opinie, iż metodologiczny program mechaniczny jest zupełnie przestarzały; z drugiej strony jednak - podważają odróżniony autentyczny mechaniczny od jego niepisemnej deintepretacji - i na pewno podważają uwagę za jakieś pewnej pracy to, że ujawnia ona możliwość materialistycznego rozwiązania pewnego problemu w mechanicznych przybliżeniach.

Cóż, to pierwszą z tych „stron”, warto zwrócić uwagę już choćby na to, jaką rolę w mechanicznej metodologii odgrywa pojęcie genetyczności (rozumem obiektu trwającego w czasie i zmieniającego się albo przynajmniej zmieniającego swe relacje z innymi obiektami). Trudność związana z tym pojęciem identyczności polega na tym, że narusza ono Leibnizowską zasadę identyfikacji indenkornów. Mechaniczny rozwió rta w związku z tym koncepcję względnych kryteriów genetyczno-

Bożec ze strony otoczenia: reakcji, umożliwiającej mu zachowanie i rozwoj, jak gdyby stanowiący realizacja założonego z góry planu. Co się tyczy problemów swoistego charakteru co to w stosunku do jej (rozpatrywanych w ozerwaniu) części, to, jak nienawiść, zaraży organizmu z własności w stosunku do mechanici i być bezpodstawne od dawna, wreszcie od czasów demokratycznych. Tu praca prof. Langego, która rozwija problematykę co to w świetle cybernetyki, a w duchu materializmu dialektycznego właściwie kontynuuje za pomocą nowoczesnej przeczyźnej aparaty pojęciowej dodatkowe materialistyczne wątki ideowe. Co się tyczy problematyki tego rozwoju, ekvifinalności, entelechiów — to w tej dziedzinie materializm, zamiast zdania, jest w najwazniejszą częścią omawianej pracy.

Tu może parę słów na temat sena użytego przez mnie powyżej kilkakrotnie terminu mechanicznie. Termin ten od dawnych czasów nabrał w dyskusjach filozoficznych zabarwienia emocjonalnego, mianowicie pogardliwego, i, jak to zazwyczaj bywa z terminami, które taki los spożywa, ten znacznie stracił na określoności. Może być, termin ten stał się nawet wieloznacznym dla przeciwników materializmu jest on często synonim terminu materializm; natomiast dla materialistów jest on często synonim metodologii zwolennikówego ujęcia problematiki naukowej, w szczególności za synonim wyróżnienia materializm usualny.

Co do mnie, to pragnę używać tego terminu w pewnym pozbawionym emocjonalnego zabarwienia sensie, umotywowanym historią fizyki. Jest to w swej zasadniczej istocie ten sam sens, w którym terminu tego używają np. Einstein i Infehill w swej pracy "Ewolucja fizyki.

Najistotniejszym znamieniem mechanicyzmu jest dla mnie przekonanie, że ostatecznym składnikiem wszelkiego materialnego obiektu są quasipunktowe - ale nie ścieżkowe punktowe - niezmiernie, niemierne cząstki elementarne, poruszające się po torach ciągłych przestrzennie i czasowo. Ponieważ nie są one ścieżkowe punktowe, ich tory nie mogą się "spłatać" (ich środki mas nie mogą się nigdy pokrywać); ta rozdzielność torów stanowi w razie możliwości ciągłej obserwacji ruchów dostateczna, choć nie konieczną podstawę rozróżnialności tych elementarnych irytowidowych. Cąstki te mogą być obdarzone nie ograniczonym bynajmniej, z góry przez fizyko-chemiczną zespół dyspozycji do wzajemnego wpływania na siebie (zespolem "jadowników") - jednym z nich jest dla mechanicystów - dwudniowistowestowego masa waża), na swoje ruchy (do przyspieszania się wzajemnie zgodnie z pewnymi ogólnymi prawidłościami dynamiki, uznawanej w danej epoce. Dzięki tym dyspozycjom
Badanie problemu warunków dostatecznych muszą zarysować go do przyjęcia jakiejś sprecyzowanej definicji życia, może do węzła w sporze o arbitralność czy niearbitalność takiej definicji – a to by niewątpliwie wykraczało poza ramy pracy prof. Langego w obecnjej jej postaci. Dlatego cudzy słowy, w które zaopatrzono się w jego pracy terminy takie jak „dojrzałenie”, „starzenie się” etc. mają znaczenie istotne i jest dobrze, jeśli prof. Lange skrupulatniej je tam umieścić.

2. Przechodzę do kwestii, którą poruszyć mogę jedynie bardzo niemal, z dużym poczuciem nieskompetencji, jako że bynajmniej nie jestem cybernetykiem. Idzie mi o zastosowanie pojęcia homoestatyczności, i w ogóle cybernetycznej aparatury pojęciowej, do problematyki nauk zajmujących się nie organizmami i „układami organizmoidalnymi”, ale populacjami takich układów, a więc o zastosowanie cybernetyki do ekologii oraz pewnych nauk społecznych, tych, w których zawodzie rozprawianie społeczeństwa jako tworu organizmoidalnego.

W obrębie fizycznego bytu mianę celowości ujawnia w mierze najwyzszej organizm (i to tylko o tylo, o ile można go rozpatrywać jako układ „dający” do osobniczego samoobserwowania) oraz twór ludzki: mniej lub bardziej skomplikowana maszyna. Organizm ma narzędzie, tkanki, organelle i co tam jeszcze, maszyna ma cząstki – a najwyższy stopień celowości w realizacji tych układów na otożnienie uwarunkowany jest stosunkiem pomiędzy nimi i ich częściami; części te, przynajmniej w stanie „zdrowia” układu, nie mają innych „celów”, jak tylko współdziałanie w wypełnianiu „celu” układu jako całości.

Widzimy, że na początku rozwoju biologii w centralnej jej zainteresowania stał osobnik, a nie populacja, biocenosa, czy środowisko; wiadomo, że rozciąganie tego organizmowego punktu widzenia na ekologię i, zwłaszcza, na nauki społeczne, prowadziło do ujęcia naukowo wadiących, a w tym drugim (historycznym — wcześniejszym) wypadku — do jawnie reaktywnych społecznie. Pomiędzy stosunkiem organu do osobnika a stosunkiem osobnika do populacji czy do biocenosa zachodzi zasadnicza różnica; z drugiej strony, osobnik rozpatrywany bez dokładnego wniknięcia w jego rolę w populacji, w biocenie, w historycznym trwaniu gatunku jest osobnikiem rozpatrywanym bardzo jednostronnie i pewne jego cechy z tego punktu widzenia mogą zagoły mylnie sprawiać wrażenie cech dysfunkcyjnych, niecelowych, świadczących wyłącznie o niedoskonałościach dorobku naturalnego (którego „doskonałości” jako materiału nie zamierza tu, naturalnie, ferytaszyować).

W związku z tym powinnam sobie zadać pytanie, czy w literaturze cybergnetycznej istnieje pojęcie odpowiadające temu, co ja sobie na mój prywatny użytek określiłem jako entehomeostat? Antyhomeostas jest to właśnie sterująca część homeostatu rozpatrywana z punktu widzenia pewnych swoich istotnych cech. Antyhomeostat to takie urządzenie (lub
naturalny układ), które, dzięki ewentualnej zmianie określonych swoich parametrów wewnętrznych przyczynia się, w miarę możliwości, do stabilizacji określonych parametrów w określonej części swego zewnętrzniego ościenia.

Sięgamy do prostej analogii. Na przykład, jeśli lodówka znajduje się w otoczeniu o wysokiej temperaturze, jej część pracująca zazwyczaj zużywać więcej prądu, przegrzewać się, pracować w mniej sprzyjającym dla niej zrówni, skracając „nadmierny wysiłkiem” swe „życie”, byto tylko, w miarę możliwości, zachować we wnętrzu lodówki temperaturę stałą i to znaczenie mniej od temperatury otoczenia. Łódówka jest „homeostat”em, dzieki „antyhomeostatycznym” właściwościom swej części pracującej.

Można sobie wyobrazić jeszcze doskonały homeostat: jego antyhomeostat, w warunkach gdy zachowanie homeostaty staną się szczególnie trudne, zaczynają pracować jeszcze większą „wysiłkiem”, tak aby nie tylko, w miarę możliwości, utrzymać stabilność istotnych parametrów homeostatu, ale i przygotować sobie „pomocnicy” czy też „następcy”.

Oto, jeśli zamiast operować wprowadzoną tu terminologią, wydaje mi się, iż z punktu widzenia biologii oraz nauk społecznych, należy uznać rozpatrywanie osobnika w kategoriach wyłącznie homeostazy za jednostrojoną. Osobnik ma zazwyczaj cechy homeostatu, jak i cechy antyhomeostatyczne względem czegoś (gatunku w jego historycznym rozwoju, aktualna populacja, biocoena), czego jest częścią, i co wobec tego tego może wykazywać cechy zarówno homeostatyczne, jak i antyhomeostatyczne — „pomagać z zewnątrz” zachowaniu danego osobnika. Stąd wniesienie cech homeostatycznych i antyhomeostatycznych może być różny w różnych układach albo w różnych stanach tych samych układów. Sytuacja okazuje się bardzo skomplikowana. Antyhomeostatyczność pochodzi z sobą uniemnieżliwość pewnych takich zachowań i stanów, które by były dla danego układu „potrzebne”, gdyby były on tylko homeostatem.

Wyobrażę sobie matkę, która rozpoznała taką ilość pożywienia, iż ilość ta wystarczyłaby do nasycań jej samej, nie naszy wyjść, jeśli podziel za nią to, co skromnie, ale w sposób wczesne jego, nie uzyskał jej jednak, jeśli podziel za ona ze swoim dzieckiem. Gdyby matka ta była czymś, co można ująć w kategoriach wyłącznie homeostatu, to postępowaniem optymalnym z punktu widzenia przywrócenia równowagi wewnętrznej byłoby to pośpieszyć całą dostępnej ilość pożywienia. Jednakże matka mająca dziecko jest układem z właściwości autohomeostatyczno-antyhomeostatycznych i rozwiązania rozwiązanie nie jest dla niej korzystne z samych czynstw fizjologicznych względów (w grę wchodzi działalność wyższych pięter układu nerwowego). Matka, w tych warunkach, nawet zmuszona by była do przekroczenia całego pożywienia, może być niezależna do jego straszenia albo może wpisać w najszybciej rozwój nerwowy. Podobnie wyobraźmy sobie kogoś, kto jest zajęty bardzo terminową i odpowiedzialną społecznie pracą; a czuje się przemęczony. Z punktu widzenia homeostazy rozwiązaniem optymalnym jest niewątpliwie przerwanie pracy i uda-

e nie się na spocznak. Rozwiązaniem o wlecz gorzki, jak to wiedzą wszyscy tu zgromadzeni, jest zażywanie środków stymulujących działalność układu nerwowego i kontynuowanie pracy. A jednak to gorzkie rozwiązanie może być w danych warunkach rozwiązaniem fizjologicznie jedynie możliwe, gdy wyraźne surowa mogą po prostu umiłowić osobniki w tych warunkach zaistnieć.

I w odpowiedzi, wychodząc sobie pop ситуация, dla której najprzerwaniem rozwiązaniem takich żywotnych problemów jest podwleć: życia pewnej grupy przyznających do niej osobników albo ich silne usposteczenie biologiczne. Jak wiadomo, populacje różnych gatunków biologicznych, albo populacje tego samego gatunku, np. Homo Sapiens, w różnych sytuacjach, będąc popolacjami o różnych tradycjach poprzedniego bytowania, roznaczają się wnioskami do podobnego „najprzerwaniem” rozwiązania problemu — nawet przy założeniu, że istotnie jest on najprzerwaniem, najefekcyjniejszym z punktu widzenia zachowania homeostaty populacji jako pewnego układu.

Tego typu laickie, jak tego jest świadom, rozwiązania skłaniają mnie do postawienia pytania, czy w prawdziwej, oficjalnej cybernetyce rozwiaza się to, co ja tu nazwałem antyhomeostazą, a czy się próbuje rozwiązać stosunki osobnik-populacja w skomplikowanych kategoriach swoistej związku pomiędzy homeostatą „antyhomeostatą” Gdyby tak było, to dzięki temu, jak sądzę, cybernetyka przynajmniej uniknęłaby tego niebezpieczeństwa, by się stać odsłanianą dla odwróconych wersji czy tu darwinizmu społecznego, czy to organiczmu i naivnego funkcjonalizmu w socjologii.

Tym ludziom książka ta zdaje się być bardzo potrzebna niż zawodowym cybernetykom. Czy jednak praca ta trafi do swego najważniejszego adresata? Obawiam się, że w znacznej mierze nie, gdyż uprawiane w Polsce po dziś dzień tradycyjne kształcenie filozofów oraz tradycyjny charakter samodwojności tych filozofów, skrywający przed nimi braki ich tradycyjnego wykształcenia — wszystko to uniemożliwia znaczną część przedstawicieli tego środowiska do czytania prac wymagających minimalny kultury matematycznej oraz matematycznym przygotowaniem. Początkowo zamiastem wini prof. Langego o to, że utrudnił im percepcję, zarówno przez pewne nieistotne usterki w logicznym toku wykładu, jak i przez niewprowadzenie do książki jakichkolwiek paragrafów zawierających coś w rodzaju popularizacji stosowanych przez niego pojęć matematycznych. Nad nietrivialnymi usterkami i utrudnieniami nie warto się zatrzyma-
wać, co zaś do bardziej zasadniczego zarzutu dotyczącego braku paragrafów popularyzujących pewne pojęcia matematyczne, to przekonano mnie o jego niez głosności. Zadziwiało mnie, że taką książkę popularyzatorską wyróżnił tylko ten autor. Langego nie przemawiały trudności, jakie się nieprzeżyjnym mużem pietra pod przyjęciem jego książki przed ludzi nie posiadającymi tego minimum matematycznego wykształcenia, jakie współczesny filozof może powinien, i to przed ludźmi nawet nieświadomymi, co z nimi pod tym względem nie jest w porządku. Pomocy się tu spodziewać należy od jakiejś bardziej nowoczesnej koncepcji studium filozofii, w szczególności metodologii nauk Epistemologii.

Oskar Lange

Najpierw o intencji książki i o tym jak ona powstała. Lektura nasuwa mi refleksję, że aparat myślowy cybernetyki może wyjaśnić szereg zagadnień filozoficznych materializmudialektycznego. Ross Ashby dał mi przykład dialektyny. On nie zna tego słowa, ale mówi o prawie „ręta”. Daje on przykład układu, który składa się z dwóch części sprzężonych ze sobą tak, że jeśli pierwsza część jest w stanie równowagi, to stan wejścia i wyjści sprzężonych z nią drugiej części jest taki, że druga część nie może być w stanie równowagi oraz odwrotnie. Taki układ nigdy nie może być w stanie równowagi, jest on w wiecznym ruchu. Ashby mówi, że jedna część wejście, zaburza równowagę drugiej. Zawdzięcza mi, że można pojęcie sprzeczności, rozwoju poprzez sprzeczności wyjaśnić za pomocą aparatu myślowego cybernetyki.

Sprawa, która mnie od dawna interesuje, to zagadnienie całości, tak, jak ono występuje w materializmie dialektycznym. Kłokolitewie się zajmują naukami społecznymi, napałtają to zagadnienie. Występuje ono w innej formie w biologii. Proponuję to do zagadnienia samostanowionego rozwoju, czyli układów ergodycznych. W ten sposób powstała moja książka. Pisalem ją w dużej mierze dla siebie, żeby samemu sobie do końca pewne zjawiska wyjaśnić. Chciałbym powiedzieć kilka uwag o tym, co brakuję w książce i jaki powinien być dalszy jej ciąg.

Książka daje najpierw ogólną teorię układów i przyczuje takie pojęcia, jak struktura, sposób działania układu itd. Sądzę, że daje wyjaśnienie zagadnienia całości układów jako czegoś, co ma właściwości i prawidłowości działania, które wprawdzie zależą od właściwości i prawidłowości działania elementów, ale nie tylko od nich. Ponadto bowiem trzeba uwzględniać się sprzężenie.

Ale czego naprawdę brak w książce, to to, co wyjaśniam, w jaki sposób powstają nowe układy, w jaki sposób elementy sprzęgają się w układy, układy w układach wyższego rzędu i te w układach jeszcze wyższego rzędu. Chodzi o to, jak dokonuje się przejścia — od niższego szczebla do wyższego, jak powstanie nowego szczebla z nowymi jakością, czyli o pełni obrazu dialektycznego rozwoju. W tej sprawie mam pewne koncepcje, ale do końca ich jeszcze nie umiem sformułować.

Jak to mniej więcej wygląda? Zilustrowałbym to z pewnej analogii, miano wicie na przykładzie powstawania związków chemicznych. Nie wiem, czy przykład ten można generalizować. W książce odróżniam elementy zewnętrzne i elementy wewnętrzne układu, wprowadzając pojęcie po wierzchownego układu jako zbiór wszystkich jego elementów zewnętrznych. Elementy zewnętrzne to są takie, które mają wejścia albo wyjścia nie sprzężone z innymi elementami układu. W układzie otwartym istnieją elementy zewnętrzne, a więc wolne wejścia i wolne wyjścia. Przypuszczałem, że jeżeli dwa takie układy są wolnymi wejściami lub wyjściami, to są sprzężone, czyli mogą do siebie wpływać i wzajemnie się sprzęgać. Tak buduje się nowe związki chemiczne.

Można by teraz pojęcie sprzężeń fizycznych zastąpić przez przestrzen abstrakcyjną, wprowadzając pewną metykę i przyjąć założenie, że jeżeli odległość jest mniejsza niż określona wartość, to powstają sprzężenia. Na bazie przedstawionej chemicznej analogii można stworzyć pewien typ teorii powstawania nowych układów, ale przyznajm się, że to niemal nie występuje. W każdym razie opisującym drogą próbną można tworzyć pewien typ teorii powstawania nowych układów, ale przyznajm się, że to niemal nie występuje. W każdym razie podkreślając, że teoria procesu rozwojowego, w którym powstają nowe jakości,
Sądzę, że w budowie takiej teorii wchodzi już element probabilistycz-ny. W tym miejscu dokonaj się muszę przejście od ujęcia deterministycz- nego do ujęcia probabilistycznego.

Teraz przerwę do innej sprawy, mianowicie do kwestii antyhomeosta- tu. O ile wiem, to termin ten w literaturze cybernetycznej nie występuje, ale mam wrażenie, że jest on przydatny i warto go wprowadzić. Wiedzę tutaj dwa zagadnienia, dwa typy układów, które można by nazwać antyhomeostatami.

Pierwsze — to zagadnienia, które wymieniał wówczas Elstein. Chodzi, mianowicie o tę część układu samoregulującego czy samostanowiącego się, która narzuca własną równowagę, żeby zapewnić równowagę całego układu, która „podwiera się” dla całości. Niewątpliwie zachodzi także taka związisko w biologii oraz w społeczeństwie. W homeoście to, co się nazywa regulator przewodnikiem czynności lub organem sterującym, z regulii w ten sposób działa. Nie wiem w tej chwili, czy na przykład w organizmie biologicznym każdy organ nie jest w pewnym sensie antyhomeostatem, ale są takie organy, które na pewno są nim par- eceł. Również w zakresie zjawisk społecznych to na tym też powstają pewne typy sprawności wewnątrznych, z działoń do internalizacji np. konfliktu pomiędzy grupą a jednostką itp. To jest dość ciekawe.

Istnieje jednak i drugie zagadnienie. Chodzi o układ, który określę jako antyhomeostazę 2. Marks mówił, że „różnica między człowiekiem a zwierzęciem polega na tym, że zwierzę przystosowuje siebie do środowiska, a człowiek środowisko do siebie. Z grubsza, jako pierwsze przybliżmy, możemy to przyjąć. Oto jak by to wyglądało, gdybyśmy mieli lodówkę, której urządzenie regulujące jest takie, że ona reguluje temperaturę na zewnątrz; ona zaburza nie kompensuje, ale je eliminuje z zewnątrz (np. lodówka przykrywa kiołowy w pokój, w którym się znajduje). Taki homeostaz 2 znajdujemy u podstaw materializmu histo- rycznego. Człowiek przekształca środowisko, przystosowuje je, tak by był sobie sztucznym środowiskiem. Oddziaływania między człowiekiem a tym sztucznym środowiskiem jest podstawą rozwoju społecznego. Tak krótko i schematycznie przedstawia się materializm historyczny. To było typ antyhomeostazę 2 (może lepiej wprowadzić inną nazwę). Jest rzeczą bardzo ważną, że istnieją układy, które utrzymują swoją równowagę i oba wro- ją linię rozwoju nie przez wewnętrzne przystosowanie do otoczenia, ale przez to, że oddziałują na otoczenie zewnętrzne i otoczenie to zmieniają. W pewnej mierze czyni to każdy organizm, gdy się odżywia, tym bar- dziej populację organizmów zmienia środowisko. W związku z tym, że Kuczynski po przeczytaniu rozdziału o materializmie historycznym w mojej Ekonosfie Politycznej powiedział, że przedstawiony tam teorię rozwoju można zastosować w biologii. Tradycyjna teoria ewolucji jest jednostrotna, bo opiera się na tym, że organizmy przystosowują się do zmian środowiska, a zmiany środowiska traktowane są jako niezależne od organizmów. Ale organizmy — rośliny i zwierzęta — zmieniają śro- dowisko i wobec tego mechanizm dialektycznego odświeżania jako podstawy rozwoju jest w rozwoju biologicznym taki sam, jak ten który opisuje materializm historyczny. Człowiek zmienia środowisko, to wpływa na człowieka, co powoduje nowe zmiany środowiska, środowisko znowu wpływa na człowieka. Rezultatem jest rozwoj społeczny. W zasadzie między- dzy dialektycznym i materialistycznym koncepcją rozwoju społecznego i roz- woju biologicznego nie ma różnicy, jest to ten sam — powiedzmy — me- chanizm, taki sam proces dialektyczny. Materializm historyczny daje więc bazę metodologiczną dla teorii ewolucji biologicznej.

Władysław Krajewski

cja, gdy większość filozofów-marzaków nie jest po prostu w stanie przeczytać pracy, która precyzuje i uzasadnia w nowy sposób pewne podstawowe twierdzenia materializmu dialektycznego.

Zgadzam się z uwagą prof. Gremijskiego, że omawiana książka, jak i cała cybernetyka, pozwala teoria powszechnego reizmu, który by wytwarzał, że świat składa się jedynie z rzeczy o takich czy innych cechach, a nie uwalniał relacji między rzeczą, ich sprzężeń. Wydaje mi się jednak, że cybernetyka jest potężnym wsparciem dla reizmu niepowszechnego, przywiązującego się do wszystkich rzeczy, które w swojej relation między rzeczą (chości mi oczywiście o relacji ażeby w sposób w sposób do odmiany (chości mi oczywiście o relacji ażeby jak dotąd do odmiany ontologicznie, głoszącą, że podstawowym bytem są rzeczy). Mówę o tym, dlatego, że niektórzy filozofowie, powołując się na współczesną fizykę, twierdzą, że pojęcie rzeczyce się „rozpowszechnione”, a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z których należy konstruować wszystko inne. Otoż jest rzeczą interesującą, że w teorii fizyki nie ma tzw. „zdarzeń” a pozostają jako podstawowe istoty zdarzeń, z którycz

dem wielu innych filozofów) prof. Lange. Problem precyzacji różnych rozumieni pojęcia mechanizmu jest jednak z pewnością problemem istotnym, którym warto się zajęć bliżej.

Klement Szmarawić

Przy okazji chciałbym wyrazić wątpliwość co do rzucanego w toku dyskusji udania, że przyjęte relacji probabilistycznej (zamiat determinacji jednoznacznego) między wejściem w wyjściem elementów układu nie zmieniłoby w sposób istotny toku wywołań. Ponieważ jednak pozbył ten był wypowiedziany w formie lüną/przysznienia, nie będę tu przedstawił kontrargumentacji.

Ryszard Hercząński

Chocze przede wszystkim dołączyć swój głos do tych głosek, które stwierdzaly aprobata dla książki prof. Langiego. Wydaje mi się, że mamy do czynienia z bardzo ciekawą i ambitną próbą precyzijnego, niż tak to było dotąd, sformułowania pewnych zasad filozofii marzakowskiej.
Niedawno omawiał dwa artykuły z pogranicza cybernetyki i filozofii (Studia Filozoficzne nr 1(32) 1963), próbowałem w jakiś sposób usystematyzować prace, w których te dwie dziedziny występują w określonej sieci. Wyróżnilem, po pierwsze, artykuły, w których filozofowie i informaticy używali teorii, jeśli tak można powiedzieć, wewnętrzne sprawy cybernetyki. Do drugiej grupy zaliczyłem prace, w których teren filozofii jest bezstronny przed niezauważoną inercją przedstawicieli nauk ścisłych, eksplorujących wyniki swoich badań szczegółowych. Wreszcie w ramach tego bardzo szczegółowego i uzupełnionego podziału wyróżniam tercą grupę, szczególnie ważną, na prace, w których dokonywana jest transformacja pojęć wobec nowych na gruncie nauk szczegółowych na teren filozofii. Jako przykład takiej właśnie pracy podałem książkę prof. Langego.

Powtarzę tu raz jeszcze, że ideę, myśl przenoszenia książek wydacie mi się trafna. Pewne krytyczne uwagi, jakie zamierzasz uznać, dotyczą zatem szczegółów określonych wゼク, ale jego realizacji.

Swoje uwagi porządkuję w cztery grupy, zaczynając od najbardziej szczegółowych i kończąc na poziomie całego przebiegu do jego ogólnych. Pierwsza grupa dotyczy spraw aparatu matematycznego.

Podstawowym narzędziem matematycznym jest w omawianej pracy rachunek maklerzy. Jak widzimy, rachunek ten jest dogodny dla problemów liniowych, nie jest za specjalnie dogodny dla nieliiniowych. Oczywiście nie może być zbyt mowy (i w książce takiego założenia nie ma), by omawiane procesy miały charakter nieliiniowy. Budzi zatem wątpliwości celowość użycia tego właśnie aparatu w zasadzie tam, gdzie chodzi o np. elementy działające (wsprowadzone w § 2). Czy prowadzi to do pomysłu i nieporozumień? Wydaje mi się, że tak. Np. wzory (6,21) i (6,22) nie są ilocynnymi w senacie rachunku maklerzy.

Pewna ilość pojęć jest nie dość sklepiące i jednostajnie określona. Tak np. nie jest określony użyto na str. 39 terminu początkowy stan wektoru. Nie może on zresztą jeszcze tu wprowadzony, gdyż autor wprowadza pojęcie procesu i związane z nim pojęcie czasu reakcji dopiero w następnym paragrafie. Wydaje się, że autor uniknął wprowadzenia pojęcia liniowego i wiedza o procesie elementu od czasu reakcji (np. tam, gdzie mowa o działaniu elementu).

Niestety pojęcia nie mają wyrazowego sensu matematycznego. Tak np. pojęcie układu wyższego rzędu budzi sprzeciw z tego względu, że jest nader wolunarystyczne. Mając daną macierz nie można orzec, jakie rzędu układ jest przez nią opisany. Można tylko podać ograniczenie, trywialne zresztą, że nie wyższego niż ilość wierszy macierzy. Myślę, że byłoby naturalniejsze nazwać układami drugiego rzędu transformacje macierzy zero-jedynkowych, a nie ich sprzężenia).

Powyższe uwagi nie wyczerpują pewnych niedokładności, jakie znaczą w książce i mają tylko za zadanie zaszyfrowanie ich istnienia.

Przechodzę do drugiej grupy problemów, związanych już nie z aparatem matematycznym, lecz z samą matematyką.

W gruncie rzeczy autor rozważa układ (7,13), tj.

\[y(t) = T(x(t), u(t)) \]

(Wzór (7,14a) jest związany z niezbyt szerokim ograniczeniem liniowości). Oto podobne układy nazywane są w matematyce (po odpowiednich ograniczeniach w istocie przyjmowanych także przez prof. Langego) układami dynamicznymi. Jak widać, stąd takich układów w chwili następującej jest zdominowany wszędzie przez stan w chwili poprzedniającej. Można mieć wątpliwość, czy takie układy w istocie mogą opisywać złożone procesy, takie np. jak procesy biologiczne czy społeczne, bez wprowadzenia w nich podlegających z punktu widzenia filozoficznego pojęcia całości. Chodzi o to, że w procesach takich działanie układów w jakiś sposób zależy od historii. Innymi słowy, w symbolicznej formie brzmi ono jakby je zapisze tak, by uwzględnić odcinek czasu, a nie jeden moment np. w postaci (przyjmuję poniżej zapis skrócony)

\[y(t) = T(x(t), u(t), t_0 < t < t) \]

Uwaga powyższa wydaje mi się dość istotna. Markowski pojęcie całkowity, jak jakę zrozumieć intuitycznie, bez wprowadzenia podobne procesy obejmuje.

Druga uwaga w tym zakresie dotyczy pojęcia erogencji. To, co zostało w ten sposób przez prof. Langego nazwane, jest po prostu stabilnością w sensie Lapunowa. Równoważa zaś omawiana w § 8 jest jedną z szczególnie ważnych form tej stabilności. W pojęciu erogencji wchodzi pojęcie miary lub, w innych sformułowaniach, całkowego inwariantu. Takie pojęć prof. Lange nie wprowadza. Uwaga powyższa nie jest, jak by się mogło wydawać, czysto terminologiczna. Nasz bowiem w matematyce (mniej niż się to często dzieje w filozofii) coś oznacza.

Myślę, że już poprzednio uwagi wskazują na ograniczony wpływ wprowadzonych w książce pojęć. Teraz, w trzeciej grupie problemów pragnę zająć się innym typem ograniczeń, które związane są z samą istotą cybernetyki.

Opis cybernetyczny jest niewątpliwie opisem ścieśnia fenomenologicz-
Czas i rozpojż w świetle cybernetyki

Jeśli przytoczyć analogię z zakresu mechaniki, to cybernetyka zajmuje się tylko kinematyką. Dynamika jest jej obr. Jest ona zapewne niespokojnym, ale, jak dotąd, nie napisanym jeszcze rozdzialem.

Proba określenia pojęcia całości nie powinna kończyć się sprawami ogólnymi, wzorami etc. Wydaje się, że niezbędne byłyby przykłady świadczące o tym, że wprowadzone pojęcia pasują do naszych intuicji, że nie są z nimi sprzeczne. Uszyte uznaje treba przemniejsza. Wydaje mi się, że przy każdej takiej przyszłość wzięcia wzięcia te sprawy, które przed chwilą sygnalizowaliśmy.

Jest oczywiste, że taka przyszłość do intuicyjnych pojęć, odwolanie się do tak subiektywnego kryterium, może wypaść bardzo różnie. Dlatego niech mi będzie wolno powiedzieć dwa słowa precyzyjające moją intuicję w tym względzie. Wydaje mi się zresztą, że pojęcie całości zrealizowane jest do jakiegoś stopnia i że w tym samym zbiegu przedmiotów można wypierać wiele różnych całości w zależności od wybranego kryterium. Sądzę, że takie rozumienie mięś się w koncepcji proponowanej przez prof. Langego.

Dalej istotnym elementem całości jest chyba jakość jej ograniczoność, wyodrębnienie od reszty, zamkniętość. Z tego punktu widzenia propozycje rozpatrywanej pracy wydają się niespodziewane. Zgodnie z nimi można bowiem wyróżnić bardzo wiele wiedzy, zbyt wiele, a mianowicie wszystkie, którym odpowiada macierz z zera na przekątnej. Tych zaś jest w ramach każdego układu bardzo dużo — macierze opisujące układ składają się z prawie samych (nie w matematycznym sensie tego słowa) zmiennych.

Wydaje mi się więc, że podział na całość podlega pewną zjawiska, zbyt wypomnieć przy prof. Langego. Jakiego typu są to zjawiska? Takiego chyba, że układ będący całością ma generalne wejścia, nie będące wejściami elementów składowych do chwili ukonstytuowania się owej całości.

Wreszcie czwarta i ostatnia sprawa. Bardzo ambitna jest zapewne idea „zaanektowania” dla markizmu cybernetyki, podobnie jak w pewnym sensie neopositwizmu „zaanektowali” kiedyś dla swych poglądów logiki. Wydaje mi się bezprzeczne, że cybernetyka „pasaże” lepiej niż logika do markizmu — to, że nawiązanie do niej tradycyjnych teorii materializmu dialektycznego jest łatwiejsze. Lepiej, to nie znaczy jednak, że dobrze.

Jeśli więc zniknieniem precyzji pojęć. Sądzę, że taka precyzja jest dla markizmu niezbędna i dlatego właśnie ceść myśl prze- wodnią pracy prof. Langego. Wierzę, że precyzacja pojęć utrzymujących przez filozofię markiztyczną jest możliwa i potrzebna. Sądzę jednak z tex- razem, że różnie się od autora Całości i rozpojż w świetle cybernetyki w rozumieniu tego, jaka ma być ta precyzacja.

Nie jestem filozofem i nie czuję się zdolny samodzielnie określić jej zakresu i roli. Podzielim pogląd wyrażony przez Lesza Kolakowskiego, że powołaniem filozofii jest budowa całkowitego obrazu świata ważnego dla kształtowania społecznych postaw ludzi. Ta ogólna okoliczność (...) nie osiąga nigdy stanu, w którym mogłyby posiadać determinacje empiryczne tak trwałą albo jednolitość treściową tak skończną, jak poszcze- gólne specjalizacje naukowe, i nie jest pewne, czy elementy myślenia utopijnego oraz synetyczne wiedzę przedzawcze dążą do niej wyrugo- wać bez reszty, jakkolwiek nie wolno w tym zakresie lekcyzować różnych udoskonaleń już raczejowych i możliwych". (Swietoogładz i życie co- dzieżne, str. 14).

Dlatego właśnie sądzę, że tak daleko idąca formalizacja pojęć, jak to jest widoczne w zamierzeniu prof. Langego, jest przynajmniej obecnie rzeczą niecelną.

Andrzej Bednarczyk

Pojęcie antyhomeostatycznie wprowadzone przez dr H. Eisthan (biorąc pod uwagę uwagę tezę, którą ze sobą niesie zwą szerszym etymologicznem pochodzeniu) wydaje mi się nieskuteczne do opisujących przesze zjawiska. By uzasadnić swoje stanowisko, przypomnę genewski termin „homeo- stat”. Ukuły został przez W. Ross Ashbyego na oznaczenie urządzenia modelującego zjawisko wcześniej nazywane (fala dwudzieste) przez wybitnego fizjologa amerykańskiego W. B. Cannona homeostaz. Homeosta- za opisuje pewien typ zachowania układów biologicznych, w którym przejawia się integracyjności, całościowy charakter organizmów, polegający na utrzymaniu w stanie contest wszystkich istotnych parametrów ży- ciowych, nimo nieustananych zakłóceń płynących z zewnątrz. Waga tego zjawiska wraz z daleko idącymi konsekwencjami dostrzegł, jak wiadomo, jeszcze w ubiegłym stuleciu Cl. Bernard, dowodem czego jest piękny, często ostatnio przypomniany sztuką: Le fût des da.mille entier est tu condition de ta vie libre.
Powszechnie znaną są układy homeostatyczne w rodzaju układu podtrzymującego stałą temperaturę zwierząt homeotermicznych, układu zachowującego ścisłe określone wartości pH krwi, zawartość wody w organizmie itd. Stale parametry swoiste dla każdego z wymienionych układów osiągają one dzięki dokonywaniu nieraz bardzo nudykalnych zmian, dzięki granitowemu reorganizacji swej struktury, integracyjnemu działaniu bardzo wielu nader różnorodnej natury podukładów regulacyjnych i wewnętrzemu wzajemnemu powiązaniu w żywym organizmie kilku homeostatycznych układów. Tak np. w utrzymaniu stałej temperatury ciała biorą udział procesy regulacji ściślej regulacji doczepnego w mięśniach podczas dowolnych i mimowolnych ruchów, procesy regulujące poziom cukru we krwi, regulatorzy oddechowe, układy odpowiedzialne za reżim wody organizmu i wiele innych.

Każdy z tych skomplikowanych podukładów regulacyjnych, składających się na układ regulacji termicznej, można by nazwać homeostatem. Każdy z nich brzmi z osobna charakteryzuje się stabilnością. Na pytanie, czy taki podukład straci swoich wewnętrznych parametrów, czy parametrów organizmu, można odpowiedzieć, że strace parametrów organizmu poprzez utrzymywanie swoich własnych, wewnętrznych parametrów w określonych granicach.

Gdybysmy próbowali wyjaśnić taki układ (dalej ma na myśli się z podukładów układu regulacyjnego, np. termicznej i biega jego stabilność w sztucznie, w określony sposób sprowadzanym środowisku, w dorywczo niewypracowanym, pod układ okazałby się homeostatem, ale z chwilą włączenia do organizmu przestaje być "samodzielnym" homeostatem, a staje się elementem większego układu homeostatycznego. Sąsiądem do analogii z urządzeniem skonstruowanym przez Ashby’ego dla modelowania homeostatycznych systemów – staje się jednym z czterech ogniw homeostatu.

Sam homeostat należy do większej klasy układów zwanych ultrastabilnymi, tj. takich, które cechują się silnym zintegrowaniem wielu podukładów hierarchicznie uporządkowanych na kilku poziomach, skomplikowaną organizacją wewnętrzną, istnieniem skomplikowanej sieci połączeń i wyjątkowo niszczonej liczbą doszczętnych przełączek między podukładami i dzięki temu możliwością osiągnięcia jednego określonego stanu – stanu równowagi – różnymi drogami, z wielu rozmaitych zakresów początkowych. Poza tym układ ultrastabilny (włączając naturalnie także homeostat) wymaga według Ashby’ego (patrz jego książka Design for a Brain) istnienia dwóch rodzajów sprzężeń zwrotnych – kontynuacyjnych i dyskryminacyjnych, z. in. z tego powodu przykłady wymienione przez p. Eilstra jako ilustracje zespołu homeostat-antyhomeostat nie są faktyczne.

Być może, to krótkie wyjaśnienie zdola przekonać, że antyhomeostat (w zastosowaniu z klasyfikacją już homeostatem) nie istnieje, choć wypada tu uczynić jedno zastrzeżenie. Mianowicie, pojęcie owo może się wypełnić treścią, o ile różni się ono od swego źródłowego nie tylko partykuł "anty-" lecz także nadwojskowym, odrębnym znaczeniem naddynamizmem przez autora.

Przy okazji zauważmy, że homeostacie warto być może wprowadzić w wzrostającym w ostatnich czasach znaczeniu cybersystemowego modelowaniu biologii. W tym miejscu chciałbym wskazać na istniejącą analogię, co prawda, dość daleką, między homeostatem Ashby’ego a jajami jeziora z eksperymentów Drischera. Analogia ta pozwala nam przedstawiać w sposób wyjątkowo poglądowy wyjście procesów ewolucyjnych. Wyjaśnienie to, jak różne rozmazanie per analogiam, obarczone jest naturalnie zawsze w mniejszym lub większym stopniu możliwością nieciągłości, dowolności lub po prostu — błędem. Niemniej jednak sądzę, że proponowane zastrzeżenie może przynieść pewien pożytek. Istnieje po dobrowolnie między procesami przebiegającymi w działającym homeostacie a regulacjami genetycznymi obserwowanymi po uzupełnieniu rządu we wcześniejszym etapie rozwojowym. Mianowicie terminem eksofinalnym, którym określa się procesy rozwojowe organizujące układy biologiczne i doprowadzające do ukształtowania postaci właściwej danej gatunkowi, określa się również typ zachowania homeostatu. Ale gdzie jest w takim razie ukrzyta entelechia w homeostacie? Czyn tłumaczy się ogromną zdolność przystosowania homeostatu, czy nim tłumaczą podobne, choć nieustrojające się, niezrównoważone się układy biologiczne, których istnienie było kiedyś racją do stworzenia pojęcia entelechii — tajemniczego bytu, przekraczającego we wszystkie najdrobniejsze fragmenty, rozlewającego się po całym organizmie? Co warunkuje ultrastabilność homeostatu?

W homeostacie ultrastabilność osiąga się dzięki dwóm podstawowym regulacjnym, dwóm stopniom sprzężeń zwrotnych. Pierwszy stopień reprezentuje sprzężeń typicznego, które utrzymuje dynamiczną równowagę homeostatu, gdy żaden z jego elektromagnesów nie przekroczył podkreśla kąta wyzwyciężenia 45° in plus i 45° in minus. Zaktualizowanie tej równowagi jest impulsem włączającym drugi stopień sprzężeń zwrotnych, działających w sposób dyskryminacyjny, poszukujących wśród około 400 000 możliwych stanów nowego stanu równowagi. żadne inne mechanizmy regulacyjne pozazakładem ciągłym i dyskryminacyjnym oraz dopuszczalnymi 400 000 stop ni swobody w homeostacie nie istnieją. Już stosunkowo niewielki stopień stabilności oddziela przez elementy układu nadaje mu cechê zastrzeżenia dotąd wyłączenie dla żywych organizmów kierowanych przez entelecję. Dyskrynowanie to w sposób także nauczony przez argumenowiczewiom, zwrotniczo ekwiwalentne, dążenie do celu wspólnego dla homeostatu i istot żywych — tzn. do stanu równowagi z otoczeniem jest funkcją organizacji układu.

Zdaje się, że w każdym innym charakterysty ku niej wyjściu teoretyczno-cybernetycz-
ne tych samych zjawisk, proponowane przez prof. Langego. Jeśli można je porównywać ze sobą — to odnosi się ścisła, o której w poprzednim wyjaśnieniu Asshby'ego trudno w ogóle mówić, iż całkowitą brakiem poglądowości. Z tego powodu ci, dla których omawiana praca jest przeznaczona, m. in. biologowie, nie są w stanie przypuścić sobie jej treści (nikt kulturę matematyczną biologów złożliwają za przydatna, i zarazem nie potrafią dostrzec korzyści płynących z zastosowania nowego języka do przedstawienia zjawisk opisywanych dotąd za pomocą słów i gramatyki niesformalizowanego języka).

Układ biologiczny w interpretacji cybernetycznej gubi swe najistotniejsze cechy, decydujące o naturze życia. Nikt nie mianowicie cały dynamizm procesów życiowych, organizm jest teraz „trwanieniem”, a nie „zdrapaniem się”, „płynnym” organizm z chwilą znalezienia się na terenie cywilizacji „krzepnięcia”. W tym opisie nie znajduje swojego odpowiednika także cecha stacjonarności (tj. ten szczególny przykład zachowania się układu otwartego, w którym pomimo nieustannych wymiany energii i materiału z otoczeniem ogólna suma materii i energii pozostaje niezmieniona).

Wspominać pokroć o statystycznym ujęciu układów biologicznych (układów par excellence statystycznych), chciałbym zaszczytnie powiedzieć: rytekt „dowodu na zdobycie entelechiei” (pochodzi z końca lat dwudziestych i trzydziestych) autora tego ujęcia, najwybitniejszego biologa-teoretyka naszych czasów, Ludwika von Bertalanffiego twórcy organizmatyzmu.

Według von Bertalanffiego warunkiem koniecznym do pojawienia się w układzie zjawisk eukwifinalnych regulacji embotonalnych jest jego materialna i energetyczna „otrwałość” oraz przebiegające w nim w stań stacjonarnym procesy niewidzialne. Zarazem model organu zdobywany w oparciu o zasady kinetyki i dynamiki chemicznej spełnia warunki statyczności (nie ma niestety czasu na przedstawienie w szczegółach tej nader interesującej koncepcji). W konsekwencji organizmatycznej organu nie przedstawia wiązki izolowanych łańcuchów przyczynowych. Wszystkie procesy mające miejsce w organizmie są determinowane przez cały układ przestrzenny, a także przez cały „kontekst czasowy”.

Z biologicznych rozważań w. Bertalanffiego, jako daleko idące rozszerzenie i uogólnienie organizmatyzmu, wygrała ogólna teoria układów. Na tym wyższym stopniu abstrakcyjności charakter statystyczny ujęcia wyraża się poprzez analizę stosunków kondensacji w wysoko zorganizowanych układach. Cybernetyka jest tylko konkretnym i dość ograniczonym przykadem ogólnej teorii układów.

Do dyskusji, która wywijała się wokół mechanicyzmu, chciałbym się włączyć, przypominając najważniejsze postulaty biologicznego mechanicyzmu. Wcześniej należy wszakże odróżnić dwie odmiany mechanicyzmu: ontologiczną i metodologiczną.

Mechanicyzm w odmianie ontologicznej wysuwa następujące postulaty:

a) układ biologiczny jest sumą składających się nań elementów, organizm jest agregatem komórek. W dziejach biologii tę formę przyjęły przekonania dwóch wybitnych badaczy: R. Vichowa i M. Verworna. Przeciwko znanym w teorii patologii komórkowej (chorych organizmu jest sumą zachowań określonych komórek), drugi z teorii fizjologii komórkowej (czynności organu są uwzględnionym efektem czynności biologicznych każdej komórki z osobna).

b) układ biologiczny jest konstrukcją staticzną, maszyną rozmianą w najszerzszym sensie słowa, tzn. w procesach życiowych pierwszorzędne znaczenie mają struktury, odgrywające rolę „łóżek” dla płynących procesów. Busyjny rozwoj (tzw. biologii syntetycznej w początkach naszego stulecia, którą reprezentowali Ledus, Przebier, Rumenik i kilku innych) był wyrazem przejścia się tą doktryną;

c) organizm jest układem całkowicie bierneag przy潴iach leczniku automatu, odpowiadającego reakcji na bodźce; żyje on tylko dzięki różnorodności otoczenia oddziaływującego na niego; odnawia się mu weznie spontaniczną działalność.
Mechaniczyn w omawianie metodologicznym twierdzi, że dziedzina biologii jest wyłącznie terenem zastosowań praw fizycznych, a wszelkie biologiczne prawdopodobieństwa dają się bez reszty sprowadzić do prawdopodobieństw fizycznych, a więc w gruncie rzeczy jako takie, jako odrębne, nie istnieją. Mechanicym likwiduje przede wszystkim gruncze rzeczy odrębny przedmiot nauki o życiu.

Trudno naturlnie włączać się tu w polemikę z wymienionymi postulatami mechanicznym.

Wacław Mieczysław

Mówią o kwestiach faktycznych, mam na myśli przede wszystkim kompleks zagadnień dotyczących funkcjonowania mózgu ludzkiego. Postęp w tej dziedzinie wiąże się z zastosowaniem metod cybernetycznych w pewnych naukach szczegółowych, w neurofizjologii na przykład. Osiągnięte rezultaty mają pośrednio poważną dość dość filozoficzną. Taką właśnie, jaką miała w swoim czasie astronomia kоперникowska czy syntez ma czyniona. Od filozofa wymaga się w takich razach tyle tylko, aby wiedział, że takie a takie zagadnienia zostały rozwiązyane. Nie ma przy tym potrzeby, aby filozof był zarażony fachowcem w dziedzinie astronomii, mechaniki czy chemii organicznej, nie ma potrzeby, aby potrafił napisać owego słynnego moździerza czy rozwiązać zagadnienie dwóch ciał. Podobnie, ale on sobie radzi bez odpowiedniej cybertetyki w jej biologicznych czy technicznych zastosowaniach.

Cybernetyka jednak — w przeciwieństwie do mechaniki i chemii organicznej — znajduje się w filozofii zastosowania bezpośrednie. Przykładem takiego zastosowania jest dyskusja dotycząca profilu Langego. Aparat pośredniczy cybertetyki występuje tu w funkcji ścieżki analogicznej do funkcji aparatu logicznego w niektórych działach współczesnej teorii poznania czy aparatu matematycznego w fizyce teoretycznej. Rozbudowa tej nowej aparatury pośredniczącej nie daje jednak żadnych nowych argumentów na korzyść teorii, w której będzie zastosowana. Cybernetyka nie pozwala na przykład rozstrzygać, czy społeczeństwo jest, czy nie jest układem rozwiązanym się ergonomicznie ani podać specyficznych praw rozwoju społecznego. Tak więc bezpośrednio użyteczność cybertetyki dla filozofii leży w wykorzystaniu jej jako nauki formalnej.

Rola to dosłowna z tego względu, że efektywny aparat pośredniczy daje w perspektywie możliwość wyodrębnienia zagadnień, które w tradycyjnym języku humanistyki wymykają się wszelkim próbom konkretyzacji.

Zdzisław Pawłołk

Niezależnie od aspektów filozoficznych książki prof. Langego, w których dyskutowaniu nie jestem w stanie wziąć udziału, sądu, że poruszana w niej problematyka może być również interesująca z technicznoznawczego punktu widzenia.

Pojęcie rozwoju i całości mają charakter na tyle ogólny, że bliższe zbadanie ich treści może być interesujące nie tylko dla filozofa czy biologa. Również technik zajmujący się cybernetyką czuje potrzebę ich uciśnięcia. Sądzę jednak, że aby móc o rozwoju, należy o najpierw sprezygować pojęcie procesu, natomiast rozważania nad „całością” wymagać, możm zdaniem, określenia bardziej podstawowego pojęcia, struktury, organizacji lub, jak woli niektóre, systemu.

Bliższa analiza pojęcia procesu wykaże, że procesy można podzielić na różne klasy i badać ich własności. Byłyby interesujące ścieżki określenia pojęcia procesu i badanie go za pomocą odpowiednich metod matematycznych. Ogólne rozwiązywanie tego zadania wydaje się dość trudne, jednakże można już stwierdzić, że wątki się oto jako z problematyką podstaw matematycznych i najpierwodniejszym narzędziem do jego badania jest skojarzenie logiki matematycznej. Pojęcie rozwoju jest chyba jako założone od pojęcia procesu. Gdyby oba te pojęcia udało się powiązać, mogłoby to być pożyteczne. Należy jednak przypuszczać, że stosowany
przez prof. Langego aparatu matematycznego nie będzie do tych celów od-
powiednie.
Podobne rozwiązanie można przeprowadzić dla pojęcia całości. Myślę, że pierwotnym w stosunku do niego jest pojęcie struktury, czyli systemu. Przez strukturę rozumie zaibor obiektów wraz ze zbiorem zachodzących między nimi relacji. Np. zbior ludzi stanowi system ze względu na po-
krwawiście. Relacja jest tutaj „być krewnym”. Oczywiście relacja ta może być bardziej wstępnie określona, np. „być synem”, „być ojcem” itp. Oddziały wałąca stanowi strukturę, gdy między poszczególnymi wpisami za-
omy zachodzi relacja „być podwładnym” (czywicie relacja może za-
chodzić nie dla wszystkich elementów zbioru. Maszyna stanowi struk-
turę, poszczególne jej elementy łączy bowiem relacja „być częścią”.
Doroczny stanowi strukturę, w której relacja jest „być dobrym”. Można-
na podać wiele innych przykładów podobnego typu. Mówiąc o całości trudno pominąć badania nad tą typu strukturami. Pojęcie struktury można również użyć w nieco sielszy sposób i badać je ze pomocą środ-
ków matematycznych. I tutaj najpowszechniej wydaje się aparat lo-
giki matematycznej czy teorie mnogości, natomiast zakres stosowalności środka użytych przez prof. Langego wydaje się ograniczony.
W związku z pojęciem struktury i procesu powstają dalsze pytania. Np. w jaki sposób oba te pojęcia wiązać się z sobą? W wyniku procesu syntetycznego powstaje przedmiot o określonej strukturze. Jak zależy struktura-
ra przedmiotu od procesu, który ją realizuje? I odwrotnie: proces może być wyznaczony przez jakąś strukturę. Np. proces drzewa jest w znac-
nym stopniu wypromowany przez strukturę nasienia. Naślad naś powstaje jako wynik procesu rozwój drzewa. Można podać wiele innych podob-
nych przykładów. Badanie jednak tego rodzaju zależności wymaga spre-
cyzowania i zbadania pojęć pierwotnych.
Reasumując chciałbym zwrócić uwagę o wypowiedzi dra R. Herzyński-
ego. Niezależnie od takiego czy innego matematycznego ujścia rozważa-
nych problemów nie sądy, aby matematyka była najpowszechniejszym narzędziem dla filozofii. Dla postronnego obserwatora zastanawiający jest fakt, iż niektóre filozofowie dalszy rozwój filozofii widzą w mate-
matyce, natomiast matematycy nadzieje wyjścia z impasu wiązą z filo-
zoфиą.
Oskar Lange
Z dyskusji tej nauczyłem się bardzo wiele i może właśnie dlatego nie mam w tej chwili wiele do powiedzenia. Podsumowanie tego i uwzga-
łomienie sobie, czego się nauczyłem, wymagałoby trochę czasu, toże-
nie potrafiłbym w tej chwili tego złożyć. Pewne sprawy wymagają prze-
trwania. Pewnymi refleksjami jednak chcą się podzielić.
Zacznę od kwestii, z którą chcę się tutaj szybko „rozprawić”. Jedna, to sprawa mechanizmu. Nie chcę nad nią dyskutować, bo to jest spra-
wa terminologii. Odejmuję się od mechanizmu w pewnym rozumi-
ieniu tego słowa, mogę się przyznać do mechanizmu w innym rozumi-
ieniu tego słowa. Z góry zgadzam się na wszelkie etykiety, które mogą-
sobie zawiesić, a nawet na niejednokrotnie etykiety dla różnych środo-
visk, które różnią tego wyrazu używają. I na tym tę sprawę zakończę.
Drugie — to sprawę pewnych szczegółów matematycznych. W tej chwili mam tylko dwa uwagi ogólne. Sprawa literackości, nie miałem wpisć modelu liniowego, który uogólnia, zaczęłem od modelu ogólnego, ale mogłem w podświadomości mieć pewną liniową ilustrację te-
go, co piszę.
W sprawie terminologii: skąd wziął się u mnie wyraz „procesy ergo-
dyczne”? Wziął się z procesów stochastycznych. Mówi się o łańcuchach Markowa, że mają własność erгодyczności, jeśli po pewnej ileści powtór-
zeń rezultat staje się niezależny od sytuacji początkowej. Ogólnie rozu-
me się przez ergodyczność to, że średnia fazowa i średnia czasowa zmie-
rzą się do tej samej granicy. U mnie zachodzi bardzo szczególny przy-
dek tego. Ale można używać innego wyrażenia, to znowu sprawę termi-
nologii.
Z kolei przejdę do ogólniejszego zagadnienia — użytego w pracy aparatu matematycznego. Ten aparat matematyczny nie jest prosty, ale jak powiedział prof. Greniewski, klasyczny. Nie zawsze klasyczny, tra-
dycentyczny aparat jest najprostszy, zresztą np. w rozwoju matematyki na tym polega, że najpierw, nieklasyczne ujęcia są proste. Skąd się wziął u mnie aparat klasyczny? Stąd, że praca dotyczy procesów rozwojowych; aparat, którego używają ekonomiści w zagadnieniach dynamicznych, to równanie różniczkowe i równicowe. Dla przeciętnego ekonomisty z wy-
kształceniem matematycznym aparat ten jest niesmły, to jest aparat ukła-
dów dynamicznych.
A teraz na temat znaczenia cyberteki.
Sądzę, że można tu powiedzieć dwie rzeczy. Cybernetyka to pewien aparat formalny, który ma rozmaite zastosowania, podobnie jak rachunek prawdopodobieństw oraz statystyka matematyczna. Na tym polega za-
równo jego rola, jak i ograniczenia. Można powiedzieć, że chodzi tylko o wprowadzenie nowego języka, ale to dotyczy każdego formalnego aparatu. Na początku przekłada się znane wypowiedzi na nowy język i zwykle ten, kto zajmuje się daną dziedziną w tym starym języku, powiada, że nowy język tylko, że tak powiem, paże sprawę. Ale po pew-
nym czasie ten nowy język zaczyna umożliwia formułowanie zagadnień i wypowiedzi, które w starym języku fomalizować byłoby trudno. Wy-
mienej prostej przypadk z matematyki: rachunek macierzowy. W zas-
dzie wszystko można zapisać w postaci układu równań. Jeśli ktoś jest do tego przyzwyczajony, to dla niego rachunek macierzowy jest utrud-
nieniem. Bo kiedy widzę układ równań liniowych, znane mi są sposoby
rozwiązań za pomocą reguły Kramera, co wnoszą mi nowe symbole, co one mi nowego powiadają? Rozwiązywanie reguły Kramera również linowych — to jest wyznaczenie macierzy odwrotnej. Ale na pewnym stopniu dalszego rozwoju jednak dawny język nie wystarcza, wszystko staże się zbyt skomplicowane, zatw, trudno przejrzystość. Trudno byłoby pisać dalej bez ruchu macierzewskiego. Tak jest właśnie z cybernetyką. Często to jest przykładowanie na nowy język, a w dalszym ciągu wyłaniają się nowe zagadnienia. (Przypominam sobie, że zaremba jeszcze nie wyrzucił w przydatność algory i analizy wektorów. Mówit on: „wielka rzecz, prosta pana — jedno równanie zamiast trzech, też coś nowego”). Znaczenie aparatu formalnego polega na tym, że ujmuje pewne związki zachodzące w różnych dziedzinach i wyraża je za pomocą tych samych schematów formalnych, które można stosować w technice, w biologii i w naukach społecznych. Cybernetyka odkryła, odkryła analogię formalną, jeżeli wolisz isoformizm, w różnych dziedzinach rzeczywistości, odkryła ona, że różne dziedziny — w tej chwili używając bardzo nieprecyzyjnego wyrażenia — w sposób działania pod względem formalnym w gruncie rzeczy są do siebie podobne. To stanowi wielkie osiągnięcie. Odkrycie tej analogii, isoformizm działania daje możliwość tworzenia ogólnej teorii systemów. Na tym polega wielkie znaczenie cybernetyki jako teorii układów składających się z elementów wzajemnie na siebie oddziałujących (przędzonych). Powstaje ogólny schemat wzajemnego oddziaływania. Można to nazwać inaczej: ogólna teoria układu elementów przyczynowo ze sobą powiązanych. Nie będę kłócili się o wyrazy. Powstańie tego ogólnego schematu ma przede wszystkim znaczenie filozoficzne, w tym sensie, że tworzymy teorie bardzo uogólnione, dalej może to mieć znaczenie stymulujące rozwój poszczególnych nauk.