In Pursuit of Patterns in Data

Reasoning from Data the Rough Set Way

Zdzisław Pawlak

Institute of Theoretical and Applied Informatics,
Polish Academy of Sciences,

zpw@ii.pw.edu.pl

MOTTO:

"It is a capital mistake to theorise before one has data"

Sherlock Holmes

In: A Scandal in Bohemia

AN EXAMPLE OF A DECISION TABLE

Fact	Driving conditions			Consequence	B. 7
no.	weather	road	time	accident	N
1	misty	icy	day	yes	80
2	foggy	icy	night	yes	140
3	misty	not icy	night	yes	40
4	sunny	icy	day	no	500
5	foggy	icy	night	no	20
6	misty	not icy	night	no	200

DECISION RULES

Let S = (U, C, D) be a decision table. Every $x \in U$ determines a sequence $c_1(x), \ldots, c_n(x), d_1(x), \ldots, d_m(x)$ where $\{c_1, \ldots, c_n\} = C$ and $\{d_1, \ldots, d_m\} = D$

- The sequence will be called a *decision* rule induced by x (in S) and denoted by $c_1(x),...,c_n(x) \rightarrow d_1(x),...,d_m(x)$ or in short $C \xrightarrow{x} D$
- The number $supp_x(C,D) = |C(x) \cap D(x)|$ will be called a *support* of the decision rule $C \xrightarrow{x} D$
- The number

$$\sigma_x(C,D) = \frac{supp_x(C,D)}{|U|}$$

will be referred to as the strength of the decision rule $C \longrightarrow D$, where |X| denotes the cardinality of X

CERTAINTY AND COVERAGE FACTORS

• A certainty factor of the decision rule, denoted $cer_x(C, D)$ is defined as follows:

$$cer_x(C,D) = \frac{|C(x) \cap D(x)|}{|C(x)|} = \frac{\sigma_x(C,D)}{\pi(C(x))}$$

where
$$C(x) \neq \emptyset$$
 and $\pi(C(x)) = \frac{|C(x)|}{|U|}$

• A coverage factor of the decision rule, denoted $cov_x(C, D)$ is defined as

$$cov_x(C,D) = \frac{|C(x) \cap D(x)|}{|D(x)|} = \frac{\sigma_x(C,D)}{\pi(D(x))}$$

where
$$D(x) \neq \emptyset$$
 and $\pi(D(x)) = \frac{|D(x)|}{|U|}$

INVERSE DECISION RULES

• If $C \xrightarrow{x} D$ is a decision rule then $D \xrightarrow{x} C$ will be called an inverse decision rule

 The inverse decision rules can be used to give explanation (reason) for a decision

CHARACTERIZATION OF DECISION RULES

Fact no.	Strength	Certainty	Coverage
1	0.082	1.000	0.308
2	0.143	0.877	0.538
3	0.041	1.167	0.154
4	0.510	1.000	0.695
5	0.020	0.123	0.027
6	0.204	0.833	0.278

PROPERTIES OF DECISION RULES

Let $C \xrightarrow{x} D$ be a decision rule. Then the following properties are valid:

$$\sum_{y \in C(x)} cer_y(C, D) = 1 \tag{1}$$

$$\sum_{y \in D(x)} cov_y(C, D) = 1 \tag{2}$$

$$\pi(D(x)) = \sum_{y \in C(x)} \operatorname{cer}_{y}(C, D) \cdot \pi(C(y)) = \sum_{y \in C(x)} \sigma_{y}(C, D)$$
 (3)

$$\pi(C(x)) = \sum_{y \in D(x)} cov_y(C, D) \cdot \pi(D(y)) = \sum_{y \in D(x)} \sigma_y(C, D)$$
(4)

$$cer_{x}(C,D) = \frac{cov_{x}(C,D) \cdot \pi(D(x))}{\pi(C(x))} = \frac{\sigma_{x}(C,D)}{\pi(C(x))}$$
(5)

$$cov_x(C,D) = \frac{cer_x(C,D) \cdot \pi(C(x))}{\pi(D(y))} = \frac{\sigma_x(C,D)}{\pi(D(x))}$$
(6)

GRANULARITY OF DATA AND FLOW GRAPHS

- With every decision table we associate a <u>flow graph</u>
- To every decision rule $C \xrightarrow{x} D$ we assign a <u>directed branch</u> x connecting the <u>input node</u> C(x) and the <u>output node</u> D(x)
- Strength of the decision rule represents a <u>throughflow</u> of the corresponding branch.
- The throughflow of the graph is governed by formulas (1),...,(6)

DECISIONS AND FLOW

- Classification of objects boils down to finding the <u>maximal output flow</u> in the flow graph
- Explanation of decisions is connected with the <u>maximal input flow</u> associated with the given decision

FLOW GRAPH

Driving Conditions

Accident

DECISION SPACE

- With every decision table with one n-valued decision attribute we associate n-dimensional <u>Euclidean</u> <u>space</u>
- <u>Decision</u> granules determine *n* <u>axis</u> of the space
- <u>Condition</u> granules determine <u>points</u> of the space
- <u>Strengths</u> of decision rules are <u>coordinates</u> of granules
- Distance $\delta(x, y)$ between granules x and y is defined as

$$\delta(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where $x = (x_1,...,x_n)$ and $y = (y_1,...,y_n)$

DECISION SPACE

DISTANCE MATRIX

	A	В	C	D
A				u vi in Ar
В	0.064			
C	0.208	0.210		
D	0.517	0.510	0.309	

SUPPLY - DEMAND

Suppose that cars are painted into two colors Y_1 and Y_2 and that these colors can be obtained by mixing three paints X_1 , X_2 and X_3 in the following proportions:

- Y_1 contains 20% of X_1 , 70% of X_2 and 10% of X_3
- Y_2 contains 30% of X_1 , 50% of X_2 and 20% of X_3

We have to find demand of each paint and their distribution among colors Y_1 and Y_2

SUPPLY - DEMAND

FINAL RESULTS

INVERSE PROBLEM

- Distribution of votes of three disjoint group X_1 , X_2 and X_3 of voters among two political parties Y_1 and Y_2
- X_1 consists of 24% of voters, $X_2 62\%$ and $X_3 14\%$
- Votes distribution among parties is as follows:
 - group X_1 gave 50% of its votes for each party
 - group X_2 gave 68% of votes for party Y_1 and 32% for party Y_2
 - group X_3 gave 43% votes for party Y_1 and 57% votes for party Y_2

VOTING ANALYSIS

FINAL RESULTS

Voters

Parties

FINAL RESULTS

- Party Y_1 obtained 60% votes
- Party Y_2 obtained 40% votes
- Votes distribution for each party
 - Party Y_1 obtained
 - 20% votes from group X_1 ,
 - 70% from group X_2 and
 - 10% from group X_3
 - Party Y₂ obtained
 - 30% votes from group X_1 ,
 - 50% from group X_2 and
 - 20% from group X_3

FLOW GRAPH

A flow graph is a <u>directed</u>, <u>acyclic</u> finite graph

$$G = (N, \mathcal{B}, \varphi)$$

where

N – set of nodes

 $\mathcal{B} \subseteq N \times N$ set of <u>directed</u> <u>branches</u>

 $\varphi: \mathcal{B} \to R^+ - \underline{\text{flow function}}$

A FLOW GRAPH

flow conservation inflow = outflow

INPUTS AND OUTPUTS

• Input of $x \in N$

$$I(x)=\{y\in N:(y,x)\in\mathscr{B}\}$$

• Output of $x \in N$

$$O(x) = \{y \in N : (x, y) \in \mathcal{B}\}$$

• Input of G

$$I(G) = \{x \in N : I(x) = \emptyset\}$$

• Output of G

$$O(G) = \{x \in N : O(x) = \emptyset\}$$

• Inputs and outputs of G are external nodes of G; other nodes are internal nodes of G

NORMALIZED FLOW GRAPH

 $\mathbf{normalized flow} = \frac{\mathbf{flow}}{\mathbf{total flow}}$

FLOW

- If $(x, y) \in \mathcal{B}$ then $\varphi(x, y)$ is <u>troughflow</u> from x to y
- $\varphi_+(y) = \sum_{x \in I(y)} \varphi(x, y)$ is an <u>inflow</u> of y
- $\varphi_{-}(x) = \sum_{y \in O(x)} \varphi(x, y)$ is an <u>outflow</u> of x
- $\varphi_+(G) = \sum_{x \in I(G)} \varphi_-(x)$ is an <u>inflow</u> of G
- $\varphi_{-}(G) = \sum_{x \in O(G)} \varphi_{+}(x)$ is an <u>outflow</u> of G

FLOW CONSERVATION

• We assume that for any internal node

$$\varphi_+(x) = \varphi_-(x) = \varphi(x)$$

 $\varphi(x)$ – troughflow of x

Consequently

$$\varphi_{+}(G) = \varphi_{-}(G) = \varphi(G)$$

 $\varphi(G)$ – troughflow of G

STRENGTH, CERTAINTY AND COVERAGE OF FLOW

• The strength of (x, y)

$$\sigma(x,y) = \frac{\varphi(x,y)}{\varphi(G)}$$

• The certainty of (x, y)

$$cer(x,y) = \frac{\sigma(x,y)}{\sigma(x)}$$

• The coverage of (x, y)

$$cov(x, y) = \frac{\sigma(x, y)}{\sigma(y)}$$

• The normalized troughflow of x

$$\sigma(x) = \sum_{y \in O(x)} \sigma(x, y) = \sum_{y \in I(x)} \sigma(y, x)$$

PROPERTIES OF FLOW

$$\bullet \sum_{y \in O(x)} cer(x, y) = 1$$

$$\bullet \sum_{x \in I(y)} cov(x,y) = 1$$

•
$$cer(x, y) = \frac{cov(x, y)\sigma(y)}{\sigma(x)}$$

•
$$cov(x, y) = \frac{cer(x, y)\sigma(x)}{\sigma(y)}$$

(4)

(3) and (4) are Bayes' formulas

SUPPLY – DEMAND SIMPLIFIED GRAPH

Paint

Manfacturer

SUPPLY – DEMAND EXTENDED GRAPH

Paint

Car

Manufacturer

PATH

- A (directed) path from x to $y, x \neq y$ denoted [x, y], is a sequence of nodes $x_1, ..., x_n$ such that $x_1 = x, x_n = y$ and $(x_i, x_{i+1}) \in \mathcal{B}$ for every $i, 1 \leq i \leq n-1$
- The certainty of $[x_1, x_n]$

$$cer[x_1, x_n] = \prod_{i=1}^{n-1} cer(x_i, x_{i+1})$$

• The coverage of $[x_1, x_n]$

$$cov[x_1, x_n] = \prod_{i=1}^{n-1} cov(x_i, x_{i+1})$$

• The strength of [x, y]

$$\sigma[x,y] = \sigma(x) \operatorname{cer}[x,y] = \sigma(y) \operatorname{cov}[x,y]$$

CONNECTIONS

- The set of all paths from x to y ($x \neq y$) denoted $\langle x, y \rangle$, will be called a connection from x to y
- The <u>certainty</u> of $\langle x, y \rangle$

$$cer < x, y > = \sum_{[x,y] \in \langle x,y \rangle} cer[x,y]$$

• The coverage of $\langle x, y \rangle$

$$cov < x, y > = \sum_{[x,y] \in \langle x,y \rangle} cov[x,y]$$

• The strength of $\langle x, y \rangle$

$$\sigma < x, y \ge \sum_{[x,y] \in \langle x,y \rangle} \sigma[x,y]$$

THE RULE OF SUBSTITUTION

Let $x, y (x \neq y)$ be nodes of G. If we substitute the subgraph $\langle x, y \rangle$ by a single branch (x, y) such that

$$\sigma(x,y) = \sigma < x,y >$$

then

$$cer(x, y) = cer \langle x, y \rangle$$

$$cov(x, y) = cov < x, y >$$

and

$$\varphi(G) = \varphi(G')$$

where G' is the graph obtained from G by substituting $\langle x, y \rangle$ by (x, y)

DECISION TABLES

	Paint	Car	Strength
1	X_1	Y_1	0.12
2	X_1	Y ₂	0.12
3.	X_2	Y_1	0.42
4	X_2	Y_2	0.20
5	X_3	Y_1	0.06
6	X_3	Y ₂	0.08

	Car	Manu.	Strength
1	Y_1	Z_1	0.30
2	Y_1	Z_2	0.18
3	Y_1	Z_3	0.12
4	Y_2	Z_1	0.16
5	Y_2	Z_2	0.12
6	Y_2	Z_3	0.12

	Paint	Manu.	Strength
1	X_1	Z_1	0.11
2	X_1	Z_1	0.08
3	X_1	Z_3	0.06
4	X_2	Z_1	0.29
5	X_2	Z_2	0.18
6	X_2	Z_3	0.14
7	X_3	Z_1	0.06
8	<i>X</i> ₃	Z_2	0.04
9	<i>X</i> ₃	Z_3	0.04

SUMMARY

- Flow graphs can be used to decision analysis
- Flow in the graph represents strength of decisions
- Relation between decisions is expressed by Bayes' formula
- In this approach Bayes' formula has entirely deterministic character
- The presented approach leads to new computational algorithms and a new look on Bayesian methodology