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MOTTO:

It is a capital mistake to theorise
before one has data”

‘Sherlock Holmes
In: A Scandal in Bohemia



AN EXAMPLE OF
A DECISION TABLE -

Fact| Drivin conditions Consequence N

no. |weather| road |time| accident

icy | day yes

| foge icy |night es

_misty | noticy nmight] = yes

_icy | day no

AN |B W[t |-
=
3
kg

Joggy | icy |inightl  no

_misty | not icy |night no




DECISION RULES

Let S = (U, C, D) be a decision table.

Every xe U determines a sequence

c1(x),. . .y Ca(X), d1(x),..., dn(x) where

'{6'1,. .oy Cn} = (C and {dl,. ‘oo dm} =D

e The sequence will be called a decision
rule induced by x (in S) and denoted by
c1(x),. .., cp(X) > di(x),. .., d(x) or in
short C — D |

e The number supp.(C,D) = |C(x) N D(x)|
will be called a support of the decision
rule C — D

e The number

supp . (C,D)
o:(C.D)= U]

sgth of




' CERTAINTY AND
COVERAGE FACTORS

e A certainty factor of the declsmn mle, |
denoted cer,(C, D) is defined as |

follows: |
p)= €GN D) _ ,(C.D)

|C() - a(c(x)

where C(x) # & and ﬂ(C(x)) — |T§;‘{)i _.

cer,(C,

e A coverage factor of the decision rule,
denoted cov.(C, D) is defined as

cov .__lc(x)ﬁ D(x)‘ G,(C, ’) |
v (€. D)="="0ry Ot

.lUi"



INVERSE DECISION
RULES

e I{ C —— Dis a decision rule then
D —— C will be called an invers
decision rule |

.

' e
¢ The inverse decision rules can be used /|

to give explanation (reason) for a
decision |




CHARACTERIZATION OF

DECISION RULES

Fact no. | Strength |Certainty |Coverag

0.082

1.000

0.143

0.877

0.041

1167

- 0.510

1.000

0.020

0.123 1;] - )

0.204




Let C ——> D be a decision rule. Thei
the followmg properties are valid:

Y cer,(C,D)=1

yeC(x)

anv (c,D)=1

yeD(x)

7(D(x)) = Zcer (c,D) z(C(y))= ZO' (C, )

ny

7(C(x))= Zc&vy(C,B)-z(B(y)) ;g (c,D) D

yeD{x)

cov,(C,D)- z(L x))
z(Clx))

cer,(C,D)=




e With every decision table we assoclatei S

a flow graph

e To every decisionrule C——> D we -

assign a directed branch x connectlng - |
the input node C(x) and the outy
node D(x)

° Strength of the decmm rule

ut




DECISIONS AND FLOW

o Classification of ebjects boils de;e 1 L

finding the maximal output flow flow i in he

flow graph

e Explanation of decisions is connected__ <_
WIth the mmaleal lll-" - 'ut ﬂ.W ass.l
with the given decision e







DECISION SPACE

e With every decision table with one
n-valued decision attribute we |
associate n-dimensional Euclidean
space

e Decision granules determine n az,.'-s of e
the space |

o Condition granules determine Aomts«,:" "
of the space *'

e Strengths of decision rules are
coordinates of granules

e Distance 5 (x, y) between granulesx
and y is defined as -

(x,y) = \/Z(x y,)z

where x = (x1,...,X,) and y




DECISION SPACE

¥ D(0.000,0.510
0.5 00 )

& C(0.041, 0.204)

4+ B(0.143, 0.020)

A (0.082, 0.000) 0.5

m | > yes



DISTANCE MATRIX

A | B | C
e
B - (0.064
C 10.208 |0.210
D [0.517 {0.510 |0.309




SUPPLY -DEMAND

Suppose that cars are painted into two |
colors ¥; and Y, and that these colors
can be obtained by mixing three pamts e
X1, X; and X; in the followmg B
proportlons

- Y1 contains 20% of X;, 70% of X, and Pk

10% of X; o o

- ¥; contains 30% of Xj, 50% of Xz and. " |
20% of X5 e

We have to find demand of each paint

and their distributi
and Y- 2

on among colors ¥;




SUPPLY - DEMAND -




FINAL RESULTS

Paint Car

n(Y,)=0.60

cor=0.57 o=0.08

n(Y,)=0.40




INVERSE PROBLEM

e Distribution of votes of three disjoint
group Xi, X; and Xj; of voters among
two political parties Y7 and 1

¢ X; consists of 24% of voters, X; — 62%
and X; — 14% -

e Votes distribution among parties is as
follows:

- group X gave 50% of its votes for
each party

- group X, gave 68% of votes for party |
Y; and 32% for party Y,




rx)=0.14 ( X, J.Lor=0.57




Voters Parties

cov = 0,20»

n(vpe0d0




 FINALRESULTS

e Party Y; obtained 60% votes

e Party ¥, u-btaine;d 40% votes

e Votes distribution for each party
- Party Y; obtained
- 20% votes from group Xl,
- 70% from group X; and
- 10% from group X;

- Party Y, obtained
- 30% votes from gmup X1,




FLOW GRAPH

A flow graph is a directed, acvlic
. finite graph

where

N —set of nodes \

%< Nx Nsetof directed branches

@: 9% —>R" - flow function




A

FLOW GRAPH

I

flow conservation
inflow = gutflow




INPUTS AND OUTPUTS

e Input of xe NV |
I)={yeN: (y,x) € B}

e Output of xeN |
O(x) = {yeN: (x, y) € B}

o Input of G
I(G) = {xeN : I(x) = &}

e Output of G
O(G) = {xeN: Ox) = O}
 Inputs and outputs ef G are external

of G ‘ |




NORMALIZED FLOW
‘ GRAPH




FLOW

o If (x,y) € Bthen ¢(x,yp)is troughflow
fromxtoy - e

* 0, ()= D o(x,y)isaninflow of y

xel(y)

*p_(x)= > o(x,y) is an outflow of x

yeO(x)

*9,(G)= Y ¢_(x)is an inflow of G
xef{G)

*p_(6)= Z%(x) is an outflow of G

xe0(G)



FLOW CONSERVATION

e We assume that for any internal node

0.(x)=0.(x) = (%)

@(x) — traughflow of x

. Censequently
0.(G)=9_(G)=p(G)

—

troughflow of G

¢(G5~




AND COVERAGE OF
~ FLOW .

e The strength of (x, y)
@(X,y)
o(G)

e The certainty of (x, y)

Vi
/

cer(x, y)=

o(x,y) =

o(x,)
o(x)

e The caoverage of (x, y)




PROPERTIES OF FLO :

Z c er( X, y) 1 | ( 1) Q \

ye0O(x)

xel(y)

o Y cov(x,p)=1 R

o= SR @
cer(x, y)o‘(x)
o(y)

* cov(x,y) =

(3) and (4) are Bayes’ formulas




SUPPLY — DEMAND
SIMPLIFIED GRAPH

Paint - Manfacturer

n(X,)=0.24 [ X cer=046 =011 cov=0.24




SUPPLY — DEMAND
EXTENDED GRAPH

Paint Car - Manufacturer

Zor=057 _o=0.08




PATH

o A (directed) path' fromxtoy,x=y
denoted {x, y], is a sequence of nedes
X1 5.+ X SUCh that x; =x, x, =y and
(Xis Xi+1) € DB for everyi,1<i<n-1

e The certainty of [x;, x,]

n-1

cer[x,,x,] = H cer(x;,X;,;)

i=1

e The coverage of [x;, x,}

u-1

covlx,,x | = Hc@”(x;sxm)
i=1

e The strength of [x, y|

o[, 31 = ) cerfx vl = 0 0) covie 7|




CONNECTIONS

e The set of all paths from x to y (x #y)
denoted < x,y >, will be called a

conpection from x to y
e The certainty of < x, y >

cer < X,y >= Zcer[x, ¥l

[x,ple<x,y>
e The coverage of < x,y >

T eov< X, p>= Zcoﬂx, yl

[x, ple<x,)>

R

e The strength of < x, y >

o<x,y>= 3 olxyl

[x.yle<x,y>




" THE RULE OF
_SUBSTITUTION

Letx, y (x #y) be nodes of G. If we
substitute the subgraph < x, y >by a
single branch (x, y) such that

o(x,y)=0<x,y>
then
c_er(x, y)=cer<x,y>
cov(x,y)=cov< x,y >
and
#(G) = p(G")

where G' is the graph obtained from G
’ DsRuing <x,y> by(x,y)




DECISION TABLES

Paint |Car |Strength engtr
2 X5 | Y 0.12 2 W Z 0.18
3|, | Y 0.42 3 Y| 2, 0.12
4 X, | L | 020 14| Y, | Zj 0.16
S| X5 Y; 0.06 S| D Y4 0.12
6l X5 | N 0.08 6| Y, | 2, 0.12

Paint | Manu. | Strength
1 X Z; - 0.11
2 | X VA 0.08
3 X VA 0.06
4 X, Z; 0.29 .
5 X, Z, 0.18
6 X, Z; 0.14
7 X; Zy 0.06
8 X Z, 0.04
9o X, | z [ o004




' SUMMARY

e Flow graphs can be used to decision
analysis

®

e Flow in the graph represents strength
of decisions |

o Relation between decisions is
expressed by Bayes’ formula

e In thisapproach Bayes\ formula has

‘o The preseftedapproach leads to new
computational algerithms and a new
- look on Bayesian methodology



