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Summary. Rough set based data analysis starts from a data table, called an in-
formation system. The information system contains data about objects of interest
characterized in terms of some attributes. Often we distinguish in the informa-
tion system condition and decision attributes. Such information system is called
a decision table. The decision table describes decisions in terms of conditions that
must be satisfied in order to carry out the decision specified in the decision table.
With every decision table a set of decision rules, called a decision algorithm can be
associated. It is shown that every decision algorithm reveals some well known prob-
abilistic properties, in particular it satisfies the total probability theorem and the
Bayes’ theorem. These properties give a new method of drawing conclusions from
data, without referring to prior and posterior probabilities, inherently associated
with Bayesian reasoning.
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1 Introduction

The paper concerns a relationship between rough sets and the Bayes’ theorem.
It reveals new look on the Bayes’ theorem from the rough set perspective and
is continuation of ideas presented in [5, 6].

In the paper basic notions of rough set theory will be given and the
notion of the decision algorithm will be defined and some its basic properties
will be shown. It is revealed that every decision table (decision algorithm)
displays well known probabilistic features, in particular it satisfies the total
probability theorem and the Bayes’ theorem. These properties give a new
method of drawing conclusions from data, without referring to prior and
posterior probabilities, inherently associated with Bayesian reasoning.

The revealed relationship can be used to invert decision rules, i.e., giving
reasons (explanations) for decisions, which can be very useful in decision
analysis.

Summing up statistical inference based on Bayes’ theorem is used to verify
prior knowledge when the data become available, whereas rough set inference
based on Bayes’ theorem uses relationships in the data revealed by Bayes’
theorem.
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In other words, rough set view on Bayes’ theorem reveals relationship
between conditions and decisions in decision rules, uses strength of decision
rules is a basis for computation and reveals relationships in any decision table
without referring either to prior or posterior probabilities.

Basic of rough set theory can be found in [2, 4]. More advanced topics are
discussed in [7, 8].

2 Approximation of sets

Starting point of rough set based data analysis is a data set, called an infor-
mation system.

An information system is a data table, whose columns are labeled by
attributes, rows are labeled by objects of interest and entries of the table are
attribute values.

Formally, by an information system we will understand a pair S = (U, A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a € A we associate a set V,, of
its values, called the domain of a. Any subset B of A determines a binary
relation I(B) on U, which will be called an indiscernibility relation, and
defined as follows: (z,y) € I(B) if and only if a(z) = a(y) for every a € A,
where a(x) denotes the value of attribute a for element x. Obviously I(B) is
an equivalence relation. The family of all equivalence classes of I(B), i.e., a
partition determined by B, will be denoted by U/I(B), or simply by U/B;
an equivalence class of I(B), i.e., block of the partition U/B, containing x
will be denoted by B(x).

If (x,y) belongs to I(B) we will say that x and y are B-indiscernible
(indiscernible with respect to B). Equivalence classes of the relation I(B)
(or blocks of the partition U/B) are referred to as B-elementary sets or B-
granules.

If we distinguish in an information system two disjoint classes of at-
tributes, called condition and decision attributes, respectively, then the sys-
tem will be called a decision table and will be denoted by S = (U, C, D), where
C and D are disjoint sets of condition and decision attributes, respectively.

Suppose we are given an information system S = (U, A), X C U, and
B C A. Our task is to describe the set X in terms of attribute values from
B. To this end we define two operations assigning to every X C U two sets
B, (X) and B*(X) called the B-lower and the B-upper approximation of X,
respectively, and defined as follows:

B.(X) = [ J{B@): B) € X},
zeU

B*(X) = [ J{B(): B(z)n X #0}.

zeU
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Hence, the B-lower approximation of a set is the union of all B-granules that
are included in the set, whereas the B-upper approximation of a set is the
union of all B-granules that have a nonempty intersection with the set. The
set

BNp(X) = B*(X) — B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNg(X) = (), then X
is crisp (exact) with respect to B; in the opposite case, i.e., if BNp(X) # 0,
X is referred to as rough (inezxact) with respect to B.

3 Decision rules

In what follows we will define a formal language to describe decision tables
in logical terms.

Let S = (U, A) be an information system. With every B C A we associate
a formal language, i.e., a set of formulas For(B). Formulas of For(B) are
built up from attribute-value pairs (a,v) where a € B and v € V, by means
of logical connectives A (and), V (or), ~ (not) in the standard way.

For any @ € For(B) by ||®||s we denote the set of all objects z € U
satisfying @ in S and refer to as the meaning of @ in S.

The meaning ||P||s of ¢ in S is defined inductively as follows:

[l(a,v)]ls = {x € U : a(v) =z} forall a € Band v € Vg, ||PVV¥|s =
181]5 U [12]]s, 16 A @ls = |[@]ls 0 [2]]s, | ~ Blls = U — [[&]s.

If S = (U,C, D) is a decision table then with every row of the decision
table we associate a decision rule, which is defined next.

A decision rule in S is an expression @ —g ¥, or simply & — ¥ if S is
understood, read if ¢ then ¥, where & € For(C), ¥ € For(D) and C, D are
condition and decision attributes, respectively; @ and ¥ are referred to as
conditions and decisions of the rule, respectively.

The number supps(®,¥) = card(||? A ¥||s) will be called the support
of the rule  — ¥ in S. We consider a probability distribution py(z) =
1/card(U) for x € U where U is the (non-empty) universe of objects of S; we
have py(X) = card(X)/card(U) for X C U. For any formula ¢ we associate
its probability in S defined by

75(®) = pu(||®]]s)-

With every decision rule & — ¥ we associate a conditional probability

ms(|2) = pu(|@]ls| |2]ls)

called the certainty factor of the decision rule, denoted cerg(®,¥). This idea
was used first by Lukasiewicz [3] (see also [1]) to estimate the probability of
implications. We have

card(||® AP||s)

cers(®,¥) = w5 (V|P) = card(]|®||s)
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where ||®||s # 0.

This coefficient is now widely used in data mining and is called confidence
coefficient.

Obviously, 7g(¥|®) = 1 if and only if & — ¥ is true in S.

If 7g(¥|®) = 1, then & — ¥ will be called a certain decision rule; if
0 < m5(¥|P) < 1 the decision rule will be referred to as a uncertain decision
rule.

There is an interesting relationship between decision rules and approxima-
tions: certain decision rules correspond to the lower approximation, whereas
the uncertain decision rules correspond to the boundary region. More about
this relationships can be found in [8].

Besides, we will also use a coverage factor of the decision rule, denoted
covg (P, W) (used e.g. by Tsumoto and Tanaka [10] for estimation of the qual-
ity of decision rules) defined by

75(@|¥) = pu(lI2ls| [¥]ls)-
Obviously we have

card(||® AP||s)
card(||¥||s)

There are three possibilities to interpret the certainty and the coverage
factors: statistical (frequency), logical (degree of truth) and mereological (de-
gree of inclusion).

We will use here mainly the statistical interpretation, i.e., the certainty
factors will be interpreted as the frequency of objects having the property ¥
in the set of objects having the property @ and the coverage factor — as the
frequency of objects having the property @ in the set of objects having the
property ¥.

Let us observe that the factors are not assumed arbitrary but are com-
puted from the data.

The number

covg (P, W) = wg(P|W) =

Su, DU
os(®,0) = % — rs(U]) - ms(®)
will be called the strength of the decision rule @ — ¥ in S, and will play an
important role in our approach, which will be discussed in section 6.

We will need also the notion of an equivalence of formulas.

Let @, ¥ be formulas in For(A) where A is the set of attributes in S =
(U, A).

We say that @ and ¥ are equivalent in S, or simply, equivalent if S is
understood, in symbols ¢ = ¥, if and only if ® — ¥ and ¥ — &. It means
that @ = ¥ if and only if ||D||s = ||¥]]s.

We need also approximate equivalence of formulas which is defined as
follows:

@ =5, ¥ if and only if cer(®,¥) = cov(P,¥) = k.
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Besides, we define also approximate equivalence of formulas with the accuracy
e(0 < e < 1), which is defined as follows:

P =i ¥ if and only if k = min{(cer(®,¥), cov(P,¥)}

and |cer(P,¥) — cov(P,¥)| < e.

4 Decision algorithms

In this section we define the notion of a decision algorithm, which is a logical
counterpart of a decision table.

Let Dec(S) = {®; — ¥;}1 1, m > 2, be a set of decision rules in a decision
table S = (U,C, D).

1) If for every @ — W, &' — ¥ € Dec(S) we have & = &' or ||[D A P'||s = 0,
and ¥ =V’ or || AV'||g = (), then we will say that Dec(S) is the set of
palrW1se mutually excluswe (independent) decision rules in S.

2) If || \/ P;||ls = U and || \/ U;||s = U we will say that the set of decision

ruleb Dec(S) covers U.
3) If & —» ¥ € Dec(S) and suppg(P,¥) # 0 we will say that the decision
rule @ — ¥ is admissible in S.

HIE U C(X) =] V ®||s where Dec™(9) is the set of all
XeU/D P—WeDect(S)

certain decision rules from Dec(S), we will say that the set of decision
rules Dec(S) preserves the consistency of the decision table S = (U, C, D).

The set of decision rules Dec(S) that satisfies 1), 2) 3) and 4), i.e., is
independent, covers U, preserves the consistency of S and all decision rules
@ — ¥ € Dec(S) are admissible in S — will be called a decision algorithm in
S.

Hence, if Dec(S) is a decision algorithm in S then the conditions of rules
from Dec(S) define in S a partition of U. Moreover, the positive region of D
with respect to C, i.e., the set

U cx

XeU/D

is partitioned by the conditions of some of these rules, which are certain in
S.

If ® — ¥ is a decision rule then the decision rule ¥ — @ will be called an
inverse decision rule of & — .

Let Dec*(S) denote the set of all inverse decision rules of Dec(S).

It can be shown that Dec*(S) satisfies 1), 2), 3) and 4), i.e., it is an
decision algorithm in S.

If Dec(S) is a decision algorithm then Dec*(S) will be called an inverse
decision algorithm of Dec(S).
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The inverse decision algorithm gives reasons (explanations) for decisions
pointed out by the decision algorithms.
The number

n(Dec(S)) = Z mar{os(P,¥)}wep(a)
P—WeDec(S)

where D(®) = {¥ : & — ¥ € Dec(S)} will be referred to as the efficiency
of the decision algorithm Dec(S) in S, and the sum is stretching over all
decision rules in the algorithm.

The efficiency of a decision algorithm is the probability (ratio) of all ob-
jects of the universe, that are classified to decision classes, by means of de-
cision rules & — ¥ with maximal strength og(®,¥) among rules @ — ¥ €
Dec(S) with satisfied @ on these objects. In other words, the efficiency says
how well the decision algorithm classifies objects when the decision rules with
maximal strength are used only.

As mentioned at the beginning of this section decision algorithm is a
counterpart of a decision table. The properties 1) - 4) have been chosen in
such a way that the decision algorithm preserves basic properties of the data
in the decision table, in particular approximations and boundary regions of
decisions.

Crucial issue in the rough set based data analysis is the generation of
”optimal” decision algorithms from the data. This is a complex task, partic-
ularly when large data bases are concerned. Many methods and algorithms
have been proposed to deal with this problem but we will not dwell upon this
issue here, for we intend restrict this paper to rudiments of rough set theory
only. The interested reader is advised to consult the references [7, 8] and the
web.

5 Decision algorithms and approximations

Decision algorithms can be used as a formal language for describing approx-
imations.

Let Dec(S) be a decision algorithm in S and let & — ¥ € Dec(S). By
C(¥) we denote the set of all conditions of ¥ in Dec(S) and by D(®P) - the
set of all decisions of @ in Dec(S).

Then we have the following relationships:

a) Cu([[¥]]s) = | V s,
P eC(W), w(W|d)=1

b) C*([[¥]]s) = Il V s,
B eC(W), 0<n(W|P)<1

¢) BNo(|[¥||s) = | \ &s.

P'eC(¥), 0<m(¥|P")<1

From the above properties we can get the following definitions:
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i) If ||®||s = C(]|¥]]s), then formula @ will be called the C-lower approwi-
mation of the formula ¥ and will be denoted by C,(¥);
ii) If ||®||s = C*(||¥]|s), then the formula ¢ will be called the C-upper
approximation of the formula ¢ and will be denoted by C*(¥);
iii) If ||®||ls = BNe(||?]|s), then @ will be called the C-boundary of the
formula ¥ and will be denoted by BN¢(¥).

The above properties say that any decision ¥ € Dec(S) can be uniquely
described by the following certain and uncertain decision rules respectively:

BNe (W) — 0.

This property is an extension of some ideas given by Ziarko [11].

6 Some properties of decision algorithms

Decision algorithms have interesting probabilistic properties which are dis-
cussed in this section.

Let Dec(S) be a decision algorithm and let @ — ¥ € Dec(S). Then the
following properties are valid:

Z cers(®, W) =1 (1)
d'eC(¥)
> covs(@, W) =1 (2)
U'eD(P)
ms(W) = > cers(® W) ws(P) = Y os(P,0) (3)
&' eC(¥) P'eC(¥)
m(@) = Y covs(® V) ms(W)= Y os(d,¥) (4)
U'eD(P) U'eD(d)
covg (P, W) - wg(P)
cerg(®,¥) = = 5
st ) ZqﬂeD(@)COUS(@aW')'WS(W') ®)
o US(évkp) 7US(LD7¢)
> os(@¥)  ws(P)
U'eD(P)

B cerg(P,¥) - ws(P) B
covs(@,w) - Z@’GC(W) cers(ﬁﬁ’,!I/) -Ws(@') - (6)

os(P,V) os(P,V)

> os(9,¥)  ws(¥)
' eC (W)
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That is, any decision algorithm, and consequently any decision table, sat-
isfies (1)— (6). Observe that (3) and (4) refer to the well known total probability
theorem, whereas (5) and (6) refer to the Bayes’ theorem. Note that we are
not using to prior and posterior probabilities — fundamental in Bayesian data
analysis philosophy.

Thus in order to compute the certainty and coverage factors of decision
rules according to formula (5) and (6) it is enough to know the strength
(support) of all decision rules in the decision algorithm only. The strength of
decision rules can be computed from the data or can be a subjective assess-
ment.

In other words, if we know the ratio of ®g in ¥, thanks to the Bayes’
theorem, we can compute the ratio of ¥g in @.
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