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Abstract. Rough set theory is a new mathematical approach to vague and uncertain 
data analysis. The paper explains basic concepts of the theory and outlines briefly 
applications of the method to drawing conclusions from factual data. The presented 
approach has found many real-life applications and it seems that can be used in 
some kind of legal reasoning.  

1. Introduction 

This paper is an extension of the paper [3]. The problem of imperfect knowledge has been 
tackled for a long time by philosophers, logicians and mathematicians. Recently it became 
also a crucial issue for computer scientists, particularly in the area of artificial 
intelligence. There are many approaches to the problem of how to understand and 
manipulate the imperfect knowledge. The most successful one is, no doubt, fuzzy set 
theory proposed by Zadeh.  

Rough set theory is still another approach to this problem. From philosophical point 
of view rough set theory is a new approach to vagueness and uncertainty - practically it is 
a new method of data analysis.  

The proposed method has some important advantages: 
− provides efficient algorithms for finding hidden patterns in data 
− finds reduced sets of data (data reduction) 
− evaluates significance of data 
− generates minimal sets of decision rules from data 
− it is easy to understand 



− offers straightforward interpretation of results 
− can be used to both qualitative and quantitative data analysis 
− identifies relationships that would not be found using statistical methods 

 Rough set theory overlaps with many other theories, e.g., fuzzy sets, evidence theory, 
statistics and others, nevertheless it can be viewed in its own rights, as an independent, 
complementary, and not competing discipline. 
 The rough set methodology has found many real-life applications in various domains. 
It seems that the rough set approach can be also used in some kind of legal reasoning, in 
particular for drawing conclusions from factual data.  

In the paper basic concepts of rough set theory are given and its applications to 
drawing conclusions from data are briefly outlined. The theory is based on sound 
mathematical foundations, bur for the sake of simplicity we will try to explain rudiments 
of the theory only. The real life applications of the theory require advanced extension of 
the theory but we will not dwell upon this issue here.  

Rudiments of rough set theory can be found in [1,4]. 
More about the theory and its applications can be found in [2,5,6,7,8,9] and the web. 

2. An Example 

We start our considerations from a very simple tutorial example concerning driving a car 
in various driving conditions. In Table 1, 6 facts concerning 98 cases of driving a car in 
various driving conditions are presented. In the table columns labeled weather, road and 
time, called condition attributes, represent driving conditions. The column labeled by 
accident, called decision attribute, contains information whether an accident has occurred 
or not. N  denotes the number of analogous cases.  
 

Fact 
no. 

Driving conditions Consequence 
N 

 weather   road  time accident  
1   misty  icy  day yes   8 
2   foggy  icy  night yes 10 
3   misty  not icy  night yes   4 
4   sunny  icy  day          no 50 
5   foggy  not icy  dusk yes   6 
6   misty  not icy  night          no 20 

 
Table 1 

  



The problem we are interested in is the following one: we want to find the 
relationship between accidents (or lack of accidents) and  the driving conditions, i.e., to 
describe the set of facts {1,2,3,5} (or the set of facts {4,6}) in terms of attributes weather, 
road and time.  

Note that the data are inconsistent because the facts number 3 and 6 are inconsistent, 
i.e., they have the same conditions but different consequences, therefore the set of all 
accidents cannot be described in terms of attributes weather, road and time. However we 
can describe the set of accidents approximately. To this end let us observe what the data 
are telling us: 

− {1,2,5} is the maximal set of facts that can certainly be classified as accidents in 
terms of the driving conditions, 

− {1,2,3,5,6} is the set of all facts that can possible be classified as accidents in 
terms of the driving conditions. 

− {3,6} is the set of facts that can be classified neither as accident nor no accidents 
in term of the driving conditions 

Note that the set {3,6} is the difference between sets {1,2,3,5,6} and {1,2,5}. 

3. Approximations 

It follows from the considerations above that some decisions cannot be described by 
means of conditions. However they can be describe with some approximations. Therefore 
in what follows we will use the following terminology: 

− the set {1,2,5} is the lower approximation of the set {1,2,3,5},  
− the set {1,2,3,5,6} is the upper approximation of the set {1,2,3,5}, 
− the set {3,6} is the boundary region of the set {1,2,3,5}.  

Approximations are basic concepts of rough set theory and are used to draw 
conclusions from data. Informal definitions of approximations are the following: 

− the lower approximation of a set X with respect to data D is the set of all facts 
that can be for certain classified as X (are certainly X ) in view of the data D, 

− the upper approximation of a set X with respect to data D is the set of all facts 
that can be possibly classified as X (are possibly X ) in view of the data D, 

− the boundary region of a set X with respect to data D is the set of all facts that 
can be classified as neither X nor non-X in view of the data D. 

Mathematical definitions of approximations are given next. 
Let us first define a data set, called an information system. An information system is a 
data table, whose columns are labeled by attributes, rows are labeled by objects of interest 
and entries of the table are attribute values. 



Formally, by an information system we will understand a pair S = (U, A), where U 
and A, are finite, nonempty sets called the universe, and the set of attributes, respectively. 
With every attribute a∈A we associate a set Va, of its values, called the domain of a. Any 
subset B of A determines a binary relation I(B) on U, which will be called an 
indiscernibility relation, and defined as follows: (x, y)∈I(B) if and only if a(x) = a(y) for 
every a∈A, where a(x) denotes the value of attribute a for element x. Obviously I(B) is an 
equivalence relation. The family of all equivalence classes of I(B), i.e., a partition 
determined by B, will be denoted by U/I(B), or simply by U/B; an equivalence class of 
I(B), i.e., block of the partition U/B, containing x will be denoted by B(x). 

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible (indiscernible 
with respect to B). Equivalence classes of the relation I(B) (or blocks of the partition U/B) 
are referred to as B-elementary sets or B-granules. 

If we distinguish in an information system two disjoint classes of attributes, called 
condition and decision attributes, respectively, then the system will be called a decision 
table and will be denoted by S = (U, C, D), where C and D are disjoint sets of condition 
and decision attributes, respectively. 

Suppose we are given an information system S = (U, A), X ⊆ U, and B ⊆ A. Our task 
is to describe the set X in terms of attribute values from B. To this end we define two 
operations assigning to every X ⊆ U two sets )(XB∗ and )(XB∗ called the B-lower and the 
B-upper approximation of X, respectively, and defined as follows: 
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Hence, the B-lower approximation of a set is the union of all B-granules that are included 
in the set, whereas the B-upper approximation of a set is the union of all B-granules that 
have a nonempty intersection with the set. The set 

)()()( XBXBXBN B ∗
∗ −=  

will be referred to as the B-boundary region of X. 
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is crisp (exact) 

with respect to B; in the opposite case, i.e., if BNB(X) ≠ ∅, X is referred to as rough 
(inexact) with respect to B. 

Thus, the set of elements is rough (inexact) if it cannot be defined in terms of the 
data, i.e. it has some elements that can be classified neither as member of the set nor its 
complement in view of the data. 



4. Data dependencies and reduction 

Important issue in data analysis is discovering dependencies between attributes. 
Intuitively, a set of attributes D depends totally on a set of attributes C, denoted C ⇒ D, if  
all values of attributes from D are uniquely determined by values of attributes from C. In 
other words, D depends totally on C if there exists a functional dependency between 
values of D and C. 

We would need also a more general concept of dependency, called a partial 
dependency of attributes. Intuitively, the partial dependency means that only some values 
of D are determined by values of C.  

Formally dependency can be defined in the following way. Let D and C be subsets of 
A.  

We will say that D depends on C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k D, if  
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called a positive region of the partition U/D with respect to C, is the set of all elements of 
U that can be uniquely classified to blocks of the partition U/D, by means of C.  

Obviously  
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If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially 
(in a degree k) on C. 

The coefficient k expresses the ratio of all elements of the universe, which can be 
properly classified to blocks of the partition U/D, employing attributes C and will be 
called the degree of the dependency. 

Next important issue in data analysis is reduction of data. Very often we want to 
know whether some data is superfluous, i.e., whether we can remove some data from the 
data table in such a way that drawing conclusions from the data is intact. It turns out that 
in order to reduce the data without affecting this property we have to preserve the degree 
of dependency among the attributes.  

A minimal subset of condition attributes C' ⊆ C that preserves the degree of 
dependency among condition and decision attributes , i.e., γ (C', D) = γ (C, D) is called a 
reduct of C.  



For example, the set of condition attributes {weather, road, time} has two reducts 
{weather, road} and {weather, time}.  

That means that Table 1 contains superfluous data and consequently the table can be 
replaced either by Table 2 or Table 3.  
 

Fact 
no. 

Driving conditions Consequence 
N 

 weather    road accident  
1     misty   icy yes   8 
2     foggy   icy yes 10 
3     misty   not icy yes   4 
4     sunny   icy          no 50 
5     foggy   not icy yes   6 
6     misty   not icy          no 20 

 
Table 2 

 
 

Fact 
no. 

Driving conditions Consequence 
N 

 weather time accident  
1     misty     day yes   8 
2     foggy     night yes 10 
3     misty     night yes   4 
4     sunny     day           no 50 
5     foggy     dusk yes   6 
6     misty     night           no 20 

 
Table 3 

 
In general there are many reducts of condition attributes, thus simplification of data 

tables yields no unique results. However, in some sense, the reduced data tables are 
equivalent to the original data table because they ensure drawing identical conclusions 
from the reduced data. 

Intersection of all reducts is called the core of condition attributes. For example, in 
Table 1 the core is the attribute weather. The core can not be removed from the table 
without affecting patterns in the data. Thus the core is the set of most important attributes, 
which cannot be eliminated in any circumstances. 

The algorithms for data reduction are rather sophisticated and for now we refrain 
from dwelling upon this issue. More about data reduction can be found [5,6,9].  



5. Decision rules  

In order to reason about data we need a language of decision rules, called sometimes also 
association rules or production rules. A decision rule is an implication in the form  
if Φ then Ψ, (in symbols Φ →Ψ), where Φ  is called the condition and Ψ – the decision  
of the rule and Φ, Ψ are logical formulas build up from attributes and attribute values 
combined by means of logical connectives “and”, “or” and “not” in the standard way.. 

Every fact in the data table determines a decision rule.  
For example, Table 1 can be represented by the following set of decision rules: 

1)  if (weather, misty) and (road, icy) and (time, day) then (accident, yes) 
2)  if (weather, foggy) and (road, icy) and (time, night) then (accident, yes) 
3)  if (weather, misty) and (road, not icy) and (time, night) then (accident, yes) 
4)  if (weather, sunny) and (road, icy) and (time, day) then (accident, no) 
5)  if (weather, foggy) and (road, not icy) and (time, dusk) then (accident, yes) 
6)  if (weather, misty) and (road, not icy) and (time, night) then (accident, no)  

Now we define decision rules more formally. 
Let S = (U, A) be an information system. With every B ⊆ A we associate a formal 

language, i.e., a set of formulas For(B). Formulas of For(B) are built up from attribute-
value pairs (a, v) where a ∈ B and v ∈ Va by means of logical connectives ∧ (and), ∨ (or), 
∼ (not) in the standard way. 

For any Φ ∈ For(B) by ||Φ ||S we denote the set of all objects x ∈ U satisfying Φ in S 
and refer to as the meaning of Φ in S. 

The meaning ||Φ ||S of Φ in S is defined inductively as follows: 
||(a, v)||S = {x ∈U : a(v) = x} for all a ∈ B and v ∈Va, ||Φ ∨ Ψ ||S = ||Φ ||S ∪ ||Ψ ||S, 
||Φ ∧ Ψ ||S = ||Φ ||S ∩ ||Ψ ||S, || ∼ Φ ||S = U - ||Φ ||S. 
A decision rule in S is an expression Φ → Ψ, read if Φ then Ψ, where Φ ∈ For(C),  

Ψ ∈ For(D) and C, D are condition and decision attributes, respectively; Φ and Ψ are 
referred to as conditions and decisions of the rule, respectively. 

The number suppS (Φ, Ψ ) = card (||Φ ∧ Ψ ||S) will be called the support of the rule  
Φ →Ψ in S. We consider a probability distribution pU (x) = 1/card (U) for x ∈U where U 
is the (non-empty) universe of objects of S; we have pU (X) = card (X)/card (U) for X ⊆ 
U. For any formula Φ we associate its probability in S defined by  

)||(||)( SUS p ΦΦπ = . 

With every decision rule Φ → Ψ we associate a conditional probability 
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called the certainty factor and denoted cerS (Φ,Ψ ). We have  
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where ||Φ ||S ≠ ∅. 
This coefficient is now widely used in data mining and is called the confidence 

coefficient. 
Besides, we will also use a coverage factor denoted covS (Φ,Ψ ) and defined as 

SSUSS  pcov |||||||(||)|(),( ΨΦΨΦπΨΦ == ). 

Obviously we have  
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In other words 
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The certainty factor is the frequency of Ψs in Φ and the coverage factor is the 

frequency of Φs in Ψ. 
If a decision rule Φ →Ψ uniquely determines decisions in terms of conditions, i.e., if  

π (Φ ⎜Ψ) = 1, then the rule is called certain. 
If a decision rule Φ →Ψ  does not determine uniquely decisions in terms of conditions, 

i.e., if 0< π (Φ ⎜Ψ) < 1, then the rule is called uncertain. 

For example, for the decision rule  

if (weather, misty) and (road, icy) and (time, day) then (accident, yes)   
  

the certainty factor equals to 1.00, thus the decision rule is certain, whereas, for the decision 
rule   

if (weather, misty) and (road, not icy) and (time, night) then (accident, no) 

the certainty factor is equal 0.83 thus the decision rule is uncertain. 
 
The number  
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will be called the strength of the decision rule Φ → Ψ in S. The strength of a decision rule 
playas an important role in our consideration and will be discussed in detail in sec. 8. 

6. Decision algorithm 

 Any set of mutually, exclusive and exhaustive, i.e., covering all facts in S decision 
rules in S will be called a decision algorithm in S and denoted Dec(S). For exact 
definitions see [2]. 
 An example of decision algorithm in the decision Table 1 is given below 

1′)  if (weather, misty) and (road, icy) then (accident, yes) 
2′)  if (weather, foggy) then (accident, yes) 
3′)  if (weather, misty) and (road, not icy) then (accident, yes)  
4′)  if (weather, sunny) then (accident, no) 
5′)  if (weather, misty) and (road, not icy) then (accident, no)  

Finding a minimal decision algorithm is not a simple task. Many methods have been 
proposed to solve this problem, but we will not consider this problem here. Interested 
reader is advised to consult [5,6,9]. 

The certainty coverage factors for this algorithm are shown in Table 4. 
 

rule strength certainty coverage 
1' 0.08 1.00 0.29 
2' 0.17 1.00 0.57 
3' 0.04 0.17 0.14 
4' 0.51 1.00 0.71 
5' 0.20 0.83 0.29 

 
Table 4 

 
 Sometimes we may be interested in explanation of decisions in terms of conditions. 
To this end we will need an inverse decision algorithm which is obtained by replacing 
mutually conditions and decisions in every decision rule in the decision algorithm. 

For example, the following inverse decision algorithm can be understood as 
explanation of car accidents in terms of driving conditions: 

1″)   if (accident, yes) then (road, icy) and (weather, misty) 



2″)   if (accident, yes) then (weather, foggy) 
3″)   if (accident, yes) then (road, not icy) and (weather, misty) 
4″)  if (accident, no) then (weather, sunny) 
5″)  if (accident, no) then (road, not icy) and (weather, misty) 

Note that for inverse decision rules the certainty and coverage factors are mutually 
exchanged. 

7. Decision algorithm and approximations  

There is an interesting relationship between decision algorithm and approximations. 
Certain decision rules describe the lower approximation of the set of facts pointed 

out by the decision of the rule, whereas uncertain decision rules describe the boundary 
region of the set of facts pointed out by the decision of the rule. 

We have the following relationships between approximations and decision rules in 
the illustrative example: 

− Certain decision rules describing accidents (the lower approximation of the set 
of facts {1,2,3,5}) 
1′)  if (weather, misty) and (road, icy) then (accident, yes) 
2′)  if (weather, foggy) then (accident, yes) 

− Uncertain decision rule describing accidents (the boundary region {3,6}of the 
set of facts {1,2,3,5}) 
3′)  if (weather, misty) and (road, not icy) then (accident, yes) 

− Certain decision rule describing lack of accidents (the lower approximation of 
the set of facts {4,6}) 
4′)  if (weather, sunny) then (accident, no) 

− Uncertain decision rule describing lack of accidents (the boundary region 
{3,6}of the set of facts {4,6}) 
5′)  if (weather, misty) and (road, not icy) then  (accident, no) 

These decision rules constitute a logical counterpart of approximations. Consequently 
instead of speaking of approximations we can employ the language of decision rules, 
and conversely. The language of approximations suits better to prove some properties 
of data, whereas the language of decision rules is better when practical applications 
are considered. 



8. Decision algorithm and the Bayes' theorem 

It turned out that the decision algorithms have interesting  probabilistic properties: every 
decision algorithm (decision table) satisfies the total probability theorem and the Bayes’ 
theorem, i.e., every data set has this two very important properties. This leads, in 
particular, to a new interpretation of Bayes’ theorem, which does not require concepts of 
prior or posterior probabilities, inherently associated with Bayesian reasoning 
philosophy.  

Besides, these relationships reveal connection between rough set theory and the 
Bayes’ theorem. 

Let Φ → Ψ be a decision rule in Dec(S). By C(Ψ ) we denote the set of all conditions 
of Ψ, such that if Φ′ ∈ C(Ψ ) and Φ′ → Ψ ∈ Dec(S), and by D(Φ ) we mean the set of all 
decisions of Φ such that if Ψ′ ∈ D(Φ ) and Φ → Ψ′ ∈ Dec(S). Moreover we assume that 
all conditions in C(Ψ ) and all decisions in D(Φ ) are pairwise mutually exclusive, i.e., if 
Φ′, Φ ∈ C(Ψ ) then ||Φ′ ∧ Φ ||S = ∅ and if Ψ′ , Ψ ∈ D(Φ ) then || Ψ′ ∧ Ψ |S = ∅. Then the 
following properties hold:  
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Formulas 3) and 4) refer to the total probability theorem, whereas formulas 5) and 6) 

refer to the Bayes' theorem. The meaning of Bayes' theorem in this case differs from that 
postulated in statistical inference, where we assume that prior probability about some 
parameters without knowledge about the data is given. The posterior probability is 
computed next, which tells us what can be said about prior probability in view of the 
data.  

In the rough set approach the meaning of Bayes' theorem is unlike. It reveals some 
relationships between the data, without referring to prior and posterior probabilities. 
Instead, the proposed approach connects the total probability theorem and the Bayes' 



theorem with the strength of decision rules, giving a very simple way of computing the 
certainty and the coverage factors. 

Thus, the proposed approach can be seen as a new model for Bayes' theorem, which 
offers a new approach to data analysis, in particular, to inverse decision rules and to 
compute their certainty factors, which can be used to explain decisions in terms of 
conditions. 

9. What the data are telling us 

The rough set approach allows to draw conclusions from the data without additional 
assumption about the data, like prior or posterior probabilities. Instead, rough set based 
reasoning is founded on the patterns hidden in the data, which are discovered by means of 
approximations induced by the data and  revealed in the form of decision algorithms. This 
leads to drawing conclusions from the data and to giving explanation of obtained results. 
 For the tutorial example considered in this paper we get the following results. 
 From the decision algorithm and the certainty factors we can draw the following 
conclusions: 

       1’) misty weather and icy road certainly caused accidents 

       2’) foggy weather certainly caused accidents 

       3’) misty weather and not icy road caused accidents in 17% cases 

       4’) sunny weather and icy road certainly caused safe driving 

       5’) misty weather and not icy road caused safe driving in 83% cases 

 From the inverse decision algorithm and the coverage factors we get the following 
explanations:  

       1’’) 29% of accidents occurred when the weather was misty and the road icy 

       2’’) 57% accidents occurred when the weather was foggy 

       3’’) 14% accidents occurred when the weather was misty and the road not icy 

       4’’) 71% safe driving took place when the weather was sunny 

       5’’) 29% safe driving took place when the weather was misty and the road not icy 

 Summing up, the decision algorithm and the certainty factors lead to the following 
conclusions: 

-  misty weather and icy road or foggy weather certainly caused accidents  

-  sunny weather and icy road certainly caused no accidents 



-  misty weather and not icy road most probably caused no accidents 

 The inverse decision algorithm and the coverage factors give the following 
explanations of driving accidents:  

- the most probable reason of accidents is the foggy weather 

- the most probable reason of lack of accidents is the sunny weather  

 Other conclusions and explanations can be obtained employing decision algorithms 
resulting from other reduced decision tables. Thus, as mentioned before, we don’t have 
unique association of accidents with the driving conditions.  
 Note also that the data table represents closed world, i.e., it is only a sample of a 
larger world. Therefore the conclusions drawn are not universal but are valid only for the 
data. Whether they can be generalized depends on whether the data is a representative 
sample of a bigger data set. This is the central issue of inductive reasoning but we will not 
discuss the problem here.  

10. Conclusions 

Rough set theory is a new method of drawing conclusions from data. The approach 
has found many nontrivial, real life applications. It seems that rough set theory can be 
also used in some kinds of legal reasoning, but to this end an extensive research is 
necessary. 
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