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Abstract

In this paper we propose a new approach to data (mining) and knowledge

discovery based on information flow distribution study in a flow graph. Flow

graphs introduced in this paper are different from those proposed by Ford and

Fulkerson for optimal flow analysis and they model rather, e.g., flow distri-

bution in a network, than the optimal flow. The flow graphs considered in

this paper are not meant to physical media (e.g., water) flow analysis, but to

information flow examination in decision algorithms. It is revealed that flow in

the flow graph is governed by Bayes’ rule, but the rule has entirely determin-

istic interpretation, not referring to its probabilistic roots. Besides, decision

algorithm induced by the flow graph and dependency between conditions and

decisions of decision rules are defined and studied. This idea is based on sta-

tistical concept of dependency but in our setting it has deterministic meaning.

Kaywords: Flow graph; Data mining; Knowledge discovery.

1 Introduction

Searching for patterns in databases is of utmost importance in data mining

in recent years [3]. Many methods have been developed and used in this

domain, where statistical methods in particular Bayesian approach, play a
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substantial role. However statistical method despite many advantages cause

often problems due to probabilistic interpretation of obtained results.

Let us also observe that despite Bayes’ rule fundamental role in statistical

inference it has led to many philosophical discussions concerning its validity

and meaning, and has caused much criticism [2], [3].

This drawback has deep roots related to understanding of probability,

which will be discussed briefly next.

The concept pf probability can be traced back to Laplace [8] who gave the

definition of probability which is in use until now. But his idea of probability

still causes many discussion and critics concerning its correctness and validity.

One of the first who proposed the way out of the dilemma how free probability

from its obscure meaning was Jan ukasiewicz [9], by suggesting to replace the

concept of probability by truth values of propositional functions.

Similar ideas have been proposed independently many years later by Adams

[1], Carnap [4], Ramsey [12] and Reichenbach [13].

In this paper we propose still another approach to solve this problem. In-

stead of using truth values in place of probability, stipulated by ukasiewicz, we

propose, using of deterministic flow analysis in flow networks (graphs). How-

ever we analyze in the flow graph not the absolute value of the flow in each

branch of the network but its relative value to the total flow expressed by a
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fraction between 0 and 1. In this setting, flow is described by formulas which

have formally probabilistic flavor (e.g., Bayes’ rule), or by the corresponding

logical calculus proposed by �Lukasiewicz, though, the formulas have entirely

deterministic meaning, and need neither probabilistic nor logical interpreta-

tion.

Flow graphs introduced in this paper are different from those proposed by

Ford and Fulkerson [5] for optimal flow analysis and they model flow distribu-

tion in a network, than the optimal flow. More specifically they are used to

information flow examination in decision algorithms. To this end branches of

a flow graph can be interpreted as decision rules. With every decision rule (i.e.

branch) three coefficients are associated, the strength, certainty and coverage

factors.

These coefficients have been used under different names in data mining (see

e.g., [4], [15]) but they were used first by ukasiewicz [9] in his study of logic

and probability.

We start our consideration by defining basic concepts of the proposed ap-

proach, i.e., flow graph and its fundamental properties. Next decision al-

gorithm induced by the flow graph and dependency between conditions and

decisions of decision rules are defined and studied. This idea is based on sta-

tistical concept of dependency but in our setting it has deterministic meaning.
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Simple tutorial examples is used to illustrate how the introduced ideas work in

data mining. The presented ideas can be used, as a new tool for data mining,

and knowledge discovery. Besides, it also throw a new light on the concept of

probability.

This paper is a continuation of some authors’ ideas presented in [11], where

the relationship between Bayes’ rule and flow graphs has been introduced and

studied and is modified version of the plenary paper presented at KSS2004

[10].

2 Flow graphs

2.1 Overview

In this part the fundamental concepts of the proposed approach are defined

and discussed. In particular flow graphs, certainty and coverage factors of

branches of the flow graph are defined and studied. Next these coefficient are

extended to paths and some classes of sub-graphs, called connections. Further

a notion of a fusion of a flow graph is defined.

Further dependences of flow are introduced and examined. Finally depen-

dency factor (correlation coefficient) is defined.
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2.2 Basic concepts

A flow graph is a directed, acyclic, finite graph G = (N,B, ϕ), where N is a

set of nodes, B ⊆ N × N is a set of directed branches, ϕ : B → R+ is a flow

function and R+ is the set of non-negative reals. Input of a node x ∈ N is

the set I(x) = {y ∈ N : (y, x) ∈ B}; output of a node x ∈ N is defined as

O(x) = {y ∈ N : (x, y) ∈ B}. We will also need the concept of input and output

of a graph G, defined, respectively, as follows: I(G) = {x ∈ N : I(x) = ∅},

O(G) = {x ∈ N : O(x) = ∅}. Inputs and outputs of G are external nodes of

G; other nodes are internal nodes of G.

If (x, y) ∈ B then ϕ(x, y) is a throughflow from x to y. With every node x

of a flow graph G we associate its inflow

ϕ+(x) =
∑

y∈I(x)

ϕ(y, x), (1)

and outflow

ϕ−(x) =
∑

y∈O(x)

ϕ(x, y), (2)

Similarly, we define an inflow and an outflow for the whole flow graph, which

are defined as

ϕ+(G) =
∑

x∈I(G)

ϕ−(x), (3)
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ϕ−(G) =
∑

x∈O(G)

ϕ+(x). (4)

We assume that for any internal node x, ϕ+(x) = ϕ−(x), where ϕ(x) is a

throughflow of node x.

Obviously, ϕ+(G) = ϕ−(G) = ϕ(G), where ϕ(G) is a throughflow of

graph G.

The above formulas can be considered as flow conservation equations [5].

Example. We will illustrate basic concepts of flow graphs by an example of

a group of 1000 patients put to the test for certain drug effectiveness.

Assume that patients are grouped according to presence of the disease, age

and test results, as shown in Fig. 1.

Figure 1: Flow graph

E.g., ϕ(x1) = 600 means that these are 600 patients suffering from the

7



disease, ϕ(y1) = 570 means that these are 570 old patients ϕ(z1) = 471 means

that 471 patients have positive test result; ϕ(x1, y1) = 450 means that these

are 450 old patients which suffer from disease etc.

Thus the flow graph gives clear insight into the relationship between dif-

ferent groups of patients.

Let us now explain the flow graph in more details.

Nodes of the flow graph are depicted by circles, labeled by x1, x2, y1, y2, y3, z1,

z2. A branch (x, y) is denoted by an arrow from node x to y. E.g., branch

(x1, z1) is represented by an arrow from x1 to z1, inputs of node y1 are nodes

x1 and x2, outputs of node x1 are nodes y1, y2 and y3.

Inputs of the flow graph are nodes x1 and x2, whereas outputs of the flow

graph are nodes z1 and z2.

Nodes y1, y2 and y3 are internal nodes of the flow graph. The throughflow of

the branch (x1, y1) is ϕ(x1, y1) = 450. Inflow of node y1 is ϕ+(y1) = 450+120 =

750. Outflow of node y1 is ϕ−(y1) = 399 + 171 = 570 .

Inflow of the flow graph is ϕ(x1) + ϕ(x2) = 600 + 400 = 1000, and outflow

of the flow graph is ϕ(z1) + ϕ(z2) = 471 + 529 = 1000.

Throughflow of node y1 = ϕ(y1) = ϕ(x1, y1) + ϕ(x2, y1) = ϕ(y1, z1) +

ϕ(y1, z2) = 570. �

We will define now a normalized flow graph. A normalized flow graph is
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a directed, acyclic, finite graph G = (N,B, σ), where N is a set of nodes,

B ⊆ N × N is a set of directed branches and σ : B →< 0, 1 > is a normalized

flow of (x, y) and

σ(x, y) = ϕ(x, y) \ ϕ(G) (5)

is a strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1. The strength of the branch

expresses simply the percentage of a total flow through the branch.

In what follows we will use normalized flow graphs only, therefore by flow

graphs we will understand normalized flow graphs, unless stated otherwise.

With every node x of a flow graph G we associate its inflow and outflow

defined as

σ+(x) = ϕ+(x) \ ϕ(G) =
∑

y∈I(x)

σ(x, y), (6)

σ−(x) = ϕ−(x) \ ϕ(G) =
∑

y∈O(x)

σ(x, y). (7)

Obviously for any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x)

is a normalized throughflow of x.

Moreover, let

σ+(G) = ϕ+(G) \ ϕ(G) =
∑

x∈I

(G), (8)

σ−(G) = ϕ− \ ϕ(G) =
∑

x∈O(G)

σ+(x). (9)
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Obviously, σ+(G) = σ−(G) = σ(G) = 1 .

Example (cont.). The normalized flow graph of the flow graph presented in

Fig. 1 is given in Fig. 2.

Figure 2: Normalized flow graph

In the flow graph e.g., σ(x1) = 0.60, that means that 60% of total inflow

is associated with input x1. The strength σ(x1, y1) = 45 means that 45% of

total flow flows through the branch (x1, y1) etc. �

Let G = (N,B, σ) be a flow graph. If we invert direction of all branches

in G, then the resulting graph G = (N,B′, σ′) will be called an inverted graph

of G. Of course the inverted graph G′ is also a flow graph and all inputs and

outputs of G become inputs and outputs of G′ , respectively.

The inverted flow graph can be used to give reasons (explanation) for de-
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cisions.

2.3 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty and the

coverage factors.

The certainty and the coverage of (x, y) are defined as

cer(x, y) = σ(x, y) \ σ(x), (10)

and

cov(x, y) = σ(x, y) \ σ(y). (11)

respectively.

Evidently, cer(x, y) = cov(y, x), where (x, y) ∈ B and (y, x) ∈ B.

Example (cont.). The certainty and the coverage factors for the flow graph

presented in Fig. 2 are shown in Fig. 3.
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Figure 3: Certainty and coverage

E.g., cer(x1, y1) = σ(x1, y1) \ σ(x1) = 0.45 \ 0.60 = 0.75, and cov(x1, y1) =

σ(x1, y1) \ σ(y1) = 0.45 \ 0.57 ≈ 0.21. �

Example (cont.). The inverted flow graph of the flow graph from Fig. 3 is

shown in Fig. 4.
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Figure 4: Inverted flow graph

�

Below some properties of certainty and coverage factors, which are imme-

diate consequences of definitions given above, are presented:

∑

y∈O(x)

cer(x, y) = 1, (12)

∑

x∈I(y)

cov(x, y) = 1, (13)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (14)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y), (15)

cer(x, y) = cov(x, y)σ(y) \ σ(x), (16)
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cov(x, y) = cer(x, y)σ(x) \ σ(y). (17)

Obviously the above properties have a probabilistic flavor, e.g., equations (14)

and (15) have a form of total probability theorem, whereas formulas (16) and

(17) are Bayes’ rules. However, these properties in our approach are interpreted

in a deterministic way and they describe flow distribution among branches in

the network.

2.4 Paths, connections and fusion

A (directed) path from x to y, x �= y in G is a sequence of nodes x1, . . . , xn

such that x1 = x, xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n− 1. A path

from x to y is denoted by [x . . . y].

The certainty of the path [x1 . . . xn] is defined as

cer[x1 . . . xn] =
n−1∏

i=1

cer(xi, xi+1), (18)

the coverage of the path [x1 . . . xn] is

cov[x1 . . . xn] =
n−1∏

i=1

cov(xi, xi+1), (19)

and the strength of the path [x . . . y] is

σ[x . . . y] = σ(x)cer[x . . . y] = σ(y)cov[x . . . y]. (20)

The set of all paths from x to y(x �= y) in G denoted 〈x, y〉, will be called a
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connection from x to y in G. In other words, connection 〈x, y〉 is a sub-graph

of G determined by nodes x and y.

The certainty of the connection 〈x, y〉 is

cer〈x, y〉 =
∑

[x...y]∈〈x,y〉
cer[x . . . y], (21)

the coverage of the connection 〈x, y〉 is

cov〈x, y〉 =
∑

[x...y]∈〈x,y〉
cov[x . . . y], (22)

and the strength of the connection 〈x, y〉 is

σ〈x, y〉 =
∑

[x...y]∈〈x,y〉
σ[x . . . y] = σ(x)cer〈x, y〉 = σ(y)cov〈x, y〉. (23)

Let x, y(x �= y) be nodes of G. If we substitute simultaneously every for the

sub-graph 〈x, y〉 of a given flow graph G, where x and y are input and out-

put nodes of G respectively, by single branch (x, y) such that σ(x, y), then in

the resulting graph G′, called the fusion of G, we have cer(x, y) = cer〈x, y〉,

cov(x, y) = cov〈x, y〉 and σ(G) = σ(G′).

Example (cont.). In the flow graph presented in Fig. 3 for the path p =

[x1, y1, z1] we have cer(p) = 0.75 × 0.70 ≈ 0.53, cov(p) = 0.85 × 0.79 ≈ 0.67.

For example the connection 〈x1, z1〉 in the flow graph consists of paths

[x1, y1, z1] and [x1, y2, z1]. This connection is shown in Fig. 5.
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Figure 5: Connection

For this connection we have cer〈x1, z1〉 = 0.75× 0.70 + 0.20 × 0.58 ≈ 0.64;

cov〈x1, z1〉 = 0.85 × 0.79 + 0.15 × 1.00 ≈ 0.82.

The strength of the connection x1, z1 is 0.64 × 0.60 ≈ 0.82 × 0.47 ≈ 0.38.

�

Example (cont.). The fusion of the flow graph shown in Fig. 3 is given in

Fig. 6.

The fusion of a flow graph gives information about the flow distribution

between input and output of the flow graph, i.e., it leads to the following

conclusions:

• if the disease is present then the test result is positive with certainty

0.64,
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Figure 6: Fusion of a flow graph

• it the disease is absent then the test result is negative with certainty

0.79.

Explanation of test results is as follows:

• if the test result is positive then the disease is present with certainty

0.81,

• if the test result is negative then the disease is absent with certainty 0.60.

2.5 Dependences in flow graphs

Let x and y be nodes in a flow graph G = (N,B, σ), such that (x, y) ∈ B.

Nodes x and y are independent in G if

σ(x, y) = σ(x)σ(y). (24)
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From (21) we get

σ(x, y)/σ(x) = cer(x, y) = σ(y), (25)

and

σ(x, y)/σ(y) = cov(x, y) = σ(x) (26)

If

cer(x, y) > σ(y), (27)

or

cov(x, y) > σ(x), (28)

then x and y are positively dependent on x in G. Similarly, if

cer(x, y) < σ(y), (29)

or

cov(x, y) < σ(x), (30)

then x and y are negatively dependent in G.

Let us observe that relations of independency and dependences are sym-

metric ones, and are analogous to those used in statistics.
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For every branch (x, y) ∈ B we define a dependency(correlation) factor

η(x, y) defined as

η(x, y) =

cer(x, y) − σ(y)/cer(x, y) + σ(y) = (31)

cov(x, y) − σ(x)/cov(x, y) + σ(x).

Obviously −1 ≤ η(x, y) ≤ 1; η(x, y) = 0 if and only if cer(x, y)σ(y) and

cov(x, y) = σ(x); η(x, y) == 1 if and only if cer(x, y) = cov(x, y) = 0;

η(x, y) = 1 if and only if σ(y) = σ(x) = 0. It is easy to check that if η(x, y) = 0,

then x and y are independent, if −1 ≤ η(x, y) < 0 then x and y are negatively

dependent and if 0 < η(x, y) ≤ 1 then x and y are positively dependent. Thus

the dependency factor expresses a degree of dependency, and can be seen as a

counterpart of correlation coefficient used in statistics.

Example (cont.). Dependency factors for the flow graph shown in Fig. 6 are

given Fig. 7.

Thus, there is positive dependency between presence of the disease and

positive test result as well as between absence of disease and negative test

result. However there is much stronger negative dependency between presence

of the disease and negative test result or similarly – between absence of the
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Figure 7: Dependencies in a flow graph

disease and positive test result. �

2.6 Flow graph and decision algorithms

Flow graphs can be interpreted as decision algorithms [6], [7], [11].

Let us assume that the set of nodes of a flow graph is interpreted as a set of

logical formulas. The formulas are understood as propositional functions and

if x is a formula, then σ(x) is to be interpreted as a truth value of the formula.

Let us observe that the truth values are numbers from the closed interval

< 0, 1 >, i.e., 0 ≤ σ(x) ≤ 1, and can be also interpreted as probabilities.

With every branch (x, y) we associate a decision rule x → y, read if x then

y; x will be referred to as condition, whereas y – decision of the rule. Such a

rule is characterized by three numbers, σ(x, y), cer(x, y) and cov(x, y).

Thus every path [x1 . . . xn] determines a sequence of decision x1 → x2,
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x2 → x3, . . . , xn−1 → xn.

From previous considerations it follows that this sequence of decision rules

can be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short x∗ →

xn, where x∗ = x1x2 . . . xn−1 characterized by

cer(x∗, xn) = σ(x∗, xn)/σ(x∗), (32)

cov(x∗, xn) = σ(x∗, xn)/σ(xn), (33)

and

σ(x∗, xn) = σ(x1)cer[x1 . . . xn] = σ(xn)cov[x1 . . . xn], (34)

The set of all decision rules xi1xi2 . . . xin−1 → xin associated with all paths

[xi1 , xin ] such that xi1 and xin are input and output of the graph respectively

will be called a decision algorithm induced by the flow graph.

If x → y is a decision rule then we say that condition and decision of the

decision rule are independent if x and y are independent, otherwise condition

and decision of the decision rule are dependent (positively or negatively).

To measure the degree of dependency between condition and decision of

the decision rule x → y we can use the dependency factor η(x, y).

Thus every decision rule beside strength, certainty and coverage factor can

be also characterized by the degree of dependency between its condition and
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decision. This measure can be used as a new tool for data mining in pursuit

of patterns in data.

Example (cont.). The decision algorithm induced by the flow graph shown

in Fig. 3 is given below.

certainty coverage strength
x1, y1 → z1 0.71 0.67 0.32
x1, y1 → z2 0.29 0.25 0.14
x1, y2 → z1 0.58 0.15 0.07
x1, y2 → z2 0.42 0.09 0.05
x1, y3 → z2 1.00 0.06 0.03
x2, y1 → z1 0.67 0.18 0.08
x2, y1 → z2 0.33 0.08 0.04
x2, y3 → z2 1.00 0.53 0.28

It can be easily seen that the decision rules x1, y3 → z2 and x1, y3 → z2

can be replaced by a single decisions rule y3 → z2. Consequently the decision

algorithm can be presented as

certainty coverage strength
x1, y1 → z1 7 0.71 0.67 0.32
x1, y1 → z2 0.29 0.25 0.14
x1, y2 → z1 0.58 0.15 0.07
x1, y2 → z2 0.42 0.09 0.05
x2, y1 → z1 0.67 0.18 0.08
x2, y1 → z2 0.33 0.08 0.04

y3 → z2 1.00 0.59 0.31

�
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The corresponding flow graph is presented in Fig. 8.

Figure 8: Flow graph for the decision algorithm

From the decision algorithm we can conclude that ill and old patients

mostly (71%) have positive test result, ill and middle aged patients not display

very clear difference between positive and negative test results (58% and 48%

respectively), whereas healthy and old patients display mostly positive test

results (67%) and young patients have always (100 %) negative test results.

The above conclusion can be expressed the following ”qualitative” decision

rules:

(1) Ill old patients mostly (71%) have positive test results.

(2) Ill middle aged patients have close positive and negative test results (58%,
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42% respectively).

(3) Healthy old patients show mostly (67%) positive test results.

(4) Young patients display always (100%) negative test result.

The inverse decision algorithm yields the following explanation (reasons) for

test results:

(i) Positive test result have mostly (67%) ill and old patients.

(ii) Negative test results have mostly (59%) young patients.

The dependency factor between ill and old patients and positive test results

amounts to η ≈ 0.19, whereas the dependency factor between young patients

and negative test results equals η ≈ 0.31 .

That means that the relationship between young patients and negative

test results is more substantial then – between ill old patients and positive test

result. �

3 Conclusions

We propose in this paper a new approach to knowledge representation and

data mining, based on flow analysis in a new kind of flow networks.

We advocate in this paper to represent relationships in data by means of

flow graphs. Flow in the flow graph is meant to capture structure of data rather
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than to describe any physical material flow in the network. It is revealed that

information flow in the flow graph is governed by Bayes’ formula, however the

formula can be interpreted in entirely deterministic way, without referring to

its probabilistic character. This representation allows us to study different

relationships in data and can be used as a new mathematical tool for data

mining.
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[8] P. S. Laplace, Théorie Analytique des Probabilités, Paris, 1812.

[9] J. �Lukasiewicz, Die logishen Grundlagen der Wahrscheinilchkeitsrech-

nung. Kraków (1913), in: L. Borkowski (Ed.), Jan �Lukasiewicz - Selected

Works, North Holland Publishing Company, Amsterdam, London, Polish

Scientific Publishers, Warsaw, 1970.

[10] Z. Pawlak, Flow graphs - a new paradigm for data mining and knowledge

discovery. JAIST Forum 2004 - Technology Creation Based on Knowl-

edge Science: Theory and Practice, jointly with KSS2004: 5th Inter-

26



national Symposium on Knowledge and Systems Science, Proceedings,

JAIST, November 2004, pp. 147-153.

[11] Z. Pawlak, Flow graphs and data mining, Transactions on Rough Sets III,

2005, pp. 1-36, Springer-Verlag, Berlin, Heidelberg.

[12] F. P. Ramsey, Truth and Probability, In: H. E. Keyburg and H. E. Smokler

(eds.) Studies in Subjective Probability, John Wiley and Sons, New York,

1965.

[13] H. Reichenbach, Wahrscheinlichkeitslehre: eine Untersuchung ber die lo-

gischen und mathematischen Grundlagen der Wahrscheinlichkeitsrech-

nung, 1935, (English translation The theory of probability, an inquiry

into the logical and mathematical foundations of the calculus of probabil-

ity, Berkeley: University of California Press, 1948).

[14] S. Tsumoto, H. Tanaka, Discovery of Functional Components of Proteins

Based on PRIMEROSE and Domain Knowledge Hierarchy, Proceedings

of the Workshop on Rough Sets and Soft Computing (RSSC-94), 1994:

Lin, T.Y., and Wildberger, A.M. (Eds.), Soft Computing, SCS, 1995, pp.

280-285.

27



[15] S. K. M. Wong, W. Ziarko, Algorithm for inductive learning. Bull. Polish

Academy of Sciences 34 (5-6), 1986, pp. 271-276.

28


