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Abstract.

1 Introduction

2 Decision tables

Formally, by an information system we will understand a pair S = (U, A), where
U and A, are finite, nonempty sets called the universe, and the set of attributes,
respectively. With every attribute a ∈ A we associate a set Va of its values,
called the domain of a. Any subset B of A determines a binary relation I(B) on
U, called an indiscernibility relation, and defined as follows: (x, y) ∈ I(B) if and
only if a(x) = a(y) for every a ∈ A, where a(x) denotes the value of attribute a
for element x.

Obviously I(B) is an equivalence relation. The family of all equivalence classes
of I(B), i.e., a partition determined by B, will be denoted by U/I(B), or simply
by U/B. An equivalence class of I(B), i.e., block of the partition U/B, containing
x will be denoted by B(x).

If (x, y) belongs to I(B), we will say that x and y are B-indiscernible (indis-
cernible with respect to B). Equivalence classes of the relation I(B) (or blocks of
the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two disjoint classes of attributes,
called condition and decision attributes, respectively, then the system will be
called a decision system, denoted by S = (U, C, D), where C and D are disjoint
sets of condition and decision attributes, respectively.

An example of a decision table is shown in Table 1.



Table 1. Decision table

case disease age test support

1 yes old + 320

2 yes old − 130

3 yes middle + 70

4 yes middle − 50

5 yes young − 30

6 no old + 80

7 no old − 40

8 no young − 280

In the table 8 cases of patients stuffering from a certain disease, together
with test result is presented. In the table the number of cases of every ”type” of
patients is given and is called support of the type. Disease and age are condition
attributes, whereas test is condition attribute.

Every row (case) in the decision table determine a decision rule. For example,
row 3 determines a decision rule

if (disease, yes) and (age, middle) then (test, +).

Normalized support for a decision rule will be called strength of the decision rule.
For example, strength of the above decision rule is 70/1000 = 0.07.

With every decision table we associate a decision graph G = (N, B, σ), B ⊆
N × N , where N is a set of nodes B set of branches (pair of notes) and σ is the
strength of the branch. Nodes represent conditions and decision of the decision
table, whereas branches represents decision rules.

With every branch (decision rules) (x, y) of a flow graph G we associate the
certainty factor

cer(x, y) =
σ(x, y)
σ(x)

and the coverage factor

cov(x, y) =
σ(x, y)
σ(y)

where σ(x) �= 0 and σ(y) �= 0.
These coefficients are widely used in data mining (see, e.g., [5,11,12]) but

they can be traced back to �Lukasiewicz [4], who used them first in connection
with his research on logic and probability.

3 Properties of decision rules

The following properties are immediate consequences of definitions given above:
∑

y∈O(x)

cer(x, y) = 1 (1)



∑

x∈I(y)

cov(x, y) = 1 (2)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y) (3)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y) (4)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
(5)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
(6)

The above properties have a probabilistic flavor, e.g., equations (3) and (4) have
a form of total probability theorem, whereas formulas (5) and (6) are Bayes’ rules
[10]. However, in our approach, these properties are interpreted in a deterministic
way and they describe flow distribution among branches in the network.

Decision graph associated with Table 1 is given in Fig. 1.



Fig. 1. tytul

4 Dependencies in decision tables

Let x and y be nodes in a decision graph G = (N,B, σ), such that (x, y) ∈ B.
Nodes x and y are independent in G if

σ(x, y) = σ(x)σ(y). (7)

From (7) we get

σ(x, y)
σ(x)

= cer(x, y) = σ(y), (8)

and

σ(x, y)
σ(y)

= cov(x, y) = σ(x). (9)

If

cer(x, y) > σ(y), (10)



or

cov(x, y) > σ(x), (11)

x and y are positively depends on x in G.
similarly, if

cer(x, y) < σ(y), (12)

or

cov(x, y) < σ(x), (13)

then x and y are negatively dependent in G.
Relations of independency and dependences are symmetric ones, and are

analogous to those used in statistics.


