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Abstract: This paper, which is a continuation of series of authors papers on the 
relationship between decision algorithms and Bayes' theorem, is related to 
Łukasiewicz's ideas concerning the relationship between multivalued logic, probability 
and Bayes' theorem. We proposed in this paper a new mathematical model of a flow 
network different to that introduced by Ford and Fulkerson. Basically, the model is 
intended to be used rather as a mathematical model of decision processes than as flow 
analysis and it concerns rather flow of information than material media. Branches of 
the network are interpreted as decision rules, whereas the whole network represents a 
decision algorithm. It is shown that flow in such networks is governed by Bayes’ 
formula. In this case the formula describes deterministic information flow distribution 
among branches of the network, without referring to its probabilistic character. This 
leads to a new look on Bayes’ formula and many new applications.  
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1. Introduction 

This paper is an extension of the article [7] presented at the RSTCT 2002 and is a 
continuation of ideas presented in author’s previous papers on rough sets, Bayes’ theorem and 
decision tables [8]. 
 In [4] a mathematical model of flow in a network has been introduced and studied. The 
model was intended to capture the nature of flow in transportation or communication network.  
 In this paper we present another kind of mathematical model for flow networks, which 
may be interpreted rather as a model of a deterministic, steady state flow in a plumbing 
network − than a transportation network. Although, essentially the model is intended to be 
used as a description of decision processes. Branches of the network are interpreted as 
decision rules, whereas the network is supposed to describe a decision algorithm. It is shown 
that flow in such a network is governed by Bayes’ rule. Furthermore, this interpretation bring 
to light another understanding of Bayes’ rule: the rule may be interpreted entirely in a 
deterministic way, without referring to its probabilistic nature, inherently associated with 
classical Bayesian philosophy. This leads to new philosophical and practical consequences. 
Some of them will be discussed in this paper. 

2. Flow graphs 

A flow graph is a directed, acyclic, finite graph G = (N, B, ϕ), where N is a set of nodes,  
B ⊆ N × N is a set of directed branches, ϕ : B →R+ is a flow function and R+ is the set of 
non-negative reals. 



 2

 Input of x∈N is the set I(x)={y∈N: ),( yx ∈B}; output of x∈N is defined as  
O(x) = {y∈N: ),( yx ∈B}. 

We will also need the concept of input and output of a graph G, defined respectively as 
follows: I(G) = {x∈N : I(x) = ∅}, O(G) = {x∈N : O(x) = ∅}. 

Inputs and outputs of G are external nodes of G; other nodes are internal nodes of G.  
If ),( yx ∈B then ϕ ),( yx  is a troughflow from x to y.  
With every node of a flow graph we associate its inflow and outflow defined as 
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 Similarly we define an inflow and an outflow for the whole flow graph, which are defined 
as follows ∑
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 We assume that for any internal node x, )()()( xxx ϕϕϕ == −+ , where )(xϕ  is a 
troughflow of x. 
 Obviously )()()( GGG ϕϕϕ == −+ , where )(Gϕ is a troughflow of G. 
 The above formulas can be considered as flow conservation equations [4]. 

3. Strength, certainty and coverage of flow 

With every branch ),( yx  we associate its strength defined as 
)(
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G
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 Certainly, 0 ≤ σ ),( yx ≤ 1 and it can be considered as a normalized flow of the branch 
),( yx . The strength of a branch expresses simply the percentage of a total flow, flowing 

trough the branch.  
A flow graph can be also interpreted as a decision graph [7]; branches of the flow graph 

can be then interpreted as decision rules, and strength of a decision rule represents normalized 
support of the decision rule.  
 We define now two important coefficients assigned to every branch of a flow graph − the 
certainty and the coverage factors.  

The certainty and the coverage of ),( yx  are defined as follows 
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troughflow of x, defined as ∑ ∑
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The certainty and the coverage factors have been for a long time used in machine learning 
and data bases, see e.g. [9,10], but in fact these coefficients have been first used by J. 
Lukasiewicz in connection with his study of multivalued logic, probability and Bayes' 
theorem [5]. 

Both coefficients have a probabilistic flavor, and can be interpreted as a kind of 
conditional probability, however in the flow graph setting they can be understood entirely in a 
deterministic way, and denote simply a deterministic distribution of flow between branches of 
the flow graph. However to stress the relationship of these coefficients to decision analysis we 
will use notation employed in the above said disciplines. 

This paper, which is a continuation of series of authors papers on the relationship between 
decision algorithms and Bayes' theorem, is related to Lukasiewicz's ideas and not to those 
considered in machine learning and databases. 
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4. Properties of flow 

The below properties are immediate consequences of  definitions given in the preceding 
sections. 
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It is easily seen that the above properties have a probabilistic flavor. In particular, 
equations (3) and (4) are well known Bayes’ formulas. However, in our case the properties 
can be interpreted in entirely deterministic way. They simply describe some features of steady 
flow in a flow network, i.e., flow distribution among branches in the network. 

The properties can be also interpreted as features of decision rules in a decision graph.  
Let us also observe that Bayes’ formula is, in our setting, expressed by means of a strength 

coefficient. This leads to very simple computations and give also new insight into the 
meaning of Bayesian methodology. 

5. An example 

Suppose that cars are painted in two colors y1 and y2 and that these colors can be obtained by 
mixing three paints x1, x2 and x3 in the following proportions: 

− y1 contains 20% of x1, 70% of x2 and 10% of x3, 
− y2 contains 30% of x1, 50% of x2 and 20% of x3. 

We have to find demand of each paint and its distribution among colors y1 and y2. 
Employing terminology introduced in previous section we can represent our problem by 

means of flow graph shown in Figure 1. 

                                        Paint                                               Car  

 
Fig. 1 

 
Thus in order to solve our task first we have to compute strength of each decision rule. Next 
we compute demand of each paint. Finally, we compute the distribution of each paint among 
colors of cars. 

The final result is presented in Figure 2. 
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                                        Paint                                                Car 

 
Fig. 2. 

 
Suppose now that the cars are produced by three manufacturers z1, z2 and z3 in proportions 

as shown in Fig. 3,  
 
                                          Car                                         Manufacturer 

 
Fig. 3. 

i.e., 
− 50% of cars y1 are produced by manufacturer z1 
− 30 % of cars y1 are produced by manufacturer z2 
− 20% of cars y1 are produced by manufacturer z3  

and 
− 40% of cars y2 are produced by manufacturer z1 
− 30% of cars y2 are produced by manufacturer z2 
− 30% of cars y2 are produced by manufacturer z3 

 
Employing technique used previously we can compute car production distribution among 

manufacturers as shown in Fig. 4, e.g., manufacturer z1 produces 65% of cars y1 and 35% of 
cars y2, etc. Finally, the manufacturer z1 produces 46% cars, manufacturers z2 − 30% cars and 
manufacturer z3 − 24% of cars. 
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                                      Car                                         Manufacturer  

 
Fig. 4. 

 
We can combine graphs shown in Fig 2 and Fig.4 and we obtain the flow graph shown in 
Fig.5.  

           Paint                                              Car                                      Manufacturer 

 
Fig. 5. 

 
This flow graph can be understood as a composition of two flow graphs shown in Fig. 2 

and Fig. 3. 
The graph shows clearly the flow structure of the whole production process. From this 

graph it is easily seen how the flow of decisions is structured. 

6. Simplification of flow graphs 

We can ask what is the paint demand by each manufacturer. In order to answer this question 
we have to eliminate in the flow graph nodes y1 and y2 from the flow graph. To this end we 
have to replace each sub-graph determined by each pair x, y of nodes such that x and y are 
input and output of the graph respectively − by a single branch ),( yx  which preserves the 
same flow between point x and y, as the whole sub-graph determined by these nodes. 

In order to solve this problem we need some auxiliary notions, which are defined next. 
A (directed) path from x to y, x ≠ y denoted [x, y], is a sequence of nodes x1,…,xn such that 

x1 = x, xn = y and (xi, xi+1) ∈B for every i, 1 ≤ i ≤ n-1. 
Now we extend the concept of certainty, coverage and strength from single branch to a 

path, as shown below. 
The certainty of a path [x1, xn] is defined as 
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the strength of a path [x, y] is σ [x, y] = σ (x) cer[x, y] = σ (y) cov[x, y]. 
The set of all paths from x to y (x ≠ y) denoted >< yx, , will be called a connection from x 

to y. In other words, connection >< yx, is a sub-graph determined by nodes x and y. 
We will also need extension of the above coefficients for connections (i.e., sub-graphs 

determined by nodes x and y) as shown in what follows: 
The certainty of connections >< yx,  is 
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the coverage of connections is >< yx,  
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the strength of connections is >< yx,  
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Let x, y (x ≠ y) be nodes of G. If we substitute the sub-graph >< yx, by a single branch  
),( yx  such that ><= yxyx ,),( σσ then ><= yxceryxcer ,),( , ><= yxyx ,),( covcov  and 

)()( GG ′= ϕϕ , where G′  is the graph obtained from G by substituting >< yx,  by ),( yx .  
 

The example (cont.) 

The final result for the considered example is shown in Fig. 6. 

                                  Paint                                             Manfacturer 

 
Fig. 6 

It is easily seen from the flow graph how paint supply is distributed among manufacturers 
and what the demand for each paint is by every manufacturer. 

For example, supply of paint x1 is distributed among manufacturers z1, z2 and z3 in the 
proportions 46%, 29% and 25% respectively, whereas demand for paints x1, x2 and x3 by 
manufacturer z1 is 24%, 65% and 13% respectively. 
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7. Flow graphs and decision tables 

With every flow graph we can associate a decision table (and conversely). In particular, if the 
flow graph has only external nodes (i.e., input and output nodes) we can interpret the input 
nodes as conditions and output nodes as decision of the decision table. In other words the set 
of inputs determines a condition attribute, whereas the output nodes determine the decision 
attribute. 

 
The example (cont.). 

For example the flow graph presented in Fig. 5 can be depicted by two decision tables 
given in Table 1 and Table 2, respectively. 

 
 Paint Car Strength 

1 x1 y1 0.12 
2 x1 y2 0.12 
3 x2 y1 0.42 
4 x2 y2 0.20 
5 x3 y1 0.06 
6 x3 y2 0.08 

 
Table 1 

 
 Car Manu. Strength 

1 y1 z1 0.30 
2 y1 z2 0.18 
3 y1 z3 0.12 
4 y2 z1 0.16 
5 y2 z2 0.12 
6 y2 z3 0.12 

Table 2 
 
The decision table corresponding to the flow graph shown in Fig. 6 is given in Table 3. 

 
 Paint Manu. Strength 

1 x1 z1 0.11 
2 x1 z2 0.07 
3 x1 z3 0.06 
4 x2 z1 0.31 
5 x2 z2 0.19 
6 x2 z3 0.14 
7 x3 z1 0.06 
8 x3 z2 0.04 
9 x3 z3 0.04 

Table 3 

This table can be understood as a result of operation performed on the constituent decision 
tables Table 1 and Table 2. It is somehow similar to the join operation widely used in data 
bases, however the operation is in our case of course, totally different. 
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8. Conclusions 

We presented in this paper a new approach to flow networks. This approach is basically 
meant as a new tool to decision analysis. It is also shown that the flow in the flow graph is 
governed by Bayes’ formula, however the meaning of the Bayes’ formula has entirely 
deterministic character and does not refer to any probabilistic interpretation. Thus our 
approach is entirely free from the mystic flavor of Bayesian reasoning raised by many 
authors, e.g., [1,2]. Besides, it gives clear interpretation of obtained results and simple 
computational algorithms.  
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