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1 Introduction

The problem of imperfect knowledge has been tackled for a long time by philosophers,
logicians and mathematicians. Recently it became also a crucial issue in the area of arti-
ficial intelligence. There are many approaches to the problem of how to understand and
manipulate imperfect knowledge. The most popular one is, no doubt, the fuzzy set theory
proposed by Zadeh. ‘

This paper presents still another attempt to this problem - proposed by the author
in (Pawlak, 1982) and called rough set theory. The theory has attracted attention of
many researchers and practitioners all over the world, who contributed essentially to its
development and applications.

The rough set concept is a new mathematical approach to vagueness and uncertainty.
The rough set philosophy is founded on the assumption that with every object of the
universe of discourse we associate some information (data, knowledge). E.g., if objects
are patients suffering from a certain disease, symptoms of the disease form information
about patients. Objects characterized by the same information are indiscernible (similar)
in view of the available information about them. The indiscernibility relation generated
in this way is the mathematical basis of rough set. theory.

Any set of all indiscernible (similar) objects is called an elementary set, and form a
basic granule (atom) of knowledge about the universe. Any union of some clementary sets
is referred to as crisp (precise) set — otherwise the set is rough (imprecise, vague).

Consequently each rough set has boundary-line cases, i.e., objects which cannot be
with certainty classified as members of the set or of its complement. Obviously crisp sets
have no boundary-line elements at all. That means that boundary-line cases cannot be
properly classified by employing the available knowledge.

Thus, the assumption that objects can be "seen” only through the information avail-
able about them leads to the view that knowledge has granular structure. Due to the
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granularity of knowledge some objects of interest cannot be discerned and appear as the
same (or similar). As, a consequence vague concepts, in contrast to precise concepts,
cannot be characterized in terms of information about their elements. Therefore in the
proposed approach we assume that any vague concept is replaced by a pair of precise
concepts — called the lower and the upper approximation of the vague concept. The lower
approximation consists of all objects which surely belong to the concept and the upper
approximation contains all objects which possible belong to the concept. Obviously, the
difference between the upper and the lower approximation constitute the boundary region
of the vague concept. Approximations are two basic operations in the rough set theory.

Rough set theory overlaps to a certain degree many other mathematical theories.
Particularly interesting is the relationship with fuzzy set theory and Dempster-Shafer
theory of evidence. The concepts of rough set and fuzzy set are different since they refer
to various aspects of imprecision (Pawlak and Skowron, 1994) whereas the connection with
theory of evidence is more substantial (Skowron and Grzymal-Busse, 1994). Besides, rough
set theory is related to discriminant analysis (Krusinska et al., 1992), Boolean reasoning
methods (Skowron and Rauszer, 1992) and others. The relationship between rough set
theory and decision analysis is presented in (Pawlak and Slowinski, 1994, Slowinski, 1993).
More details concerning these relationships can be found in the references.

Despite of the relationships rough set theory can be viewed in its own rights, as an
the independent discipline.

Rough set theory has found many interesting applications. The rough set approach
seems to be of fundamental importance to Al and cognitive sciences, especially in the
areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery
from databases, expert systems, inductive reasoning and pattern recognition. It seems of
particular importance to decision support systems.

The main advantage of rough set theory is that it does not need any preliminary
or additional information about data - like probability in statistics, or basic probability
assignment in Dempster-Shafer theory and grade of membership or the value of possibility
in fuzzy set theory.

The rough set theory has been successfully applied in many real-life problems in
medicine, pharmacology, engineering, banking, financial and market analysis and others.
Some exemplary applications are listed below.

There are many applications in medicine (Grzymala-Busse and Woolerly 1994, Slowinski
K., et al., 1988, Slowinski K., 1992, Slowinski K., and Sharif 1993, Slowinski K., et
al., 1995, Tanaka et al., 1992). In pharmacology the analysis of relationships between
the chemical structure and the antimicrobial activity of drugs (Krysinski 1990, 1992,
1992, 1995) has been successfully investigated. Banking applications include evaluation
of a bankruptey risk (Slowinski R., and Zopounidis 1993, 1994) and market research
(Golan and Edwards 1993, Ziarko and Katzberg 1989). Very interesting results have been
also obtained in speaker independent speech recognition (Brindle 1994, Czyzewski 1995,
Czyzewski and Kaczmarek 1993, 1995, 1995) and acoustics (INostek 1995, 1995, 1995,
1995). The rough set approach seems also important for various engineering applications,
like diagnosis of machines using vibroacoustics, symptoms (noise, vibrations) (Nowicki et
al., 1992, 1992, 1992), material sciences (Jackson et al., 1994) and process control (Lin
1995, Mrozek 1992, Munakata 1995, Plonka and Mrézek 1995, Szladow and Ziarko 1992,
Ziarko 1992, Ziarko and Katzberg 1989). Application in linguistics (Grzymala-Busse et al.,
1995, Grzymala-Busse and Than 1993, Kobayashi and Yokomori 1995, Moradi et al., 1995)



and environment (Gunn et al., 1994), databses (Beaubouef and Petry 1995, Braubouef et
al., 1995, Cercone and Han 1993, Shenoi 1995,)Ziarko 1991) are other important domains.

More about applications of the rough set theory can be found in (Grzymala-Busse
1995, Lin 1994, Slowiiski R., 1992, Wang 1995, Ziarko 1993). Besides, many other fields
of application, e.g., time series analysis, image processing and character recognition, are
being extensively explored. '

Application of rough sets requires a suitable software. Many software systems for
workstations and personal computers based on rough set theory have been developed.
The most known include LERS (Grzymala-Busse 1992), Rough DAS and Rough Class
and DATALOGIC (Szladow 1993). Some of them are available commercially.

One of the most important and difficult problem in software implementation of the pre-
sented approach is optimal decision rule generation from data. Many various approaches
to solve this task can be found in (Bazan et al., 1995, 1994, Grzymala-Busse et al., 1995,
Skowron 1995, Skowron and Stepaniuk 1994, Tsumoto and Tanaka 1995, Wréblewski
1995). The relation to other methods of rule generation is dwelt in (Grzymala-Busse et
al., 1995).

The theory has many important advantages. Some of them are listed below.
e Provides efficient algorithms for finding hidden patterns in data.

e Finds minimal sets of data (data reduction).

o Lvaluates significance of data.

o Generates sets of decision rules from data.

o [t is easy to understand.

o Offers straightforward interpretation of obtained results.

o Most algorithms based on the rough set theory are particularly suited for parallel
processing, but in order to exploit this feature fully, a new computer organization
based on rough set theory is necessary.

Although rough set theory has many achievements to its credit, nevertheless several the-
oretical and practical problems require further attention.

Especially important is widly accessible efficient software development for rough set
based data analysis, particularly for large collections of data analysis.

Despite of many valuable methods of efficient, optimal decision rule generation meth-
ods from data, developed in recent years based on rough set theory — more research here
is needed, particularly, when quantitative attributes are involved. In this context also
further discretization methods for quantitative attribute values are badly needed. Also
an extensive study of a new approach to missing data is very important. Comparison to
other similar methods still requires due attention, although important results have been
obtained in this area. Particularly interesting seems to be a study of the relationship
between neural network and rough set approach to feature extraction from data.

Last but not least, rough set computer is badly needed for more serious computations
in decision support. Some research in this area is already in progress.

For basic ideas of rough set theory the reader is referred to (Grzymala-Busse 1995,
Pawlak 1991, Pawlak et al 1995, Slowiiiski 1995, Szladow and Ziarko 1993).




2 Examples

For the sake of simplicity we first explain the above ideas intuitively, by means of examples.

Data are often presented as a table, columns of which are labeled by attributes, rows
by objects of interest and entries of the table are attribute values. For example in a table
containing information about patients suffering from a certain disease objects are patients
(strictly specking their ID’s), attributes can be for example blood pressure, body tem-
perature etc., whereas the entry corresponding to object Smiths and the attribute blood
preasure can be normal. Such tables are known as information systems, attribute-value
tables or information tables. We will use here the term information table. Below some
examples of information tables are presented.

Example 1

Suppose we are given data about 6 patients, as shown in Table 1.

Patient | Headache | Muscle-pain | Temperature | Flu
pl no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
pd yes no high 1no
pb no yes very high yes

Table 1

Columns of the table are labelled by attributes (symptoms) and rows — by objects
(patients), whereas entries of the table are attribute values. Thus each row of the table
can be seen as information about specific patient. For example patient p2 is characterized
in the table by the following attribute-value set

(Headache, yes), (Muscle-pain, no), (Temperature, high), (Flu, yes),

which form information about the patient.

In the table patients p2, p3 and p5 are indiscernible with respect to the attribute
Headache, patients p3 and p6 are indiscernible with respect to attributes Muscle-pain
and Flu, and patients p2 and p5 are indiscernible with respect to attributes Headache,
Muscle-pain and Temperature. Hence, for example, the attribute Headache generates two
elementary sets {p2, p3, p5} and {pl, p4, p6}, whereas the attributes Headache and
Muscle-pain form the following elementary sets: {pl, p4, p6}, {p2, p5} and {p3}. Similarly
one can define elementary sets generated by any subset of attributes.

Patient p2 has flu, whereas patient p5 does not, and they are indiscernible with respect
to the attributes Headache, Muscle-pain and Temperature, hence flu cannot be charac-
terized in terms of attributes Headache, Muscle-pain and Temperature. Hence p2 and p5
are the boundary-line cases, which cannot be properly classified in view of the available
knowledge. The remaining patients pl, p3 and p6 display symptoms which enable us to
classify them with certainty as having flu, patients p2 and p5 cannot be excluded as hav-
ing flu and patient p4 for sure does not have flu, in view of the displayed symptoms. Thus
the lower approximation of the set of patients having flu is the set {pl, p3, p6} and the
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upper approximation of this set is the set {pl, p2, p3, p5, p6}, whereas the boundary-line
cases are patients p2 and p5. Similarjy p4 does not have flu and p2, p5 cannot be excludes
as having flu, thus the lower approximation of this concept is the set {p4} whereas — the
upper approximation - is the set {p2, p4, p5} and the boundary region of the concept
"not flu” is the set {p2, p5}, the same as in the previous case.

Example 2

Another simple information table is presented in Table 2.

Store | E Q L| P
1 high | good | no | profit
2 med. | good | no | loss
3 med. | good | no | profit
4 no avg. | no | loss
) med. | avg. | yes | loss
6 high | avg. | yes | profit

Table 2
In the table six stores are characterized by four attributes, shown below:

E - empowerment of sales personnel,
Q - perceived quality of merchandise,
L - high traffic location,

P - store profit or loss.

Let us observe that each store has different description in terms of attributes £, Q, L
and P, thus all stores may be distinguished (discerned) employing information provided
by all attributes. However, stores 2 and 3 are indiscernible in terms of attributes E,Q
and L, since they have the same values of these attributes. Similarly, stores 1, 2 and 3 are
indiscernible with respect to attributes ) and L, etc.

Each subset of attributes determines a partition (classification) of all objects into
classes having the same description in terms of these attributes. For example, attributes
Q@ and L aggregate all stores into the following classes {1,2,3}, {4}, {5,6}. Thus, each
information table determines a family of classification patterns which are used as a basis
of further considerations.

Suppose we are interested in the following problem: what are the characteristic features
of stores having profit (or loss) in view of information available in Table 1. In other words,
the question is whether we are able to describe set (concept) {1,3,6} (or {2,4,5}) in terms
of attributes £,Q and L. It can be easily seen that this is impossible, since stores 2 and
3 display the same features in terms of attributes £, Q and L, but store 2 makes a profit,
whereas store 3 has a loss. Thus information given in Table 1 is not sufficient to answer
this question. However, we can give a partial answer to this question. Let us observe that
if the attribute £ has the value high for a certain store, then the store makes a profit,
whereas if the value of the attribute £ is low, then the store has a loss. Thus, in view of
information contained in Table 1, we can say for sure that stores 1 and 6 make a profit,
stores 4 and 5 have a loss, whereas stores 2 and 3 cannot be classified as making a profit
or having a loss. Therefore we can give approximate answers only. Employing attributes



E,Q and L, we can say that stores 1 and 6 surely make a profit, i.e., surely belong to the
set {1,3,6}, whereas stores 1,2,3 and 6 possibly make a profit, i.e., possibly belong to the
set {1,3,6}. We will say that the set {1,6} is the lower approzimation of the set (concept)
{1,3,6}, and the set {1,2,3,6} - is the upper approzimation of the set {1,3,6}. The set
{2,3}, being the difference between the upper approximation and the lower approximation
is refered to as the boundary region of the set {1,3,6}.

Example 3

Consider now another example of information table concerning analysis of conflict
situtations. In a conflict at least two participants, called in what follows agents, are in
dispute over some issues. The agents may be individuals, groups, states, parties etc. The
relationship of each agent to a specific issue can be clearly depicted in a form of a table, as

shown in an example of the Middle East conflict, which is taken with slight modifications
from Casti (cf. Casti 1988).

Consider six agents

1 - Israel,

2- Egy])t,

3 - Palestinians,
4 — Jordan,

5 — Syria,

6 — Saudi Arabia,

and five issues

a — autonomous Palestinian state on the West Bank and Gaza,

b — Israeli military outpost along the Jordan River,

¢ — Israeli retains East Jerusalem,

d — Israeli military outposts on the Golan Heights,

e — Arab countries grant citizenship to Palestinians who choose to remain within their
borders.

In the table below the attitude of six nations of the Middle East region to the above
issues is presented: -1 means, that the agent is against, 1 - favorable and 0 neutral toward
the issue. For the sake of simplicity we will write - and + instead of -1 and 1 respectively.

Ula b |c |d]e
L= [+ [+ [+ [+
2 14+10 |-~ -
3 |+1-1-1-

4 10 (-|-101-
5 +|- |- |-
6 |0 [+ |- +

Table 3



In this example objects in the table are agents and attributes are issues. Observe,
that there are not condition and decision attri}butes distinguished in the table. Each row
of the table characterizes uniquely an agent, by his approach to the disputed issues. In
conflict analysis the most important problems include finding a minimal set of issues that
uniquely characterize agents, discovering dependencies between issues and evaluation of
significance of disused issues to the debate. '

Example 4

This example concerns study of discrete dynamic systems, called in what follows
shortly discrete systems.

Suppose a finite set a = {ay,a,,...,a,} of elements called discrete systems (DS) is
given. With every discrete systems a € A a finite set of its internal states V, is associ-
ated. The following two seemingly similar problems are interesting in discrete systems
investigation.

1. Analysis (explanation). Suppose that discrete systems are changing their states
according to some rules. The changes are watched by an observer who does not know the

rules. The results of the observation can be presented in a form of a table as shown in the
example below.

Ulalblcidl]|e
1 {1j0(2]1]0
21010111211
3121012]1]0
4 1010121212
549012121110
Table 4

In the table the set of attributes is A = {a,b,¢,d, e} represent discrete systems. Each
row in the table contains record of observed states of discrete systems, and each record is
labelled by an element from the set U, in this case by numbers 1,2,3,4 and 5. For example
record 3 reveals that during this observation discrete systems a, b, ¢, d and e were in states
2,0,2,1 and 0, respectively.

The task of the observer is to find out, on the basis of his observations, the rules
governing the behavior of the system. More specifically, his task is to find out whether the
discrete systems are changing their states independently or the changes are interrelated
functionally.

Two approaches here are possible, called the Closed World Assumption (CWA) and
Open World Assumption (OWA). In the first case we assume that the table contains all
possible states combinations, the remaining ones being prevented by the intrinsic nature
of the system. In other words the table contains the whole knowledge about the observed
behavior of the system — whereas in the second case only a part of possible observations is
contained in the in the table, i.e., it contains partial knowledge about the system behavior
only.

2. Synthesis (specification). Tables as shown before can also treated as a specification
of the system required behavior. In this case the problem is whether such specification




defines concurrent or sequential system and what are the rules describing the system
. |
behavior. ]

Attributes can be qualitative or quantitative. If attribute values are high, normal etc.
the attribute is qualitative, and if attribute values are numbers the attribute is quanti-
tative. Obviously all attributes in Table 1 and Table 2 are qualitative. Notice that all
attributes in Table 3 and Table 4 are also qualitative, despite as its values numbers are
used, because numbers -1,0,1, 2 are consider as codes for expressions like yes, no etc.

3 Information Tables, Decision Tables and Decision
Algorithms

Sometimes we distinguish in an information table two classes of attributes, called condition
and decision (action) attributes. For example in Table | attributes Headache, Muscle-pain
and Temperature can be considered as condition attributes, whereas the attribute Flu -
as a decision attribute. In Table 2 attributes E, Q, L are condition attributes, whereas
the attribute P, is a decision one. Such tables will be referred to as it decision tables. Let
us observe that Table 3 and Table 4 are not decision tables.

Each row of a decision table deteremines a decision rule, which specifies decisions
(actions) that should be taken when conditions pointed out by condition attributes are
satisfied. For example in Table 1 the condition (Headache, no), (Muscle-pain, yes), (Tem-
perature, high) determines uniquely the decision (Flu, yes). Objects in a decision table are
used as labels of decision rules. Decision rules 2) and 5) in Table 1 have the same conditions
by different decisions. Such rules are called inconsistent (nondeterministic, conflicting);
otherwise the rules are referred to as consistent (certain, deterministic, nonconflicting).
Sometimes consistent decision rules are called sure rules, and inconsistent rules are called
possible rules. Decision tables containing inconsistent decision rules are called inconsis-
tent (nondeterministic, conflicting); otherwise the table is consistent (deterministic, non
conflicting).

The number of consistent rules to all rules in a decision table can be used as consistency
measure of the decision table, and will be denoted by v(C, D), where C and D are condition
and decision attributes respectively. Thus il 4(C, D) = 1 the decision table is consistent
and if v(C, D) # 1 the decision table is inconsistent. For example for Table 1 v(C, D) =
4/6.

Decision rules are often presented as implications and are called "if... then...” rules.
For example rule 1) in Table 1 can be presented as implication

if (Headache, no) and (Muscle-pain, yes) and (Temperature, high) then (Flu, yes).

A set of decision rules is called a decision algorithm. Thus with each decision table we
can associate a decision algorithm consisting of all decision rules occurring in the decision
tables. Hence Table 1 can be presented as a the following decision algorithm:

if (Headache, no) and (Muscle-pain, yes) and (Temperature, high) then (Flu, yes),

if (Headache, yes) and (Muscle-pain, no) and (Temperature, high) then (Flu, yes),

if (Headache, yes) and (Muscle-pain, yes) and (Temperature, very high) then (Flu,
yes),



if (Headache, no) and (Muscle-pain, yes) and (Temperature, normal) then (Flu, no),
if (Headache, yes) and (Muscle-pain, no) and (Temperature, high) then (Flu, no),
if (Headache, no) and (Muscle-pain, yes) and (Temperature, very high) then (Flu, yes).

We must however, make distinction between decision tables and decision algorithms.
A decision table is a collection of data, whereas a decision algorithm is a collection of
implications, e.g., logical expressions. To deal with data we use various mathematical
methods, e.g., statistics (see Krusiiiska et al., 1992), but to analyze implications we must
employ logical tools (see Pawlak 1991). Thus these two approaches are not equivalent,
however for simplicity we will often present here decision rules in form of implications,
without referring deeper to their logical nature, as it is often practiced in Al

4 Rough Sets, Approximations and Vagueness

As mentioned in the introduction, the starting point of the rough set theory is the indis-
cernibility relation, generated by information about objects of interest. The indiscernibility
relation is intended to express the fact that due to the lack of knowledge we are unable to
discern some objects employing the available information. That means that, in general,
we are unable to deal with single objects but we have to consider clusters of indiscernible
objects, as fundamental concepts of our theory.

Now we present above considerations more formally.

Suppose we are given two finite, non-empty sets U and A, where U is the universe,
and A - a set attributes. With every attribute a € A we associate a set V,, of its values,
called the domain of a. Any subset B of A determines a binary relation /(B) on U, which
will be called an indiscernibility relation, and is defined as follows:

zI(B)y if and only if a(z) = a(y) for every a € A,
where a(z) denotes the value of attribute a for element z.

Obviously I(B) is an equivalence relation. The family of all equivalence classes of
I(B), i.e., partition determined by B, will be denoted by U/I(B), or simple U/B; an
equivalence class of I(B), 1.e., block of the partition U/B, containing z will be denoted
by B(zx). '

If (z,y) belongs to I(B) we will say that z and y are B-indiscernible. Equivalence
classes of the relation /(B) (or blocks of the partition U/ B) are refereed to as B-elementary
sets. In the rough set approach the elementary sets are the basic building blocks (concepts)
of our knowledge about reality.

The indiscernibility relation will be used next to define basic concepts of rough set
theory. Let us define now the following two operations on sets

B(X)={z€eU:B(z) C X},

B*(X)={z €U :B(z)n X # 0},

assigning to every subset X of the universe U two sets B,(X) and B*(X) called the
B-lower and the B-upper approzimation of X, respectively. The set

BNp(X) = B*(X) = B.(X)



will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNg(X) = 0, then the set X is
crisp (exact) with respect to B; in the opposite case, i.e., if BNg(X) # 0, the set X is to
as rough (inezact) with respect to B.

One can easily show the following properties of approximations:

(1) B.(X) C X C B*(X),

(2) B.(0) = B*(0) =0, B.(U) = B*(U) =
(3) BX(X UY) = B*(X)UB(Y),

(4) B.(X NY) = B.(X)NB.(Y),

(5) X C Y implies B.(X) C B.(Y) and B*(X) C B*(Y),
(6 UY) 2D B.(X)UB.(Y),

(7

(
( —X) = =B.(X),

L(B.(X)) = B*(B.(X)) = B.(X),

B.(X

(X
(=X) = = B*(X),
(

(

"(B7(X)) = B.(B*(X)) = B*(X),

where — X denotes U — X

It is easily seen that the lower and the upper approximation of a set are interior and
closure operations in a topology generated by the indiscernibility relation.

One can define to the following four basic classes of rough sets, i.e., four categories of
vagueness:

a) B.(X)# 0 and B*(X) # U, iff X is roughly B-definable,
b) BJ(X) =0 and B*(X) # U, iff X is internally B-indefinable,
c) B.(X) # 0 and B.(X) =

d) B.(X) = 0 and B*(X) = U, iff X is totally B-indefinable.

U, iff X is externally B-definable,

The intuitive meaning of this classification is the following.

If X is roughly B-definable, this means that we are able to decide for some elements
of U whether they belong to X or — X, using B.

If X is internally B-indefinable, this means that we are able to decide whether some
elements of {/ belong to —X, but we are unable to decide for any element of U, whether
it belongs to X or not, using B.

If X is externally B-indefinable, this means that we are able to decide for some elements
of U whether they belong to X, but we are unable to decide, for any element of U whether
it belongs to —X or not, using B.

If X is totally B-indefinable, we are unable to decide for any element of U whether it
belongs to X or — X, using B.
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5 Numerical Characterization of Vagueness

Rough set can be also characterized numerically by the following coefficient

oa() = LB
[B(X)]
called accuracy of approzimation, where |X| denotes the cardinality of X. Obviously
0 <ap(X) <l Ifap(X)=1, X is crisp with respect to B (X is precise with respect to
B), and otherwise, if ag(X) < 1, X is rough with respect to B (X is vague with respect
to B).

Let us depict above definitions by examples referring to Table 1. Consider the con-
cept "flu”, i.e., the set X = {pl,p2,p3,p6} and the set of attributes B = {Headache,
Muscle-pain, Temperature}. Concept "flu” is roughly B-definable, because B.(X) =
{pl,p3,p6} # 0 and B*(X) = {p1,p2,p3,p5,p6} # U. For this case we get ap(” flu”) =
3/5. It means that the concept "flu” can be characterized partially employing symptoms,
Headache, Muscle-pain and Temperature. Taking only one symptom B = {Headache} we
get B.(X) = 0 and B*(X) = U, which means that the concept "flu” is totally indefinable
in terms of attribute Headache, i.e., this attribute is not characteristic for flu whatso-
ever. However, taking single attribute B = {Temperature} we get B.(X) = {p3,p6} and
B*(X) = {pl,p2,p3,p5,p6}, thus the concept "flu” is again roughly definable, but in this
case we obtain ag(X) = 2/5, which means that the single symptom Temperature is less
characteristic for flu, than the whole set of symptoms, and patient pl cannot be now
classified as having flu in this case.

Beside accuracy of approximation one can also define two interesting coefficients, de-
noted v.(X), v°(X) and called a quality of lower (upper) approzimation of X by B,
respectively, and defined as follows:

- _ IBAX)] oy 1BT(X)]
(X)) = U] and y*(X) = T

Obviously the accuracy measure can be defined in terms of quality measures, as

7-(X)
7 (X)
There is a very interesting relationship between the quality measures and of the ba-
sic concepts of evidence theory: the quality of lower approximation is a belief function
and the quality of upper approximation is the plausibility function of the evidence the-
ory. More about this relationship can be found in (Grzymala-Busse 1995, Skowron and
Grzymala-Busse 1994).

The above defined coefficients can be used to describe rough sets numerically, in ad-
dition to the basic topological characterization of rough sets.

ag(X) =

L1



6 Rough Sets Membership Function and Un’certainty

Rough sets can be also defined using a rough membership function, defined as

B(r) =
#x( ) |B($)|

Obviously
ux(z) €[0,1].

Value of the membership function px(z) is kind of conditional probability, and can be
interpreted as a degree of certainty to which z belongs to X (or 1 — ux(z), as a degree of
uncertainty).

The rough membership function, can be used to define approximations and the bound-
ary region of a set, as shown below:

BX)={z €U : uX(z) =1},

B (X) = {z € U: pf(z) >0},
BNp(X)={ex e U:0<pB(z)<1}.

It can be shown (Pawlak and Skowron 1994) that the rough membership function has
the following properties:

a) uf(x)=1iff z € B.(X),
b) uR(x) =0iff z € —=B~(X),
c) 0 < uf(x) <1iffz € BNg(X),

d) It I(B) = {(z,z): 2 € U}, then pf(z) is the characteristic function of X,

e) If zI(B)y, then u%(z) = p¥(y) provided I(B),
f) uB_y(x) =1 — B () for any z € U,

g) ixuy(2) > max(p§(z), pi(x)) for any z € U,
b) sy () < min(u}(z), uf(x)) for any @ € U,

i) If X is a family of pair wise disjoint sets of U, then pfy(z) = ¥ yex uf(z) for any
r e U,

The above properties show clearly the difference between fuzzy and rough memberships. In
particular properties g) and h) show that the rough membership formally can be regarded
as a generalization of fuzzy membership, for the max and the min operations for union
and intersection of sets respectively for fuzzy sets are special cases of that for rough sets.
But let us recall that the "rough membership”, in contrast to the "fuzzy membership”,
has probabilistic flavor.
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For ex’ample, the membership function for concept "flu” in Table 1 is given below.
l

WE(pl) = I{PI,PQ,??’;f;}ﬂ{Pl}IZL
WB () I{Pl,p2,7?;§,634f}\|{1)2,p4}l _1/2,
WE3) = l{1)1,712,1|)?;§);5l}ﬂ{p3}l:1’
WBlpt) = I{pl’]ﬁ’}l)?;’)f}6|}n{p4}! —o,
FRRCIY F: LITY. [
KB (p6) = I{pl,plﬁ;gﬂ}ﬂ{pﬁ}l:l.

The membership function can be also used as a basis to define the credibility of decision
rules.

Let 8(z) denote the decision rule associated with object x. We will say also that x
supports rule §(x). Then the credibility factor of this rule can be defined as

wsen o { L e =00,
Cé(x)) = { ph(z), if0 < f(z)<1.

In this way any consistent rule will get one as a credibility factor value, while any incon-
sistent rule will get credibility factor, which is smaller then one (but not equal to zero).
The closer is the credibility factor is to one the more credible is the rule. If a decision
rule is supported by more then one object, then as the credibility factor we assume the
credibility factor of the most supporting object. This coefficient can be seen as an alter-
native to Dempster-Shafer approach. The above ideas can be generalized in the same way
as proposed by Ziarko in the variable precision rough model (Ziarko 1993). Let 8 be a
real number such that 0 < 3 < 0.5. Approximations can be defined now as

Bua(X) = {z €U pB(x) > 1 - 8},
By X)={z €U :u(x) > p}.

Note that if 8 =0, we get the previous case.

The boundary region BNj(X) = By(X)— Bg(X)={zeU: 8 <uf(z) <1 -4}

The following properties are obvious

a) if £ € B.g(X), then not necessarily B(z) C X,

b) if & € U — Bp(X), then not necessarily X N B(x) = 0,
c) if X N B(x) # 0, then not necessarily x € Bj(X),

d) if B(x) € X, then not necessarily 2 ¢ B;(X).

13



Besides, we have

B.(X) € B.g(X) and B*(X) 2 Bj(X).
The idea of variable precision rough sets enables one to relax strict conditions superim-
posed on the definitions of approximations and can be viewed as a weaker form of the
original definitions.

It can be easily seen that there exists a strict connection between vagueness and uncer-
tainty. As we mentioned above vagueness is related to sets (concepts), whereas uncertainty
is related to elements of sets. Rough set approach shows clear connection between these
two concepts.

7 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between attributes.
Intuitively, a set of attributes D depends totally on a set of attributes C, denoted C = D,
if all values of attributes from D are uniquely determined by values of attributes from C.
In other words, D depends totally on C, if there exists a functional dependency between
values of D and C. In Table | there are not total dependencies whatsoever. If in Table
I, the value of the attribute Temperature for patient p5 were "no” instead of "high”,
there would be a total dependency {Temperature} = {Flu}, because to each value of the
attribute Temperature there would correspond unique value of the attribute Flu.

Formally dependency can be defined in the following way. Let D and C be subsets of
A. We say that B depends totally on C, if and only if I(C) C I(D). That means that
the partition generated by (' is finer than the partition generated by D. Notice, that
the coucept of dependency discussed above corresponds to that considered in relational
databases.

We would need also a more general concept of dependency of attributes, called a partial
dependency of attributes. Let us first depict the idea by example, referring to Table 1.
In this table, for example, the attribute Temperature determines uniquely only some
values of the attribute Flu. That is, (Temperature, very high) implies (Flu, yes), similarly
(Temperature, normal) implies (Flu, no), but (Temperature, high) does not imply always
(Flu, yes). Thus the partial dependency means that only some values of D are determined
by values of C.

Formally, the above idea can be formulated as follows. Let D and C be subsets of A.
We say that D depends in degree k,0 < k <1, 0n C, denoted C =, D, if

. _ [POSe(D)
-
where
POSc(D)y= |J C.(X).
XeU/I(D)

The expression POS¢(D), called a positive region of the partition U/D with respect to
C', s the set of all elements of {/ that can be uniquely classified to blocks of the partition
U/D, by means of C. It can be easily seen that k& can be interpreted as the consistency
measure y(C, D).

Thus the coefficient & expresses the ratio of all elements of the universe, which can be
properly classified to blocks of the partition /D, employing attributes C. Notice that
for & =1 we get the previous definition of total dependency.

14



Obviously, a decision table is consistent if and only if k = 1, otherwise, i.e., if k£ # 1,
the decision table is inconsistent; if lﬁ = 0 we will say that the decision table is totally
inconsistent.

For dependency {Headache, Muscle-pain, Temperature} = {Flu} we get k = 4/6 =
2/3, because four out of six patients can be uniquely classified as having flu or not,
employing attributes Headache, Muscle-pain and Temperature.

If we were interested in how exactly patients can be diagnosed using only the attribute
Temperature, that is — in the degree of the dependence { Temperature} = {Flu}, we would
get k = 3/6 = 1/2, since in this case only three patients p3, p4 and p6 out of six can be
uniquely classified as having flu. In contrast to the previous case patient p4 cannot be
classified now as having flu or not. Hence the single attribute Temperature offers worse
classification than the whole set of attributes Headache, Muscle-pain and Temperature. It
is interesting to observe that neither Headache nor Muscle-pain can be used to recognize
flu, because for both dependencies {Headache} = {Flu} and {Muscle-pain} = {Flu} we
have k = 0.

Summing up: D is totally (partially) dependent on C, if all (some) elements of the
universe U can be uniquely classified to blocks of the partition U/D, employing C.

8 Reduction of Attributes

We often face a question whether we can remove some data from a data-table preserving
its basic properties, that is — whether a table contains some superfluous data. For example,
it is easily seen that if we drop in Table 1 either the attribute Headache or Muscle-pain
we get the data set which is equivalent to the original oue, in regard to approximations
and dependencies. That is we get in this case the same accuracy of approximation and
degree of dependencies as in the original table, however using smaller set of attributes.

In order to express the above idea more precisely we need some auxiliary notions. Let
B be a subset of A and let a belong to B.

o We say that « is dispensable in B if I(B) = [(B — {a}); otherwise a is indispensable
m B.

o Set B is independent if all its attributes are indispensable.
e Subset B’ of B is a reduct of B if B’ is independent and I(B’) = I(B).

It means that a reduct is a minimal subset of attributes that enables the same classification
of elements of the universe as the whole set of attributes. In other words, attributes that
do not belong to a reduct are superfluous with regard to classification of elements of the
universe.

For example in Table 3 we have two reducts {«,b,e} and {b,d, e}.

Reducts have several important properties. In what follows we will present two of
them.

First, we define a notion of a core of attributes. Let B be a subset of A. The core of
B is the set off all indispensable attributes of B. The following is an important property,
connecting the notion of the core and reducts

Core(B) =) Red(B),



where Red(B) is the set off all reducts of B.

Because the core is the intersection of all reducts, it is included in every reduct, i.e.,
each element of the core belongs to some reduct. Thus, in a sense, the core is the most
important subset of attributes, for none of its elements can be removed without affecting
of the classification power of attributes.

In Table 3 the core is the set {b, e}.

Further simplification of an information table can be obtained by elimination of some
values of attribute from the table in such a way that we are still able to discern objects in
the table as the original one. To this end we can apply similar procedure as to eliminate
superfluous attributes, which is defined next.

o We will say that the value of attribute a € B, is dispensable for z, if B(z) = B,(z);
otherwise the value of attribute a is indispensable for z, where B, = B — {a}.

o If for every attribute @ € B the value of « is indispensable for z, then B will be
called independent for z.

e Subset B’ C B is a value reduct of B for z, iff B is independent for z and B(z) =
B'(z).

The set of all indispensable values of attributes in B for z will be called the value core of
B for z, and will be denoted CORE®(B).

Also in this case we have
CORE*(B) = ﬂ Red*(B),

where Red”([3) is the family of all reducts of I3 for .

[t may happen that the set D depends not on the whole set C but on its subset C” and
therefore we might be interested to find out this subset. In order to solve this problem we
need the notion of a relative reduct, which will be defined and discussed next.

Let C,D C A, and let
POSc(D)= |J C.(X)

XeU/I(D)

o We will say that attributea € C'is D-dispensable in C,if POSc(D) = POSc-{ay)(D);
otherwise the attribute a is D-indispensable in C.

e If all attributes @ € C are C-indispensable in C, then C will be called D-independent.

e Subset C' C (' is a D-reduct of C, ift C' is D-independent and POS-(D) =
POSci (D).

The set of all D-indispensable attributes in C will be called D-core of C, and will be
denoted by CORFEL(C). In this case we have also the property

COREpR(C) = Redp(C),

where Redp(C) is the family of all D-reducts of C.

If D =C we will get the previous definitions.

For example in Table 1 there are two relative reducts with respect to Flu {Headache,
Temperature} and {Muscle-pain, Temperature} of the set of condition attributes { Headache,
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Muscle-pain, Temperature}. That means that either the attribute Headache or Muscle-pain
can eliminated from the table and consequently instead of Table 1 we can use either Ta-

ble 5

Patient | Headache | Temperature | Flu
pl no high yes
p2 yes high yes
p3 yes very high yes
p4 no normal no
po yes high no
pb no very high yes

Table 5
or Table 6

Patient | Muscle-pain | Temperature | Flu
pl yes high yes
p2 no high yes
p3 yes very high yes
p4 yes normal 1no
pPo 1o high 1o
p6 yes very high | yes

Table 6

For Table 1 the relative core of with respect to the set {Headache, Muscle-pain,
Temperature} is the Temperature. This confirms our previous considerations showing that
Temperature is the only symptom that enables, at least, partial diagnosis of patients.

We will need also a concept of a valuc reducl and value core. Suppose we are given
a dependency C = D where C is relative D-reduct of C. To further investigation of
the dependency we might be interested to know exactly how values of attributes from
D depends on values of attributes from C. To this end we need a procedure eliminating
values of attributes form C' which does not influence on values of attributes from D.

e We say that value of attribute a € ', is D-dispensable for x € U, if
C(z) C D(z) implies C,(z) C D(z);
otherwise the value of attribute a is D-indispensable for x.

o If for every attribute a € C value of a is D-indispensable for x, then C will be called
D-independent for z.

e Subset C' C (' is a D-reduct of C for x (a value reduct), iff C' is D-independent for
x and

C(z) € D(z) implies C'(z) C D(z).



The set of all D-indispensable for z values of attributes in C will be called the D-core of
b for z (the vlaue core), and will be denoted CORER(C).

We have also the following property

CORE}(C) = (| Red5(C),

where Red%(C) is the family of all D-reducts of C for z.

Using the concept of a value reduct, Table 5 and Table 6 can

be simplified as follow

” N

where

Patient | Headache | Temperature | Flu
pl no high yes
p2 yes high yes
p3 - very high yes
p4 - normal no
po yes high no
p6 - very high yes

Table 7
Patient | Muscle-pain | Temperature | Flu
pl yes high yes
p2 no high yes
P3 very high yes
p4 - normal no
po 1o high no
p6 - very high yes

Table 8

denotes "don’t care” values.

We can also present the obtained results in a form of a decision algorithm.

For Table 7 we get

Headache, no) and (Temperature, high) then (Flu, yes),
Headache, yes) and (Temperature, high) then (Flu, yes),

Temperature, normal) then (Flu, no), .
Headache, yes) and (Temperature, high) then (Flu, no),

if (
if (
if (Temperature, very high) then (Flu, yes),
if (
if (
if (

Temperature, very high) then (Flu, yes).

and for Table 8 we have

Muscle-pain, yes) and (Temperature, high) then (Flu, yes),
Muscle-pain, no) and (Temperature, high) then (Flu, yes),

Temperature, normal) then (Flu, no),

Muscle-pain, no) and (Temperature, high) then (Flu, no),

if (
if (
if (Temperature, very high) then (Flu, yes),
if (
if (
if (

Temperature, very high) then (Flu, yes).

The following important property
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a) B'= B — B’', where B’ is a reduct of B,

connects reducts and dependency, and can be used for discovering of dependencies in data.
Besides, we have the following properties

b) If B = C, then B = ', for every C' C C,
in particular

¢) If B= C, then B = {a}, for every a € C.
Moreover, the following property is valid

d) If B’ is a reduct of B, then neither {a} = {b} nor {b} = {a} holds, for every
a,b € B, ie., all attributes in a reduct are pairwise independent.

For example in Table 3 we have the following dependecies:

{a,b,e} = {c,d},
{b,d,e} = {a,c},

and consequently the first dependency yields

{a,b,e} = {c},
{a,b,e} = {d},

whereas the second, gives

{b,d,e} = {a},
{b,d,e} = {c}.

That means that issues discussed in the debate are related and should not be discussed
simultinously.

9 Indiscernibility Matrices and Functions

To compute easily reducts and the core we will use discernibility matrix (Skowron et al.,
1991), which is defined next.

By an discernibility matrix of B C A denoted M(B) we will mean n x n matrix defined
as:

(cij) ={a € B:a(z;) # a(z;)} fori,j =1,2,...,n.

Thus entry ¢;; is the set of all attributes which discern objects z; and z;.
The discernibility matrix M(B) assigns to each pair of objects z and y a subset of
attributes 6(x,y) C B, with the following properties:

i) 6(z,z) =0,
i) 6(z,y) = 8(y,2),
i) 6(z,z) C é(z,y)Ud(y, 2).
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These properties resemble properties of semi-distance, and therefore the function § may
be regarded as qualitative semi-matric grnd §(x,y) - qualitative semi-distance. Thus the
discernibility matrix can be seen as a semi-distance (qualitative) matrix.

Let us also note that for every z,y,z € U we have
iv) |6(z,z)| =0, |

v) [6(z,y)| = 8(y, 2)l,
vi) |6(z, 2)| < 16(, y)| + [6(y, 2)]-

It is easily seen that the core is the set of all single element entries of the discernibility

matrix M(B), i.e.,
CORE(B) ={a € B:¢; = {a}, for somei,j}.

Obviously B’ C B is a reduct of B, if B is the minimal (with respect to inclusion) subset
of B such that

B' N ¢ # 0 for any nonempty entery ¢ (¢ # @) in M(B).

In other words reduct is the minimal subset of attributes that discerns all objects dis-
cernible by the whole set of attributes.

Every discernibility matrix M(B) defines uniquely a discernibility (boolean) function
f(B) defined as follows.

Let us assign to each attribute @ € B a binary boolean variable @, and let Y'é(z,y)
denotes boolean sum of all boolean variables assigned to the set of attributes §(,y). Then
the discernibility function can be defined by the formula

fBy=II {Z6(z,y):(z,y) € U* and §(z,y) # 0}.

(z.y)eU?

The following property establishes the relationship between disjunctive normal form of
the function f(B) and the set of all reducts of B. (Skowron et al., 1991).

All constituents in the minimal disjunctive normal form of the function f(B) are all
reducts of B.

For example the indiscernibility matrix for Table 4 is the following:

1 2 3 4 5
1
2| a,c,de
3 la a,c,d,e
4| a,de ¢, € a,d,e
510 a,b,c,d,e | a,b a,b,d,e
Table 9
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The core of the set of attributes {a,b,c,e,d} is the set {a,b}. The discernibility function
for this set is

(a+c+d+e)a(a+ct+d+e)(at+d+e)(cte)(at+d+e)b(atbdb+ct+d+e)(atb)(atbtdte).

By employing the absorption law ((z+y)z = z) and by "multiplying” all the constituents
we get the following disjunctive normal formula '

ab(c + €) = abe + abe.

Thus the set of attributes has two reducts {a,b,c} and {a, b, e}. That means that instead
of Table 4 we can use either Table 10 or Table 11

U

N OO OO
SR SR Rl S B

U N
—_ O N O e

Table 10

or Table 11

[NV EN en il en iR el an) IS N

o W N —
—_—0 N O~
OO - O,

Table 11

since they provide the same partition of the universe U = {1,2,3,4,5}.

In order to compute the value core and value reducts for z we can also use the dis-
cernibility matrix as defined before and the discernibility function, which must be slightly
modified:

[(B) = H {X8(z,y):y € U and é(z,y) # 0}.

yelU

Now for Table 10 we can compute the discernibility matrix:

1 2 3 4 ]

1

2| a,c

3la a,c

41 a c

516 ab,clab | ab

Table 12
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and the discernibility functions:

Y (A) = (a+c)ab= ab,

f{(A) = (ato)elatbtc)=qc
£(A) = aatc)at+d)=gq,
fYA) = acla+ )= ac,

fs(A) = bla+b+c)(la+bd) =0

This means that Table 10 and Table 11 can be simplified as shown below in Table 13 and
Table 14 below:

Ulal|b|ec
1 [1{0}-
2 1-1-11
312]-1-
4 10f-12
5 1-121-
Table 13
Ulalble
L {110}~
2 (-1-11
3121-1~-
4 1 -1-12
51-12]~
Table 14

Relative reducts and core can be computed also using discernibility matrix, which
needs slight modification

cij = {a € C :a(z;) # a(z;) and w(z, z;)},

where w(z;,x;) = x; € POSc(D) and z; ¢ POSc(D) or
x; & POSc(D) and xj; € POS¢(D) or
z;,z; € POSc(D) and (z;,2;) € I(D)

for 7,7 = 1,2,...,n (Skowron et al., 1991).

If the partition defined by D is definable by C then the condition w(z;, z;) in the
above definition can be reduced to (z;,z;) & I(D).

Thus entry ¢;; is the set of all attributes which discern objects z; and z; that do not
belong to the same equivalence calss of the relation I(D).

The remaining definitions need a little changes.

The D-core is the set of all single element entries of the discernibility matrix Mp(C),
ie.,

COREp(C)={a€ C:¢; = (a), for some i,j}.
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Set €' C C is the D-reduct of C, if C" is the minimal (with respect to inclusion) subset
of ¢ such that

C'N ¢ # @ for any nonempty entry c(c # @) in Mp(C).

Thus D-reduct is the minimal subset of attributes that discerns all equivalence classes of
the relation /(D) discernible by the whole set of attributes.

Every discernibility matrix Mp(C') defines uniquely a discernibility (boolean) function
fp(C) which is defined as before we have also the following property:

All constituents in the disjunctive normal form of the function fp(C) are all D-reducts

of C.

For example, consider Table 4 with C' = {a, b, c} and D = {d,e} as condition and
decision attributes respectivelly. Discernibilty matrix for this table is given below:

1 2 3 4 5
BE
21ac
31— a,c
41a ¢ a
51— a,be| - a,b
Table 15

The discernibility function and its disjunctive normal form is the following:
ac(a + ¢)(a + b0+ c)(a+b) = ac.

Thus set C' = {a, b, ¢) has only one D-reeduct, which is {a,c}. The means the attribute
b is dispensables, i.e., objects of the universe can be equally well classified to classes of
the equivalence relation I({d,e}) without attribute b, or what is the same Table 4 can be
simplified as

Ulalc|d]e
111121110
200111211
31210121110
4 1012121)2
511121110

Table 16

We can also eliminate in this case dispensable values of attributes using the discerni-
bility matrices and functions.

For computing value reducts and the value core we use as a starting point the dis-
cernibility matrix Mp(C) and discernibility function will have the form:

f5(C) = T[{Z68(z,y) : y € U and §(z,y) # 0}.

yeU
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For Table 16 we get the following discernibility functions and their disjunctive normal
forms: '

Q

= (a+c)a=a,

/p(C)

f5(C) = (ate)elate) =g
f2(C) = (a+c)a=a,
/p(C) = ac

(C) = a

That means that Table 16 can be presented in equivalent form as shown below:

)

—1 e
— e
o o—| Al

[ N R
—_— O N

|

—_— N —

O N D — DO

Table 17

The above decision table can be also regarded as a set of decision rules of the form

ay — (11 €g,
a; - ([] €0,
ci — dyey,
apc; —  dyey,

or

(I]V(lg — (1160,
i — dpey,

agCy — dye
0C2 2€3,

where a; means "attribute a has value :” and symbols ”V” nad ” — ” denote propositional
alternative and implication respectively.

10 Significance of Attributes and Approximate Re-
ducts

As 1t follows from considerations concerning reduction of attributes, they can be not
equally important, and some of them can be eliminated from an information table with-
out loosing information contained in the table. The idea of attribute reduction can be
generalized by introduction a concept of significance of attributes, which enable us eval-
uation of attributes not only by two-valued scale, dispensable - indispensable, but by
assigning to an attribute a real number from the closed interval [0,1], expressing how
important is an attribute in an information table.
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Significance of a attribute can be evaluated by measuring effect of removing the at-
tribute from an information table on classification defined by the table. Let us first start
our consideration with decision tables.

Let C and D be sets of condition and decision attributes respectively and let a be
a condition attribute, i.e., « € C. As shown previously the number 4(C, D) expresses a
degree of consistency of the decision table, or the degree of dependency between attributes
C and D, or accuracy of approximation of U/D by C. We can ask how the coefficient
v(C, D) changes when removing an attribute q, i.e., what is the difference between ~(C, D)
and y((C — {a}, D). We can normalize the difference and define the significance of an
attribute a as

o ((l) — (7(071)) “"Y(C — {(L}, D)) _1— 7(0 — {a}’ D)
(C.D) +(C, D) G, D) ,

and denoted simple by o(a), when C and D are understood.

Obviously 0 < o(a) < 1. The more important is the attribute a the greater is the
number o(a). For example for condition attributes in Table 1 we have the following results:

o(Headache) = 0,
o(Muscle-pain) = 0,
o(Temperature) = 0.75.

Because the significance of the attribute Temperature or Muscle-pain is zero, removing
either of the attribute from condition attributes does not effect the set of consistent
decision rules, whatsocver. Hence the attribute Temperature is the most significant one
in the table. That means that by removing the attribute Temperature, 75% (three out of
four) of consistent decision rules will disappear from the table, thus lack of the attribute
essentially effects the "decisive power ” of the decision table.

For a reduct of condition attributes, e.g., Headache, Temperature, we get

o(Headache) = 0.25,
o(Temperature) = 1.00.

In this case, removing the attribute Headache from the reduct, i.e., using only the
attribute Temperature, 25% (one out of four) consistent decision rule will be lost, and
dropping the attribute Temperature, i.e., using only the attribute Headache 100% (all)
consistent decision rules will be lost. That means that in this case making decisions is
impossible at all, whereas by employing only the attribute Temperature some decision
can be made.

Thus the coefficient o(a) can be understood as an error which occurs when attribute
a is dropped. The significance coefficient can be extended to set of attributes as follows:

vomy(B) = HGDI=AHC=B.D) | 5(C=B.D)
’ ¥(C, D) (vC, D)

denoted by ¢(B), if C and D are understood, where B is a subset of C.
If Bis a reduct of C, then ¢(B) = 1, i.e., removing any reduct from a set of decision
rules unable to make sure decisions, whatsoever.




Any subset B of C will be called an approzimate reduct of C, and the number

(v(C, D) —~(B, D)) (8B, D)

__1________

7(C, D) - (CDy

gc,p)(B) =

denoted simple as e(B), will be called an error of reduct approzimation. It expresses how
exactly the set of attributes B approximates the set of condition attributes C. Obviously
e(B)=1—0(B) and ¢(B) = 1 —&(C — B). For any subset B of C we have ¢(B) < ¢(C).
If Bis areduct of C, then ¢(B) = 0.

For example, either of attributes Headache and Temperature can be considered as
approximate reducts of {Headache, Temperature}, and

¢(Headache) = 1,
¢(Temperature) = 0.25.

But for the whole set of condition attributes {Headache, Muscle-pain, Temperature}
we have also the following approximate reduct

¢(Headache, Muscle-pain) - 0.75.

The concept of an approximate reduct is a generalization of the concept of a reduct
considered previously. A minimal subset B of condition attributes C, such that 4(C, D) =
(B, D), or g(¢,py(B) = 0 is a reduct in the previous sense. The idea of an approximate
reduct can be useful in cases when a smaller number of condition attributes is preferred
over accuracy of classification.

11 Conflict Analysis

Exmaples 1 and 2 considered in the Introduction display certain kind of problems we
are interested in, in connection with data analysis. But there are many others questions,
regarding data analysis, not necessarily referring to approximate description of set, depen-
dencies in data or data reduction. Example 3 and Example 4, given in the introduction,
illustrate this problem.

In this section we will consider a little more closely Example 3, referring to conflict
analysis. In this case we do not distinguish condition and decision attributes in the infor-
mation table. Each row of the table is a discription of the attitude of an agent to issues
debated in the dispute. In the conflict analysis primarily we are interested in finding the
relationship between agents taking part in the dispute, and investigate what can be done
in order to improve the relationship between agents, or in other words how the conflict
can be resolved. To this end new concepts must be introduced. Some of them will be
discussed in what follows.

Conflict, Alliance and Neutrality

In order to express relations between agents we define three basic binary relations on
the universe: conflict, neutrality and alliance. To this end we need the following auxiliary
function:

I, ifa(z)aly)=1or z=y,
dalz,y) =< 0, ifa(x)a(y) =0and z #vy,
-1, if a(x)a(y) = —1.
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This means that, if ¢,(z,y) = 1, agents z and y have the same opinion about issue a
(are allied on a); if ¢.(z,y) = 0 means that at least one agent z or y has neutral apprach
to issue a (is neutral on a), and if ¢,(z,y) = —1, means that both agents have different
opinions about issue a (are in conflict on a). '

In what follows we will need three basic relations R}, R? and R, called alliance,
neutrality and conflict relations respectively, and defined as follows:

R} (z,y) iff da(z,y) =1,

Rg("l"’y) iff ¢a(l‘ay) =0,
R;(x7y) iff ¢a(x,y) = —L

It is easily seen that the alliance relation has the following properties:
() Ri(z,z),
(i) R¥(z,y) implies R} (y, ),

(iii) R¥(z,y) and R} (y,z2) im;‘)lies R} (z,2),

i.e., R os an equivalence relation for every a. Each equivalence classe of alliance relation
will be called coalition on a. Let us note that the condition (iii) can be expressed as ”friend
of my friend is my friend”.

For the conflict relation we have the following properties:

(iv) non R, (z,z),

a

(
(v) Ri(z,y) implies R7(y, ),

vi) R (x,y) and R (y,z) implies R} (z, z),

(vit) R7(z,y) and R} (y, z) implies R (x, z).

Conditions (vi) and (vii) refers to well know sayings "enemy of may enemy is my friend”
and "friend of my enemy is my enemy”.
For the neutrality relation we have:

(viii) non R%(z,z),
(ix) Ra(z,y) = Ry(y, ).

Let us observe that in the conflict and neutrality relations there are no coalitions.

Obviously RT U R2U R; = U? and all the three relation are pairwise disjoint, i.e.,
every pair of objects (x,y) belongd to exactly one of the above defined relations (is in
conflict, is allied or is neutral).

For example in the Middle East situation Egypt, Palestinians an Syria are allied on
issue a (autonomous Palestinian state on the West Bank and Gaza), Jordan and Israel
are neutral to this issue whereas, Israel and Egypt, Israel and Palestinian, and Israel and
Syria are in conflict about this issue.
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Degree of Conflict

Let and a € A. If there exits a pair (z,y) such that R (z,y) will say that the attribute
a is conflicting (agents), otherwise the attribute is conflictless. The following property is
obvious.

~ If a is an conflicting attribute, then the relation RY has ezactly two equivalence classes
XFand X7, where XF = {z €U :a(z)=+},X; ={z €U :a(z) = -}, XJUX;UX? =
U, and X2 = {z € U : a(z) = 0}. Moreover R; (z,y) iff ¢ € X} andy € X~ for every
z,y € U.

The above proposition says that if a is conflicting attribute, then all agents are divided
into two coalitions (bloks) X} and X7, all members of two different coalitions are in
conflict, and the remaining (if any) agents are neutral to the issue a.

This can be easily illustrated by graph as shown in Figure 1.

Palestinians

Jordan
Saudi
Arabia

Fig. 1

Vertices of the graph are labelled by agents, whereas branches of the graplh are repre-
senting relation between agents. Solid lines are denoting conflicts, dotted line — alliance,
and neutrality, for simplicity, is not shown explicity on the graph. The proposition says
that the graph shown in Fig. 1 can be presented as shown in Fig. 2.

Egipt
Syria Palestinians
Syria

Jordan
Saudi
Arabia

Fig. 2

The degree of conflicts between agents about a issue a can be easily expressed numerically,
as follows:

| X3 XS
(n/2).(n — E(n/2))
The number | XF|[.|.X| is equal to the number of conflicts generated by the issue a (i.e.,
pairs of agents being in conflict because of issue a), whereas E(n/2).(n — E(n/2)) is the
number of maximal conflicts possible between n agents and E(n/2) denotes the whole
part of the division of n by 2. Of course 0 < Con(a) < 1.

Con(a) = 7
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The coefficient Con(a) can be easily extended to the whole set of attributes as follows:

CO’Il(A) Za€A|ZY|0"(a)

Evidently 0 < Con(A) < 1, and Con(A) can be viewed as an overall measure of conflicts
in a conflict situation and will be referred to as conflictness of A, or tension of a conflict
situation.

The following proposition is true
Con(A) > Con(A — Maz(A)),

where Maz(A) is a most conflicting attribute in A. smallskip
From the proposition it follows that removing from the debate the most conflicting
attribute (issue) reduces tension. This can be used as a guidance for a negotiation process.
For example, for the Middle East situation considered previously we have

Con(a) =1/3,
Con(b) = 2/3,
)

The most conflicting attributes are b and e, and Con(A) = 0.49. If we remove the
attribute b we get Con({a,c,d,e,}) = 0.45, but removing the attribute a we obtain

Con({b,c,d,e}) = 0.53.

Distance between Agents

The relations R (z,y), R(z,y) and R, (z,y) can be seen as a description of views on
a issue a between agents z and y. We will also need an evaluation of views between z and
y with respect to the whole set of attributes A. To this end we define a function p4(z,y)
or in short p(z,y)defined as shown below:

ZaGA (pa(‘l y)

p( )y) |A| ’
where |
bi(z,y) = —5— ¢;(x’y)-

Obviously 0 < p(x,y) < 1. If p(z,y) # 0) we will say that  and y are in conflict on A in
a degree p(x,y), an(l of course if p(z,y) = 0, z and y are in coalition on A. In particular,
if p(z,y) = 0.5 x and y are neutral on A. Thus neutrality in this case is considered as a
form of a (weak) conflict.

The following properties are obvious

1) p(z,z) =0,
2) p(z,y) = ply,
3) p(z,y) + p(y, )Zp(w,Z),
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thus the p(x,y) is a distance function.

For example for the considered Middle East situation we have the following distances
matrix between agents.

Discernibility of Agents

Differences in views of agents concerning specifiec issues can be also expressed not only
in a quantitative way (numerically), as in the previous section, but also in a qualitative
way. To this end we will use discernibility matrix discussed previously.

The discernibility matrix for conflict presented in Table 3 is given below:

1 2 3 4 5 6
1
2| ab,cde
3| abecdel| be
4 | ab,c,de| ab,d a,d,e
5| abede| b: €, a,d
6| a,c,d abe,d| ab,de b,e a,b,d,e
Table 19

Each entry of the discernibility matrix shows all issues for which the corresponding
agents have different opinions. The difference between Table 18 and Table 19 is that in the
first table we have numerical evaluation of differences hetween agents e.g., p(2,3) = 0.2,
whereas in the second one differences are expresssed literally e.g.,6(2,3) = {b,¢}.

Beside problems discussed above we might be also interested in analysis of dependen-
cies between issues, computing reducts etc.

For example, it is easy to see that reduction of attributes (issues) as defined in this
section not necessarily reduces the tension in a conflict situation, i.e., it is not general true
that if B is a reduct of A, then Con(B) < Con(A). The aim of finding reducts consists in
preserving overall structure of the conflict situation, i.e., after reducing attributes general
relations (conflict, coalition and neutrality) between agents remain intact.

12 Explanation and specification

Let us consider first the problem of explanation of data. Suppose we are given data
obtained from observation of certain processes, phenomena etc. Our task is to find out, on
the basis of observed data, rules governing the perceived process. That means that we have
to find all (or some) decision rules which describe relationships between data. For example,
let us consider medical data given in Example 1 about patients suffering from flu. It follows
from this example that the decision rules (Muscle-pain, no) implies (Temperature-high),
(Headache, no) implies (Muscle-pain, yes), (Temperature-high) implies (Flu, yes) are valid
in the data. Decision rules are sometimes interpreted as descriptions of ”cause-effect”
relations in data, however, we will refrain from a philosophical discussion of this problem.
For easy of notation let us replace Table 1, by Table 20
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alblc|d
170111141
2114101171
311111241
410]1]01|0
5(110(1]0
610(1]2]1

Table 20

where attributes Headache, Muscle-pain, Temperature and Flu are replace by letters
a, b, c and d respectively, and similarly values of attributes are replaced by numbers 0,1
and 2 in an obvious way.

More precisely, by explanation we will understand here finding all simple minimal
decision rules from data. By a simple decision rule we mean the rule having only one
decision attribute, and a decision rule is minimal if all its condition attribute-value pairs
are reduced with respect to the decision attribute. To this end we can employ discernibility
function discussed in previous sections, computed for every non conflicting object.

Let us start with the decison attribute a, for which discernibility matrix is shown in

Table 21.

1 2 3 4 5 6
1
210
3lc -
41 - |bedl| cd
516,d]|- - b,c
6| - b,c - - b,c,d
Table 21

The corresponding decision table is inconsistent and the conflicting objects in this
table are 3 and 6. Hence we have the following discernibiliy functions:

fo{be,d}) = be,
fe{bied}) = b,
fA{bye,d}) = c+bd,
fi{b,c,d}) = b+cd.
These discernibility functions give a-reducts of condition attributes {b,c,d}- for every

object. Fore xample f}({b,c,d}) = bc means that the attribute-value pairs b, ¢; detrmine
uniquelly attribute-value pair ag, i.e., that the decision rule

l)] Cy — (g

is valid. Proceeding similarly we get from the remaining discernibility functions the fol-
lowing decision rules:

bO - Q,
¢ — Qp,
I)] (lo —  Qp,
ady — a.



In the same way we get for the attribut b the discernibility functions

ance the following decision rules are valid:

ao
a1G
(6]
Co
ado

Ci (lo

For the attribute ¢ we have

2({a,b,d}
f2{a,b,d}
Ji({a,b,d}
L2({a, b,d}

which yielas decision rules

For the attribute d we get

which gives:

)
)
)
)

L A A

L

a,
ac,
c,

ac,

ac + ad + cd,
a + ¢,

by,
bo,
by,
by,
bo,

b() .

= b,

ab,
ab + ad,

= b+ ad,

dy,
dl,

dlu



The above decision rules can be presented in a more compact form

biey VbidgVey —  ay,
boVerdy — ay,
acaVaydgVedy — b,
agVegVe — by,

agdy V bydy —  co,
boVardy — ¢,

aby — e,

¢ — do,

agc; V by Ve, — dy.

Relations between all decision rules can be depicted as a connection graph. Vertices of the
graph represent attribute-value pairs (drawn in a similar way as multistate devices, e.g.,
flip-flops, in the case of binary circuits), whereas branches of the graph show connections
(implications) between corresponding attribute-value pairs. The connection graphs for
decision attributes a,b,c and d are given in Fig. 3, 4, 5 and 6 respectively, and Fig.
7 contains all connections (implications) which occur in the whole decision table. Thus
Table 20 can be seen as a concise denotation of all decision rules defined by the table.

&
&
al 0O 1 1 c| O} 11} 2 d 0| t
y v
)




Fig. 6
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Table 20 considered in this section can be also understood not as a result of observa-
tions but, as a specification of requirements for a special discrete systems behavior (e.g.,
controller, program etc.). In this case the diagram presented in Fig. 7 is to be understood
not as a visual aid of "cause-effect” relations occurring in the observed data, but as a
schemata of an algorithm implemented in hardware or software, and performing the task
specified be the table. This approach can be seen as alternative to the well know Petri
Nets notation of concurrent systems behavior.

We will illustrate this idea by more intuitive example of distributed traffic signals
control. Let us consider a very simple intersection (T-intersection) shown in Fig. 8.




b®

aR ®c

® - TRAFFIC SIGNAL
= - SENSOR

Fig. 8

We would like to design a distributed control algorithm which will supervise the traffic
on the basis of local conditions. We assume that the conditions are determined by sensors
placed in lanes and indicating the desired turn of a car approaching the intersection.
For the sake of simplicity we omit many important factors, needed in a real-life control,
e.g., traffic intensity, the busiest directions, length of the green period in each direction
etc. Distributed control means that the control cycle is not fixed but it depends on the
situation on the intersection. If the traffic flow is small, fixed traffic signals changes are
not optimal for a smooth traffic flow. Therefore we assume that in the main directions
(a-b) the lights stay green until some cars approach the intersection and want to turn
left. We could implement the control algorithm by changing the possible states of signals
periodically, independently of the traffic flow. For the sake of illustration we assume that
the signal changes are not changed periodically, independently of the traffic intensity, but
are govern by states of sensors. The specification of the control admissible situations is
given in Table 22 below

alb|c
1111110
2101210
310({0 |2
Table 22
where
0 - red
1 - green

2 — green arrow (left turn)
Using methods shown previously we get from the table the following control rules

I)()VI)-Z — Qg
b — a

Cy — l)o
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a — b

; apCy — ()2
bvb, — ¢

bo — C2

The connection graph for the set of control rules is shown in Fig. 9

>

l [
al 0 1 b O 1 2 c| 0 2
bt t t

Fig. 9

and the corresponding switching circuits (controller) is depicted in Fig. 10.

O® OGO OO

N

Ala & &

= = =3 =3
[ - SENSOR
Q - SIGNAL
Fig. 10
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It can be observed that some states of sensors may cause conflicts. For example,
suppose that simultaneously two cars are approaching the intersection, as shown in F‘ig.

11,

Fig. 11

i.e., both want to turn left. This causes conflict, since ¢2 — b0 and b2 — c0 (states ¢2 and

b2 do not occur simultaneously in the specification table) Hence special means to resolve

this kind of conflicts must be incorporated in the method, but we will not discuss this
issue here.
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