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Abstract: In this paper we consider some aspects of decision rule generation methods based on rough set
theory. Particularly, we propose to associate with every set of decision rules a connection graph, similar
to that used in switching theory, so that sets of decision rules can be represented as a kind of a switching
circuit, which depicts relations between decision rules. The connection graph can be understood as a
visual representation (explanation) of relations in data, or as a specification of a discrete dynamic system
(e.g., controller, program, etc.). The connection graph can be also viewed as an alternative to the well
known Petri Nets concept for concurrent systems analysis.
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1 Introduction

The paper contains a discussion on the relationship
between data and its logical representation in a form
of a decision rules ~ from the rough set perspective.

The rough set concept has been introduced by the
author in [14]. Rough set theory has developed dur-
ing the past fourteen years to a mature discipline
with many real-life applications to its credit, e.g.,
medicine, pharmacology, market analysis, engineer-
ing, pattern recognition, data bases and many oth-
ers [2,3,6,7,8,9,10,11,13,17,20,22,23,27,30,31,33]. Ba-
sics of rough set theory can be found in [15,16,21,25].

Data can represent results of observations, mea-
surements, knowledge of an agent or group of agents,
etc. Decision rules derived from data reveal hidden
patterns in the data, and can be understood as de-
scription of laws governing the observed phenomena
or processes. In other words decision rules are meant
to represent a "cause-effect” relations in the observed
process. It is well known that a relationship between
data not necessarily implies corresponding relation-
ship in reality. We will however refrain from philo-
sophical discussion of this issue here.

The topic of discovering rules from data has been
pursued for a long time in statistics, but many new
methodologies based on some Al techniques, e.g., ma-
chine learning, data mining, emerged recently. Rough
sets proved to be a valuable tool in this area as well,
and many rough set based methods of rule induction
from data have been developed [1,5,18,24,26,28,29,34].

In this paper we are going to analyze decision rule
generation methods based on rough set theory. Be-
sides, with every set of decision rules a connection
graph will be associated. To this end notation similar
to that used in the switching theory will be employed,

so that the set of decision rules can be represented as
a switching circuits, which depicts relations between

_decision rules. The connection graph can be under-

stood as an visual representation (explanation) of the
relations in data or as a specification of a discrete dy-
namic system (e.g., controllers).

Decision tables are used in software engineering [12]
for program specification. It seems that the rough set
approach can be as well employed to this aim.

The presented approach can be also seen as an al-
ternative to the well known Petri Nets model of con-
current system behaviour [19].

2 Information Tables, Decision
Tables and Decision Rules

Data are often represented as a table, columns of
which are labeled by atiributes, rows by objects of
interest and entries of the table are attribute val-
ues. Such tables are known as informalion systems,
atiribule-value tables or information tables. We will
use here the term information table. Below an exam-
ple of information table is shown.

Suppose we are given data about 6 patients, as
shown in Table 1.

Patient | Headache | Muscle- | Tempera- | Flu
pain ture
pl no yes high yes
p2 yes no high yes
p3 yes yes very high | yes
p4 no yes normal no
pb yes no high no
p6 no yes very high | yes
Table 1
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Columns of the table are labelled by attributes
(!ymptoms) and rows — by objects (patients), whereas
entries of the table are attribute values. Thus each row
of the table can be seen as information about specific
patient. For example, patient p2 is characterized in
the table by the following attribute-value set:

(Headache, yes), (Muscle-pain, no), (Temperature,
high), (Flu, yes),

which form information about the patient.

Sometimes we distinguish in an information table
two classes of attributes, called condition and decision
(action) attributes. For example in Table 1 attributes
licadache, Muscle-pain and Temperature can be con-
sidered as condition attributes, whereas the attribute
Flu ~ as a decision attribute.

Each row of a decision table determines a decision
rule, which specifies decisions (actions) that should
be taken when conditions pointed out by condition
attributes are satisfied. For example in:Table 1 the
condition (Headache, no), (Muscle-pain, yes), (Tem-
perature, high) determines uniquely the decision (Flu,
yes). Decision rules are often presented as implications
and are called ”if.. then...” rules. For example, rule
1) in Table 1 can be presented as implication

if (Ileadache, no) and (Muscle-pain, yes) and (Tem-
perature, high), then (Flu, yes).

With each decision table we can associate the set of
all decision rules determined by the table. Hence with
Table 1 we can associate the following decision rules:

if (HHeadache, no) and (Muscle-paia, yes) and (Tem-
perature, high), then (Flu, yes);

if (Headache, yes) and (Muscle-pain, no) and (Tem-
perature, high), then (Flu, yes);

if (Headache, yes) and (Muscle-pain, yes) and
(Temperature, very high), then (Flu, yes);

if (Headache, no) and (Muscle-pain, yes) and (Tem-
perature, normal), then (Flu, no);

if (Headache, yes) and (Muscle-pain, no) and (Tem-
perature, high), then (Flu, no);

if (Headache, no) and (Muscle-pain, yes) and (Tem-
perature, very high), then (Flu, yes).

Decision rules 2) and 5) in Table 1 have the
sarne conditions but different decisions. Such rules
are called inconsistent (nondeterministic, conflicting);
otherwise the rules are referred to as consistent (de-
lerministic, nonconflicting). Sometimes consistent de-
cision rules are called sure (certain) rules, and incon-
sistent, rules are called pessible rules. Decision tables
containing inconsistent decision rules are called in-
consistent (nondelerministic, conflicling); if the table
tlo not contain inconsitent rules it is called consistent
(ll«:hrl'ministic, nonconflicting).

The number of consistent rules to all rules in a deci-
sion table can be used as a consistency measure of the
decision table, and will be denoted by ¥(C, D), where
C and D are sets of condition and decision attributes
respectively. Thus if y{(C, D) = 1, the decision table
is consistent, and if ¥(C, D) # 1 the decision table is
inconsistent. For example for Table 1, v(C, D) = 4/6.

Notice the distinction between decision tables and
the corresponding set of decision rules. A decision
table is a collection of data, whereas decision rules
are implications, e.g., logical expressions. To deal
with data we use various mathematical methods, e.g.,
statistics, but to analyze implications we must employ
logical tools.

3 Rough Sets and
Approximations

The starting point of rough set theory is an indis-
cernibility relation, generated by information about
objects of interest. The indiscernibility relation is in-
tended to express the fact that due to the lack of
knowledge we are unable to discern some objects em-
ploying the available information. Let us illustrate this
idea by an example.

In Table 1 patients p2, p3 and p5 are indiscernible
with respect to the attribute Headache, patients p3
and p6 are indiscernible with respect to attributes
Muscle-pain and Flu, and patients p2 and p5 are
indiscernible with respect to attributes Headache,
Muscle-pain and Temperature.

Patient p2 has flu, whereas patient p5 does not.
Because they are indiscernible with respect to the
attributes Headache, Muscle-pain and Temperature,
hence flu cannot be characterized in terms of at-
tributes Headache, Muscle-pain and Temperature.
The remaining patients pl, p3 and p6 display symp-
toms which enable us to classify them with certainty
as having flu, patients p2 and p5 cannot be excluded
as having flu and patient p4 for sure does not have
flu, in view of the displayed symptoms.

Now we present above considerations more for-
mally.

Suppose we are given two finite, non-empty sets
U and A, where U is the universe, and A — a set
altribules. With every attribute a € A we associate
a set V,, of its values, called the domain of a. Any
subset B of A determines a binary relation I(B) on
U, which will be called an indiscernibilily relation, and
1s defined as follows:

z[(B)y if and only if a(z) = a(y) for every a € A,
where a(x) denotes the value of attribute a for ele-
ment z.

Obviously I(B) is an equivalence relation. The fam-
ily of all equivalence classes of I( B), iLe., partition de-



Ltarmined by B, will be denoted by U/I(B), or simple
{U/D; any equivalence class of I(B), i.e., the block of
fthe partition U/B, !containing z will be denoted by
It (#,y) belongs to I(B) we will say that z and y
fare Deindiscernible. Equivalence classes of the relation
1{(B) (or blocks of the partition U/B) are refereed to
a# D-elementary sets. In the rough set approach the el-
alnentary sets are the basic building blocks (concepts)
of our knowledge about reality.

The indiscernibility relation will be used to define
. the following two operations on sets

B.(X)={z €U :B(z) C X},

B*(X)={zeU:B(zx)nX # 8},

*: asgigning to every subset X of the universe U two
sets B,(X) and B*(X), called the B-lower and the
B-upper approrimation of X, respectively. The set

BNp(X) = B*(X) - B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e.,
BNg(X) = 0, then X is crisp (ezact) with respect
to B; in the opposite case, i.e., if BNg(X) #0, X is
referred to as rough (inezact) with respect to B.

For example, the lower approximation of the set
"flu” ={p1, p2, p3, p6}, is {p1, p3, p6}, the upper ap-
¢ proximation of this set is {p1, p2, p3, p5, p6}, whereas
i the boundary region is {p2, p5}. Similarly p4 does not
~ have flu and p2, p5 cannot be excludes as having flu,
~ thus the lower approximation of "not flu” = {p4, p5}
" is {p4}, the upper approximation — is {p2, p4, p5},
and the boundary region is {p2, p5}.

4 Dependency of Attributes

Another important issue in data analysis is discover-
ing dependencies between attributes. Intuitively, a set
- of attributes D depends totally on a set of attributes
C, denoted C => D, if all values of attributes from
D are uniquely determined by values of attributes
from C. In other words, D depends totally on C, if
there exists a functional dependency between values
of D and C. In Table 1 there are not total depen-
dencies whatsoever. If in Table 1, the value of the
attribute Temperature for patient pd were "no” in-
stead of "high”, there would be a total dependency
. {Temperature} = {Flu}, because to each value of the
attribute Temperature there would correspond unique
vilue of the atiribute Flu.

Formally dependency can be defined in the follow-
ing way. Let D and C be subsets of A. We say that
D depends tolally on C, if and only if I(C) C I(D).
"I'hint micans that the partition generated by C is finer
than the partition generated by D. Notice, that the

concept of dependency discussed above corresponds
to that considered in relational databases.

We would need also a more general concept of de-
pendency of attributes, called a partial dependency
of attributes. Let us first depict the idea by example,
referring to Table 1. In this table, for example, the at-
tribute Temperature determines uniquely only some
values of the attribute Flu. That is, (Temperature,
very high) implies (Flu, yes), similarly (Temperature,
normal) implies (Flu, no), but (Temperature, high)
does not imply always (Flu, yes). Thus the partial
dependency means that only some values of D are
determined by values of C.

Formally, the above idea can be formulated as fol-
lows. Let D and C be subsets of A. We say that D de-
pends in degree k;0 < k <1, on C, denoted C =} D,
if

_ |POSc(D)]

k=10
\U|

where
POSc¢(D) = U C.(X).
XeU[D

The expression POSc(D), called a positive region of
the partition U/D with respect to C, is the set of all
elements of U that can be uniquely classified to blocks
of the partition U/D, by means of C. It can be eas-
ily seen that k can be interpreted as the consistency
measure ¥{C, D).

Thus the coefficient k expresses the ratio of all ele-
ments of the universe, which can be properly classified
to blocks of the partition U/D, employing set of at-
tributes C. Notice that for k = 1 we get the previous
definition of total dependency.

Obviously, a decision table is consistent if and only
if £ = 1, otherwise, i.e., if k # 1, the decision table
is inconsistent; if k£ = 0 we will say that the decision
table is fotally inconsistent.

For example, for dependency {Headache, Muscle-
pain, Temperature } = {Flu} we get k = 4/6 = 2/3,
because four out of six patients can be uniquely
classified as having flu or not, employing attributes
Headache, Muscle-pain and Temperature.

If we were interested how exactly patients can be
diagnosed using only the attribute Temperature, that
is - in the degree of the dependence {Ternperature} =
{Flu}, we would get k = 3/6 = 1/2, since in this case
only three patients p3,p4 and pb out of six can be
uniquely classified as having flu. In contrast to the
previous case patient p4 cannot be classified now as
having flu or not. Hence the single attribute Tem-

" perature offers worse classification than the whole set

of attributes Headache, Muscle-pain and Tempera-
ture. It is interesting to observe that neither Headache
nor Muscle-pain can be used to recognize flu, be-
cause for both dependencies {Ueadache} = {Flu}
and {Muscle-pain} = {Flu} we have ¥ = 0, i.e., the
table is totally inconsistant.



i
g
H
H

:
H

6 Reduction of Attributes and
Values of Attributes

. Weoften face a question whether we can remove some
: data from a data-table preserving its basic properties.

Suppose we are given a dependency C = D. It

- may happen that D depends not on the whole set C
- but on its proper subset C’. In order to investigate
- this problem we need the notion of a reduct, which

will be defined and discussed next.
Let C, D C A be a condition and decision attributes

- regpectively.

i

o We will say that attribute a € C is D-dispensable
in C, if POSc(D) = POS(c-{a})(D); otherwise
the attribute a is D-indispensable in C.

o If all attributes a € C are C-indispensable in C,
then C will be called D-independent.

o Subset C' C C is a D-reduct (a reduct with re-
spect to D) of C, iff C' is D-independent and
POS¢(D) = POSc:(D).

For example in Table 1 there are two reducts
with respect to Flu: {Ifeadache, Temperature} and
{Muscle-pain, Temperature}. That means that either
the attribute Headache or Muscle-pain can eliminated
from the table and consequently instead of Table 1 we

- can use either

Patient | Headache | Temperature | Flu
pl no high yes
p2 yes high yes
p3 yes very high yes
p4 no normal no
p5 yes high no
p6 no very high yes

‘able 2
or
Patient | Muscle-pain | Temperature | Flu
pl yes high yes
p2 no high yes
p3 yes very high yes
p4 yes normal no
31 no high no
pb yes very high yes
Table 3

For further simplification of decision tables we will
noed also a concept of a value reduct. Suppose we are
glven a dependency C = D, where C is a D-reduct of

¢,

We any that value of attribute a € C, is
Jdispensable for z € U, if

C(2) € D(x) implies Ca(z) € D(z),

where C,

otherwise

=C - {a};
the

D-indispensable for z.

o If for every attribute a € C value of a is
D-indispensable for z, then C will be called

D-independent for zx.

e Subset C' C C is a D-reduct of C for z (a value

value

of

attribute

a

reduct), iff C* is D-independent for z and
C(z) C D(z) implies C'(z) C D(z).

Using the concept of a value reduct, Table 2 and

Table 3 can be simplified as follow

where ”-” denotes "don’t care values”.

We can also present the obtained results as a set of

decision rules.

For Table 4 we get

if (Headache, no) and (Temperature, high), then

(Flu, yes);

if (Headache, yes) and (Temperature, high), then

(Flu, yes);

Patient | Headache | Temperature | Flu
pl no high yes
p2 yes high ves
p3 - very high yes
pd - normal no
ps yes high no
p6 - very high yes

Table 4
Patient | Muscle-pain { Temperature | Flu
pl yes high yes
p2 no high yes
p3 - very high yes
p4 - normal no
p5 no high no
p6 - very high yes
Table 5

if (Temperature, very high), then (Flu, yes);

if (Temperature, normal), then (Flu, no);
if (Headache, yes) and (Temperature, high), then

(Flu, no);

if (Temperature, very high), then (Flu, yes);

and for Table 5 we have

if (Muscle-pain, yes) and (Temperature, high), then

(Flu, yes);

if (Muscle-pain, no) and (Temperature, high), then

(Flu, yes);

if (Temperature, very high), then (Flu, yes);

if (Temperature, normal), then (Flu, no);
if (Muscle-pain, no) and (Temperature, high), then

(Flu, no);

if {Temperature, very high), then (Flu, yes).




; 6 Decision Rules and is valid. Proceeding similarly we get following decision

Connection Graph Tules:
i . b hand a,
‘Suppose we are given data obtained from obser- ° !
.vation of certain processes, phenomena etc. Our o — do,
‘task is to find out, on the basis of observed data, bido — ao,
‘rules governing the perceived process. That means ade — aj.

‘that we have to find all (or some) decision rules
‘which describe relationship between data. This will
‘be called explanation of data. For example, let

In the same way for the attribute b we get

1 -
us consider Table 1. It follows from this exam- RED ’; {o,c,d} = {a},
ple that the decision rules (Muscle-pain, no) im- REDy{a,c,d} = {a,c},
plies (Temperature-high), (Headache, no) implies RED}a,e,d} = {c},
;(M;lscle—p:li'r(ll, yei%l, (;I‘egxl'nperature-high) implies (Flu, REDMa,c,d} = {a,c},
"yes) are valid in the table. 5 _
. For simplicity of notation let us replace Table 1, by REDZ{G’ ad} = {ac} {a,d}{cd},
Table 6 REDy{a,c,d} = {a},{c},
hance the following decision rules are valid
alblcld
11011141 ag — by,
2{1]0]1]1 den - b
31121 17 0s
4101170730 ¢z — by,
511101110 co — by,
61011241 aidy — bo,
Table 6 ado = bo.

: For the attribute ¢ we have
- where attributes Headache, Muscle-pain, Tempera-

i ture and Flu are replace by letters a, b, ¢ and d re- RED{a,b,d} = ({b},
 spectively, and values of attributes are replaced by REDf{a,b,d} = {a,b},
' numbers 0,1 and 2 in an obvious way. RED* {a,b,d} = ({a,b},{a,d}
More precisely, by explanation we will understand REDE )b’ 5N o= b, ’ d’ ’
" here finding all simple minimal decision rules from clabd} = {0}, {a,d},
data. By a simple decision rule we mean t.}.m: rule ha\'r- which yielas decision rules
' ing only one decision attribute, and a decision rule is
- minimal if all its condition attribute-value pairs are by — ¢,
- reduced with respect to the decision attribute. ab, — e,
- In order to solve this problem we have to compute wodi — e
 all partial dependencies of the form (4 — {a}) = {a} oo o
for all @ € A and compute all minimal decision bide — co,
rules corresponding to these dependencies. To this aydy — ¢;.
end we have to find out all value reducts of each set
of attributes A — {a} for each object belonging to
POS(s-{ap{a}. For the attribute d we get
For the attribute a we get: '
e RED{{ab,c} = {a,c}, b},
RED!{b,e,d} = {b,c}, RED}a,b,c} = {c},{a, b},
RED&“’: e d} = {b}, RED&{“:”, ¢} = {C}!
- REDi{be,d} = {c},{b.d}, RED{a,b,c} = {e},
" EEQg (b’ ed} = {b}’ {e,d}. which gives
. ] :mn;w le(;. the nttributeyalue aer — dy,
lﬂf‘lé!é Jy attribute-value pair ao, bey — dy,
. ¢y — dl !
o — do.



I The above decision rules can be presented in a more
- compact form

biegvbhidgVey —  ay,
boVerdo — ay,

ajcy VaydgVeydy — b,
agVeoVey — by,

aody Vbydy — co,
bpVardy — ¢,

aiby — ¢y

co — dy,

apgly Vb101V62 - dl.

Relations between all decision rules can be depicted
na a connection graph. Vertices of the graph repre-
sent attribute-value pairs (drzwn in a similar way
wy multistate devices, e.g., flip-flops, in the case
of binary circuits), whereas branches of the graph
show connections (implications) between correspond-
ing attribute-value pairs. The connection graph for
the above set of decision rules is shown Fig. 1. Thus
Table 6 can be seen as a concise denotation of all min-
{mal decision rules by the table.

Table 6 considered in this section can be also un-
derstood not as a result of observations but, as a spec-
ification of requirements for a special discrete systems
behavior. In this case Fig. | is to be understood not
w8 a visual aid of ”cause-eflfect” relations occurring in
the observed data, but as a schemata of an algorithm
‘specified be the table.
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