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Abstract

Real valued functions cannot be either measured or computed, and can be treated
only with some approximation determined by the accuracy of measurement or com-
putation. This paper investigats some properties of discrete functions - i.e., functions
defined and valued in the set of integers - meant to be used as approximations of
real functions. For discrete functions we define rough continuity, rough derivatives,
rough integrals and rough differential equations, which mimick some basic concepts
used in the real function theory. Some of the introduced concepts display similar
properties to those of real functions, but this is not always the case. The proposed
approach is based on the rough set philosophy, in which the indiscernibility relation,
defined in our case on the set of reals, is the starting point of our considerations.
The presented methodology is intended to be used as a theoretical basis of discrete
dynamic systems, in particular in control theory.

Keywords: rough reasoning, qualitative reasoning, nonstandard analysis, cell-to-cell
mapping.

1 Introduction

Physical phenomena are usually described by differential equations. Solutions of these
equations are real valued-functions, i.e., functions which are defined and valued on con-
tinuum of points. However, due to limited accuracy of measurements and computations,
we are unable to observe (measure) or compute (simulate) exactly the abstract solutions.
Consequently, we deal with approximate rather than exact solutions, i.e., we are using
discrete and not continuons variables and functions.

Thus abstract mathematical models of physical systems are expressed in terms of real
functions, whereas obscrved or computational models are described by data sets obtained
as a result of measurcments or computations - which use not real but rational numbers.

*This work was supported by grant No. 8 S503 021 06 from State Commitiee for Scientific Research.



Hence an important question arises - what is the relationship between these two ap-
proaches, i.e., based on continuous or discrete 111at11em$tics philosophy?

Many mathematical techniques, like numerical and approximation methods, have been
developed to bridge the gap between abstract and computational models. In fact these
methods are based also on real function theory and they are not related directly to the
discrete mathematics needed in computer simulation.

Another tool developed for discrete system analysis is the so called "cell-to-cell map-
ping theory” [4], in which real numbers are replaced by intervals. Due to the lack of sound
mathematical foundations, this method seems to be better suited to computer simulation
than to prove theorems about discrete systems. It is worthwhile to mention that the idea
of cell-to-cell mapping has found interesting application in the design and analysis of fuzzy
controllers [9, 15, 17].

Independently of practical problems caused by the "continuous versus discrete” anti-
nomy, the philosophical question, of how to avoid the concept of infinity in mathematical
analysis, has been tackled for a long time by logicians. Nonstandard analysis [16], finistic
analysis [6] and infinitesimal analysis [3] provide various views on this topics.

In this paper we are going 'to investigatc on the relationship between real and dis-
crete functions based on the rough set philosophy. In particular we define rough (discrete)
lower and upper representation of real functions and define and investigate some proper-
ties of these representations, such as rough continuity, rough derivatives, rough integral
and rough differential equations - which can be viewed as discrete counterparts of real
functions. '

In particular we are interested how discretization of the real line effects basic properties
of real functions, such as continuity, differentiability, etc. It turns out that some properties
of real functions have counterparts in the case of discrete functions, but this is not always
the case.

The proposed approach differs essentially from numerical and approximation methods,
even though we use, in some cascs, similar terminology (e.g. approximation of function
by another function) - for our attempt is based on functions defined and valued in the
set of integers - however it has some overlaps with nonstandard, finistic and infinitesimal
analysis, mentioned above. It is interesting to notice that some of the ideas presented
in the proposed approach are similar to that considered by George Boole in his calculus
of finite differencies [1] - and can be viewed, to some extend, as a special case of finite
differencies calculus.

Last but not least the proposed philosophy can be seen as a generalization of qualitative
reasoning [5, 18], where three-valued (4,0, —, i.e., increasing, not changing, decreasing)
qualitative derivatives are replaced by more general concept of multi-valued qualitative
derivatives, so that expressions such as "slowly increasing”, "fast increasing”, "very fast
increasing” etc. can be used instead of only "increasing”.

We realize that the "rough” calculus outlined here does not include many important
issues. Nevertheless, it seems to be a well-founded starting point for further research and
applications.

This paper is an extended version of the lecture delivered at the International Confer-
ence on Intelligent Systems, Augustow, Juue 5-10, 1995, Poland and Joint Conference on
Information Sciences (JCIS'95), Wrightsville Beach, Sept 28 - Oct 1. 1995, North Carolina,
USA.



2 Scale, Discretization and Indiscernibility

This section introduces the basic concept of our approach - the indiscernibility relation.
As mentioned in the introduction, real-valued parameters of a physical system cannot be
obtained as a result of measurement or computation. Therefore, we will introduce the
concept of a scale, which is a finite set of integers {0.1,...,n} and is intended to be used
as a set of measurement units, like kg, km, hr, etc. - and a mapping of the scale into
the set of real numbers. Elements of the scale, i.e., measurement units, are understood
as approximations of real numbers, inaccessible due to our lack of infinite precision of
measurement or computation. Notice that the concept of the scale is similar to that of
the landmark, used in the qualitative reasoning methods, but both concepts are used
differently.

Every scale determines uniquely a partition of the real line, or, in other words, de-
fines an equivalence relation on reals, called in what follows an iniscernibility relation.
Elements of the same equivalence class of the indiscernibility relation are said to be indis-
cernible with respect to the scale, and can be cxpressed approximately only by units of
the scale. Thus, due to the use of the assumed scale real-valued parameters are replaced
by approximate, integer-valued parameters.

A more formal presentation of the above idecas is given below [7].

Let [n] = {0,1,...,n} be a set of natural numbers. A strictly monotonic function
d:[n] = R, ie., such that for all 7, € [n], ¢ < j implies d(7) < d(j) will be called a scale.

Any scale d : [n] =R is a finite increasing sequence of reals zg, 24, ..., z,, such that
z; = d(i), for very i € [n] - thus it can be scen as a discretization of the closed interval
R, = (d(0),d(n)) = (zo,zn)-

Given a scale d : [n] =R then one can define two functions
do(z) =max{t € [n]: z; <z}

d*(z) =man{t € [n]: z; > x}

for every z € R,,.
On the interval R, = (2g,2,) we define an cquivalence relation I, called the indis-
cernibility relation, and defined thus

zlyy iff do(x) = d.(y) and d*(2z) = d*(2).

The family of all equivalence classes of the relation I, or the partition of the interval R,,,
is given below

{:l:()}-, (x()y Il)’ {;1:1}7 (‘l:lﬂ *U'Z)w {""_’}- R (3:71-1-. -l:n)a {‘Ln}

where cach equivalence classe [x]y is an interval such that [2); = (zi 2i41) whenever
z; < & < Tigr, and {z:q = {z;} for all ¢ € {n].

If 2; < < x4, then Ly(z) = d(d.(z)) = 2; and L,(z) = d(d*(2)) = 441, L€, [}(x)
and I7{x) are the ends of the interval (@, 00 ): if @ = 2y, then Ly(a) = [j(2) = z;.

The ends of the interval {2;, 2;4,) are called the lower and the upper d-approzimation
of z, respectively.

The above discussed ideas are illustrated in IMig. 1.



Fig. 1

Suppose we are given two scalesd : [n] - Rande:[m] - R,andlet f: R, — R,, bea
function, where R,, R,, denote the both side closed intervals (g, z,,), (yo, ym) respectively.
We define its lower rough representation f. with respect to d and e and its upper rough
representation f* with respect to d and e defined on [n] and valued in [m], as

[(0) = e.(J(x:))

7)) = e"(J ()
for all 7 € [n] (see Fig. 2).

s
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Fig. 2

Thus with every real function one can associate two discrete functions; its lower and
upper approximation. These approximations arc uniquely determined by indiscernibility
relations superimposed on the domain and range of the real function.

Let us observe that the just-defined approximations of real functions are different from
those considered in approximation theory.

In what follows we are going to give some properties of discrete functions, defined and
valued in the set of integers - mumicking some properties of real functions. It turns out
that for this class of functions one can define concepts similar to that of real function, like



continuity, derivatives, integrals, etc. These concepts display similar properties to those of
real functions, and consequently discrete functions obtained as a result of measurements
can be treated similarly to real functions.

We will start our consideration by defining rough (approximate) continuity for discrete
functions.

3 Roughly Continuous Discrete Functions

The concept of continuity is strictly connected with real functions. Intuitively a function
1s continuous if a small change of its argument causes a small change of its value, or in
other words - it cannot ”vary too fast” [2]. A similar ideca can be employed also in the
case of discrete functions, and we will say that a discrete function is roughly (approxi-
mately) continuous if a small change of its argument caus. s a small change of its value.
[n fact the concept of continuity of discrete functions has been used for a long time in
qualitative reasoning. However, our approach is somewhat more general, besides, we use
standard mathematical tools to deal with discrete functions. Below the formal definition
of roughly continuous function is given and some elementary properties of these functions
are presented.

A discrete function f : [n] — [m] is roughly continuounsiff for all 4,5 € [n], |i — j| =1
implies |f(z) — f(7)] < 1.

The intermediate value property is valid for roughly continuous discrete functions as
shown by the following proposition.

Proposition 1. A discrete function f : [n] — [mn] is roughly continuous iff for all
i,j € [n],1 # j, and for cvery ¢ between f(z) and f(j) there exist p € [n] between i
and j for which f(p) = g¢.

Thus the basic property of continuous real functions, the intermediate value theorem, after
slight modifications is also valid for discrete functiouns. Hence it seems that the idea of
continuity need not be necessarily attributed to real functions only, and can be extended
to discrete functions.

4 Rough Derivatives and Rough Integrals of Discrete
Functions

Now we are going to define two basic concepts in our approach to discrete functions,
namely the rough derivative and the rough integral. It tirns ont that they display similar
properties to "classical” derivatives and integrals.

For a discrete function f : [n] — [m] we define the rough derivative f' as

F1G) = Af(G) = [+ 1) = f(i), for all i & [n = 1],

We say that f: [n] — [m] has Darbonx property if for every 7 € [n — 1] we have that
1)y € {=1,0,1}. Thus for [ [n] — [n] having rongh Darhoux property and i € [n — 1]
the value f'(2) is that a € {~1,0,1} which makes f(7 + 1) = f(?) + «.

(o]



Proposition 2. A discrete function f : [r] — [m] is roughly continuous iff f has Darboux
property. ‘

Directly from the definition of the rough derivative for discrete functions, we obtain the
following counterpart of the well known theorem of differential calculus.

Proposition 3. Let f and g be discrete function with domain [n] and range [m] respec-
tively. Than for f + g, fg and f/g we have

a) (f+9)() = f'(2) + ¢'(3),

b) (f9)'(2) = f'(1)g () + f(3)g' () + f'(3)g'(2),
o J@)glE) = f()d'(0)
c flg9) (1) = —= ——
) U190 = =y ¥ o)
From the definition of the rough derivative of discrete function and Proposition 3 we get
the following properties.

1) The rough derivative of a constant discrete function is equal to zero.
2) If f(2) = 1 + k, where k is an integer constant, then f'(z) = 1.
3) If f(2) = ki, then f'(z) = k.
4) If f(i) = k', then f'(i) = (k — )& ; for k = 2 we have f'(i) = 2.
5) If f(i) = i*, then f'(i) = Y o(5)i*7 —i*.
In particular, if & = 2 we get f'(z) = 2i + 1; for k = 3 we have ['(z) = 3:* + 3i + 1, etc.

Higher order derivatives can be also defined in the same manner. In general, k-th rough
derivative f(*) of a discrete function f is defined by the following well known formula in

the difference calculus )

fOE) ==Y 16+ k- ).

i=0

The following egxample illustrates application of the above formula.

i 0 1 2 3 45
1) I 1 3 4 21
fOE 0 2 1 -2 -
A% 2 a1 31
O -3 2

fWE) 16

AR

Notice that [ is a discrete function [ : [n] — [in] defined ou 1 + 1 points, i.e., on the set
{0,1,...,n}, and f®) :[n — k] — [n] is defined on n — k + | points. Thus each discrete
function f : [n] — [m] has at most derivatives up to the n-th order.
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Consequently each discrete function f : [n] — [m] is uniquely defined by the set of the
following initial conditions f™)(0), f=1(0),..., f1)(0), f(©(0), where f(O(0) = f(0).

Some important properties of real functions are not valid for discrete functions, as
shown by the following two propositions.

Proposition 4. Assume that a discrete function f : [n] — [m] has a maximum (minimum)
at ¢ € (n), where (n) = {1,2,...,n — 1}. Then not necessarily [’(z) = 0 (see Fig. 3).

f(i)n
7

6

Fig 3

Rolle’s theorem does not hold for discrete functions, as shown by the proposition below.

Proposition 5. Let f : [n] — [m] be a discrete, function, such that f(0) = f(n) = 0.
Then not necessarily there exists ¢ € (n) such that f'(i) =0.

We say that a discrete function [ is roughly smooth if its first rough derivative is roughly
continuous. It can be easily scen that for roughly smooth functions the above two propo-
sitions are valid, provided that they are slightly modified. Detailed discussion of this
problem is left to the reader.

Next we define integration of discrete functions.

et f:[n] — [m] be a discrete function. By a rough integral of [ we mean the function

[ 1)a6) = 3 16)AG)

where A(J)=(U+1)—y =1
The following important property holds.



Proposition 6.

where k is a integer constant.
In other words

76) = F0)+ 3 1'6)

j=0
or in recursive form
fE+1) = f@)+ [()
with the initial condition
70 = &
This proposition can be used for solving rough differeatial equations, and will be discused
in the next section.

The reader is advised to compare the concept of the rough derivative and the rough
integral with corresponding concepts considered in [1].

5 Rough Differential Equations

Starting from the notion of a rough derivative for discrete functions one can define a
concept of differential equation for discrete functions, called in what follows a rough dif-
ferential equation [8] (see also [1]). Rough differential equation, together with initial con-
dition can be solved inductively by employing Proposition 6, which gives the relationship
between initial condition, rough derivative and the solution.

Ordinary 1-st order differential equation is shown below

f'(z) = &(x, [(x))

where @ is a real valued function on the (,a.rtvsmn product of reals.
Similarly one can define a rough differential ¢quation, for discrete functions as

(%) J'(@) =, (1))

where @ is an integer valued function defined on the Cartesian product [n] x [m].
Because f'(i) = f(i + 1) — f(2), the rough dillerential equation can be presented as

f+1) =90, /() + f(2)
which together with an initial condition
J(0) = jo, Jo € [m]
defines uniquely the solution of the rough diﬂ’vwnl,,iﬂ equation (*).

Example

Consider a very simple rough differential equation given by the formula



(%) f’(i) =4+

with the initial condition f(0) = 2.
By employing Proposition 3 one can easily show that the solution of this equation has
the form

F@) = f(0) + 2%~
We can also solve this equation by using Proposition 6. Suppose we are given the rough

differential equation (*#) in tabular form, and we do not know its analytical presentation.
In this case, by Proposition 6 we have

fe+1)=f() + ()
with f(0) = 2, which yields

f(0)=2

J(1) = J(0) + f'(0) =3

f@Q)=/)+/(1)=8

f@)=72)+ f(2) =17

f(4)=J(@3)+/(3) =30

J(5) = f(4) + f'(4) =47
etc.

Thus we have two ways of solving rough differential equations. The first one is similar
to that used in analysis, and it boils down to symbolic manipulation on formulas, whereas
the second is suitable to functions presented in tabular form.

6 Conclusion

In this paper we have defined and investigated notions of rough (approximate) continuity,
rough derivatives, rough integrals and rough differential equations for discrete functions,
1.e., functions defined and valued on the set of integers. We have shown that the introduced
concepts mirror some basic properties ol calenlus, and that discrete functions display
properties similar to those of real functious, however this is not always the case.

We hope that the proposed approach can be employed to discrete system analysis,
offering better understanding of discrete processes, and lead tu new, faster algorithms,
particularly in the case of strongly nonlinear systems.

Many problems connected with the proposed approach still remain open. We did not
cover much of material needed a scrious consideration i connection with "rough (ap-
proximate) calculus”. Especially problems of stahility need due attentions in this context.
Nevertheless we hope that some fundamental notions have been clarified and sound foun-
datious for further research and applications have been laid down.
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