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Abstract

In this paper we define rough (discrete) lower and upper representation of real
functions and define and investigate some properties of these representations, such
as rough continuity, rough derivatives, rough integral and rough differential equa-
tions - which can be viewed as discrete counterparts of real functions. An illustrative
example of the introduced concepts is given.

The presented approach can be used to synthesis and analysis of discrete dynamic
system, in particular in control theory. [t is also related to the qualitative reasoning
methods
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1 Introduction

Physical phenomena are usually described by differential equations. Solutions of these -
equations are real valued-functions, i.e. functions which are defined and valued on con-
tinuum of points. However due to limited accuracy of measurement and computations
we unable to observe (measure) or compute (simulate) exactly the abstract solutions and
consequently we deal rather with approximate then exact solutions and deal with discrete
and not continues variables and functions.

In this paper we are going to give some remarks on the relationship between real
and discrete functions based on the rough set philosophy. In particular we define rough
(discrete) lower and upper representation of real functions and define and investigate some
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properties of these representations, such as rough continuity, rough derivatives, rough
integral and rough differential equations - which can be viewed as discrete counterparts
of real functions.

In particular we are interested how discretization of the real line effects basic properties
of real functions, such as continuity, differentiability, etc. It turns out that some properties
of real functions have counterparts in the case of discrete functions, but this is not always
the case.

We define in this note rough (approximate) continuity, rough differentiability and
rough integral of discrete functions, and give some of its basic properties - analogous to
those of real functions.

The presented approach has some overlaps with other ideas developed in analysis in
order to avoid the concept of infinity - in particular non-standard analysis [11], finistic
analysis [4], infinitesimal analysis [2]. On the other hand "rough” analysis can be viewed as
a theoretical basis for cell-to-cell mapping, used in discrete dynamical system analysis [3].
Last but not least the proposed philosophy can be seen as a generalization of qualitative
reasoning [12], where three-valued (4,0, —, i.e. increasing, not changing, decreasing) of
qualitative derivatives are replaced by more general concept of multi-valued qualitative
derivatives, so that expression like, for example, ”slowly increasing”, "fast increasing”,
"very fast increasing” etc. - instead of "increasing” only can be used.

2 Scale and Discretization

Let [n] = {0,1,...,n} be a set of natural numbers. A strictly monotonic function d : [n] —
R, i.e. such that for all 2,5 € [n], 7 < j implies d(7) < d(j) will be called a scale.
Any scale d : [n] >R is really finite increasing sequence of reals zg,zy,...,z,, such

that x; = d(¢), for very : € [n] - thus it can be seen as a discretization of the closed interval
Ry, = (d(0),d(n)) = (%o, zn).

Given a scale d : [n] >R then one can define two functions
d.(z) = maz{i € [n]: 2; < z},
d*(z) = min{i € [n] : z; > z},
for every r € R,.

On the interval R, = (zo,z,) we define an equivalence relation I, called the indis-
cernibility relation, and defined thus

zlyy iff d.(z) = d.(y) and d*(z) = d*(z).

The family of all equivalence classes of the relation Iy, or the partition of the interval R,
is given below

{xO}) (xO’xl)’ {xl}a (:’51, $2)? {1‘2}, R (zn—l, .I‘n), {xn}

where each equivalence classe [z]; is an interval such that [z]s = (z:,ziy1) whenever
T; <z < Tiyy, and [z;]g = {z;} for all ¢ € [n].

If z; < < 41, then Ly(z) = d(d.(z)) = z; and L4(z) = d(d*(x)) = z;44, 1.e. [}(2)
and [j(x) are the ends of the interval (z;,z;41); if z = z;, then [4(z) = [}(z) = ;.

The ends of the interval (z;,z;41) are called the lower and the upper d-approzimation
of z, respectively.

The above discussed ideas are illustrated in Fig. 1.
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3 Roughly Continuous Real Functions

Suppose we are given two scales d: [n] > R and e: [m] - R, and let f: R, — R,, be a
function, where R, R., denote the both side closed intervals (o, Z+), (¥o, Ym) respectively.
We define its lower rough representation f. with respect to d and e and its upper rough
representation f* with respect to d and e defined on [n] and valued in [m], as

fu(0) = e.(f(z:)

f(@) = e (f(=:))
for all i € [n] (see Fig. 2).
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Basic concept of analysis is that of continuity. Employing the idea of scaling one can
define rough (approximate) continuity of real functions as shown below.

Suppose we are given scales d : [n] » R and e : [m] —» R and a function f: R, — R,,.
We say that f is roughly continuous with respect to d and e or roughly (d, e)-continuous
iff for all z,y € R, , zlqy implies f(z)l.f(y), or equivalently f([z]4) C [f(z)]. , for every
r € R,.



If a function f is roughly continuous it means that f cannot vary "to fast” (see Fig.3)
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but it can be not continuous in the classical sense, i.e. it can have points of discontinuity
provided that they are "hidden” by the discretization (see Fig.4).
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Now we give important Darboux property for roughly continuous functions.




Supposes we are given two scales d : [n] — R and e : [m] —» R and a function
f:R,— R, . Wesay that f has a lower Darbuoz property with respect to d and e if for
every 1 € [n — 1] there exists o € {—1,0,1} such that f.(i + 1) = f,(:) + «, where . is
the lower representation of f with respect to d and e. Similarly one can define the upper
Darboux property of f, by using the upper representation of f.

We will say that f has a rough Darbouz property with respect to d and e if it has both
the lower and the upper Darboux property with respect to d and e.

Proposition 1. Let d : [n] > Rand e: [m] - Rand let f: R, — R,, be a func-
tion such that f is continuous in d(7) by means of mathematical analysis. If f is roughly
(d,e)-continuous then f has a rough Darboux property with respect to d and e.

Proposition 2. (Intermediate Value Theorem, [2]). Let d: [n] — R and e: [m] — R be
scales and let f: R, — R, be a function. Then f has a Darboux property with respect
to d and e iff for all 7,5 € [n],7 # j, and for every q between f.(¢) and f.(j) there exist
p € [n] between ¢ and j for which f.(p) = gq.

This proposition is also valid for the upper rough representation of f.
The above properties are counterparts of the intermediate value property in classical
analysis (Courant and John, 1965, p. 44).

The above propositions say that if a function f is roughly continuous then its lower as well
upper representations cannot vary to "fast”, i.e. pass from one value to another without
passing through all intermediate values.

[t is easily seen that if a function f is continuous, then f is not necessarily roughly
continuous, and conversely, i.e. rough continuity of a function does not imply its continuity.
It can be also observed that for every continuous function in an interval (a, b) one can find
scales of (a,b) and (f(a), f(b)) such that f is roughly continuous with respect to these
scales.

The rough continuity of a function is easily appreciated intuitively. Whether a function
is roughly continuous or not depends on the scales of the domain and range of the function,
i.e. it depends on how exactly we "see” the function through the scale.

4 Rough Derivatives and Rough Integrals

As mentioned in the introduction abstract description of physical systems requires real
functions, whereas observations, measurements and computation of physical systems in-
volves discrete functions, which describe systems with some approximation only. In what
follows we are going to give some properties of discrete functions, defined and valued in
the set of integers - mimicking some properties of real functions. It turns out that for
this class of functions one can define concepts similar to that of real function, like conti-
nuity,derivatives, integrals, etc. These concepts display similar properties to that of real
functions, and consequently discrete functions obtained as a result of measurements can
be treated similarly to real functions.

We will start our consideration by defining rough (approximate) continuity for discrete
functions.




A discrete function f : [n] — [m] is roughly continuous iff for all ¢,5 € [n], |¢ — 7] =1
implies |/(5) - /(7)] < 1.

For a discrete function f : [n] — [m] we define the rough derivative f’ as:
fi(0)=f(i+1)— f(3), for all i € [n — 1].

We say that f : [n] — [m] has Darboux property if for every ¢ € [n — 1] we have that
f'(z) € {=1,0,1}. Thus for f : [n] — [m] having rough Darboux property and i € [n — 1]
the value f'(7) is that a € {—1,0,1} which makes f(: + 1) = f(i) + a.

Proposition 3. A discrete function f : [n] — [m] is roughly continuous iff f has Darboux
property.

Thus the intermediate value property is also valid for roughly continuous discrete func-
tions as shown by the following proposition.

Proposition 4. A discrete function f : [n] — [m] has a Darboux property iff for all
i,J € [n],t # j, and for every ¢ between f(7) and f(j) there exist p € [n] between 7 and
for which f(p) = q.

Now we are going to define two basic concepts in our approach to discrete functions,
namely the rough derivative and the rough integral. It turns out that they display similar
properties to ”
to deal with discrete functions obtained, for example, as a result of measurements or

classical” derivatives and integrals. Hence they can used as basic tools
observations, i.e. discrete functions given in tabular form.
Directly from the definition of the rough derivative for discrete functions, we obtain

the following counterpart of the well known theorem of differential calculus.

Proposition 5. Let f and ¢ be discrete function with domain [r] and range [m] respec-
tively. Than for f 4+ g, fg and f/g we have

a) (f +9)(2) = f'(i) +4'(9),

b) (f9)'(2) = ['(})g(2) + [(2)g'(2) + f'(2)g' (2),

c) (f/9)(@) = (f'(§)g(@) — f(2)g'())/(g°(i) + g(i)g'(2))-
From the definition of the rough derivative of discrete function and the Proposition 5 we
get the following properties.

Obviously the rough derivative of a constant discrete function is equal to zero.

If f(i) =i+ k, where k is an integer constant, then f'(z) = 1.

If f(i) = ki, then f'(2) = k.

If f(z) = A", then f'(i) = (k — 1)k' ; for k = 2 we have f'(z) = 2.



If f(i) =%, then f'(s) = Th_o(¥)ik7 — i¥;
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In particular, if k = 2 we get f'(¢) = 20+ 1; for k = 3 we have f'(i) = 3i® 4+ 3i + 1, etc.
Some important properties are not valid for discrete functions, even for discrete roughly
continuous functions, as shown by the following two propositions.

Proposition 6. Assume that a discrete function f : [n] — [m] has a maximum (minimum)
at 7 € (n), where (n) = {1,2,...,n — 1}. Then not necessarily f'(z) = 0 (see Fig. 5).
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The Rolle’s theorem does not hold for discrete functions, as shown by the proposition
below.

Proposition 7. Let f : [n] — [m] be a discrete, function, such that f(0) = f(n) = 0.
Then not necessarily there exists ¢ € (n) such that f'(z) = 0.

We say that a discrete function f is roughly smooth if its first derivative is roughly contin-
uous. [t can be easily seen that for roughly smooth functions the above two propositions
are valid, provided that they are slightly modified. Detailed discussion of this problem is
left to the reader.

Higher order derivatives can be also defined in the same manner, as shown in the
example below.
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Notice that f is a discrete function f : [n] — [m] defined on n + 1 points, i.e. on the
set {0,1,...,n}, and its k-th derivative f(®) : [n — k] — [m] is defined on n —k + 1 points.
Thus each discrete function f : [n] — [m] has at most derivatives up to the n-th order.
Consequently each discrete function f : [n] — [m] is uniquely defined by the set of the
following initial conditions f™(0), f(*=Y(0),..., f1(0), f©(0), where f®(0) = £(0).

Next we define integration of discrete functions.

Let f : [n] — [m] be a discrete function. By a rough integral of f we mean the function

[, 76146) = ¥ 16)A0)

=0

where A(j)=(7+1)—5=1.
The following important property holds.

Proposition 8.

where k 1s a integer constant.
In other words

or in recursive form

with the intitial condition
f(0) = k.

This proposition can be used for solving rough differential equations, and will be discused
in the next section.

5 Rough Differential Equations

Starting from the notion of rough derivative for discrete functions one can define a con-
cept of differential equation for discrete functions, called in what follows rough differential
equation, [3]. Rough differential equation, together with initial condition can be solved
inductively by employing Proposition 8, which gives the relationship between initial con-
dition, rough derivative and the solution.

Ordinary 1-st order differential equation is shown below

f'(z) = &(z, f(z)),

where @ is a real valued function on the Cartesian product of reals.
Similarly one can define a rough differential equation, for discrete functions as

(*) J'() = (i, (1)),

where @ is an integer valued function defined on the Cartesian product [n] x [m].
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Because f'(z) = f(z + 1) — f(2), the rough differential equation can be presented as
fa+1) =0, f(i)) + f(2),
which together with an initial condition
f(0) = jo, o € [m]

defines uniquely the solution of the rough differential equation (*).
Example

Consider a very simple rough differential equation given by the formula
(*x) flt) =4i4+1

with the initial condition f(0) = 2.
By employing Proposition 5 one can easily show that the solution of this equation has
the form

f(@) = f(0) + 2:* — .

We can also solve this equation by using Proposition 8. Suppose we are given the rough
differential equation (*%) in tabular form, and we do not know its analytical presentation.
In this case, by Proposition 8 we have

fi+1) = @)+ f(2)
with f(0) = 2 which yields

etc.
Thus we have two ways of solving rough differential equations. The first one is similar

to that used in analysis, and it boils down to symbolic manipulation on formulas, whereas
the second is suitable to functions presented in tabular form.
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Conclusion

The basic concepts of the presented approach to experimental data analysis is based on
concepts of rough, continuity of discrete functions (data), rough derivatives and rough
integrals of discrete functions valued and defined on integers. This leads to rough differ-
ential equations which can be solved by using symbolic formula manipulations or by using
recursive procedures applied to functions presented in tabular form. Similar procedure can
be applied also for systems of rough differential equations.

The presented approach can be used to synthesis and analysis of discrete dynamic
system, in particular in control theory. To this end the concept of rough stability must be
defined and investigated. This issue will be discussed in separate paper.

References

1]

[2]

3]

(4]

[5]

(6]

[7]

8]
(9]

[10]

[11]

[12]

Courant, R and John, F. (1965). Introduction to Calculus and Analysis, 1,
Interscience Publishers, A Division of John Wiley and Sons, Inc. New York, London,
Sydney

Chuaqui, R. and Suppes, P. (1995). Free-variable Axiomatic Foundations of In-
finitesemal Analysis:a Fragment with finitary Consistency Proof. Journal of Symbolic

Logic, Vol.60, No.l, pp. 122-159.

Hsu, C.S. (1987). Cell-to-cell Mapping - Amtheod of Global Analysis for Non-linear
Systems. Springer- Verlag, New York, Berlin, Heidelberg, London, Paros, Tokyo.

Myecielski, J. (1981). Analysis without Actual Infinity. Journal of Symbolic Logic,
Vol. 46, pp. 625-633.

Obtulowicz, A. (1995). Some Remarks on Rough Real Functions. /[CS WUT Re-
ports, 9/95

Obtulowicz, A. (1995). Differential Equations for Discrete Functions. [CS WUT
Report, 28/95.

Pawlak, Z. (1987). Rough Functions. Bull. PAS, Tech. Ser. Vol. 35, No.5-6, pp.
249-251.

Pawlak, Z. (1994). Rough Sets, Rough Real Functions. ICS WUT Report, 50/94.

Pawlak, Z. (1994). Rough Real Functions and Rough Controllers. [CS WUT Re-
port, 1/95.

Pawlak, Z. (1995). On Some Issues Connected with Roughly Continuous Functions.
ICS WUT Report, 21/95.

Robinson, A. (1970). Non-Standard Analysis. North-Holland Publishing Com-
pany.

Werthner, H. (1994) Qualitative Reasoning - Modeling and the Generation of
Behavior. Springer- Verlag, Wien, New York, 1994.

13



26/95

27/95

28/95

29/95

30/95

31/95

32/95

33/95

34/95

35/95

36/95

37/95

38/95

39/95

40/95

Recently published Research Reports
of the Institute of Computer Science, W.U.T.

Jerzy Miescicki, Konstanty J. Kurman, Wiktor B. Daszczuk, MIKOZ: Metoda
idenryfikacji i koordynacji oddzialywan zwrotnych w regulacji ciagtych
procesow technologicznych, maj 1995.

Jerzy Miescicki, Konstanty J. Kurman, Wiktor B. Daszczuk, Identyfikacja
kolumny destylacyjnej D-1 w Laboratorium Proceséw Technologicznych PW,
maj 1995.

Adam Obtulowicz, Differential Equations for Discrete Functions, May 1995.

M. K. Chakraborty and Sanjukta Basu, Approximate Reasoning Methods in
Vagueness: Graded and Rough Consequences, May 1995.

Krzysztof Slowinski, Diagnostic Peritoneal Lavage for Multiple Injuries
Patients, Analysis of Experience Using Rough Set Approach, May 1995.

Zdzistaw Pawlak, Zbiory przyblizone, maj 1995.
Zdzistaw Pawlak, Rough Sets Present State and Further Prospects, May 1995.

Andrzej Lenarcik and Zdzislaw Piasta, Rough Classifiers with Mixtures of
Discrete and Continuous Condition Attributes, June 1995.

Andrzej Czyzewski and Andrzej Kaczmarek, Speaker-Independent Recognition
of Isolated Words Using Rough Sets, June 1995.

Bozena Kostek, Computer Based Recognition of Musical Phrases Using the
Rough Set Approach, June 1995.

Jarostaw Stepaniuk and Marek Kretowski, Decision System Based on
Tolerance Rough Sets, June 1995.

Artur Chmielewski and Andrzej Bodzek, (work supervised by Grzegorz
Mazur), Digital Halftoning and Color Dithering, June 1995.

Salvatore Greco, Benedetto Matarazzo and Roman Slowinski, Rough Set
Approach to Multi-Artribute Choice and Ranking Problems, July 1995.

Jacek Raczkowski, Przeglad metod modelowania i wizualizacji obiektow
gazowych w grafice komputerowej, lipiec 1995.

Edward Bryniarski, Urszula Wybraniec-Skardowska, Generalized Rough Sets
in Contextual Spaces, July 1995.






