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1 Introduction

Physical phenomena are usually described by real-valued functions, i.e. functions which
are defined and valued on continuum of points. However due to limited accuracy of physi-
cal measurements, in reality we are faced rather with discrete then continuous variables -
representing, intervals related to the accuracy of measurement. Consequently as a math-
ematical tools for description of physical systems we should use discrete rather than
real-valued mappings - which can be understood as mappings obtained as a result of
measurements rather then abstract definitions.

In this paper we are going to discuss the concept of rough continuity introduced in
Pawlak, 1987 and investigated in Pawlak, 1995 and Obtulowicz, 1995.

In particular we are interested how discretization of the real line effects basic properties
of real functions, such as continuity, differentiability, etc. It turns out that some properties
of real functions have counterparts in the case of discrete functions, but this is not always
the case.

We define in this note rough (approximate) continuity, rough differentiability and
rough integral of discrete functions, and give some of its basic properties - analogous to
those of real functions.

The presented approch is somehow related to qualitative reasoning methods, developed
extensively in Al and other areas.

2 Discretization

Let [n] = {0,1,...,n} be a set of natural numbers. A strictly monotonic function d : [n] —
R, i.e. such that for all 7,7 € [n], i < j implies d(7) < d(j) will be called a scale.
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Any scale d : [n] —R is really finite increasing sequence of reals xq, z1,...,z,, such
that x; = d(7), for very ¢ € [n] - can be seen as a discretization of the closed interval
Ry, = (d(0),d(n)) = (2o, zn).

Given a scale d : [n] =R then one can define two functions
di(2) = max{i € [n] : z; <z},

d*(z) = min{i € [n] : x; > x},

for every @ € R,, On the interval R, = (xq, z,) we define an equivalence relation I, called
the indiscernibility relation, and defined thus

xlyy iff do(z) = d(y) and d*(z) = d"(z).

The family of all equivalence classes of the relation I, or the partition of the interval R,
is given below

{‘730}’ (:EO’ '171)’ {wl}a ('171’ 1'2)’ {$2}7 SR ('rn—la $n)a {xn}

where each equivalence classe [z]4 is an interval such that [z]; = (2;, 2,41 whenever z; <
T < 241, and [x;]y = {x;} for all 7 € [n].

If #; < & < 41, then Iy (2) = d(du(2)) = z; and [}(2) = d(d*(2)) = zi41, €. Ig=(2)
and Ij(z) are ends of the interval (z;, z;11); if © = x;, then Ip»(2) = I(2) = ;.

End of the interval (z;, ;1) are called the lower and the upper d-approzimation of x
respectively.

Employing the idea of discretization we can easily formulate many basic concepts of
analysis in the rough approach setting. Some examples are given below.

Let d : [n] =R be a scale and let {a,} be an infinite sequence of reals.

A sequence {a,} is roughly convergent with respect to d (d-convergent), if there exists
i such that for every j > i, a; € R, and [a;]q = [a;]q; [4<(a;) and I(a;) are referred to as
the rough lower and the rough upper limit (d-upper, d-lower limit) of the sequence {a,}.
Any roughly convergent sequence will be called rough Cauchy sequence.

A sequence {a,} is roughly monotonically increasing (decreasing) with respect to d
(briefly d-increasing (d-decreasing)), if di(a,) < di(an41) and d*(a,) < d*(an41) (de(an) >
di(ant1) and d*(ay,) > d*(ant1)).

Obviously, {a,} is the Cauchy sequence iff {a,} is roughly monotonically increasing
or decreasing.

A sequence {a,} is roughly periodic with respect to d (d-periodic), if there exists k
such that [a,]q = [@nik]a - The number k is the period of {a,}.

3 Roughly Continuous Functions

Suppose we are given two scales d : [n] = Rand e:[m] — R, and let f: R, — R,, be a
function, where R,,, R,, denote the both side closed intervals (zg, 2,,), (Yo, ¥m) respectively.
We define its lower rough representation f, with respect to d and e and its upper rough
representation f* with respect to d and e defined on [n] and valued in [m], as



for all 7 € [n].

Suppose we are given scales d : [n] = R and e : [m] — R and a function f: R, — R,
. We say that f is roughly, or (d,e)-continuous function iff for all z,y € R,, , x1;y implies
f(z)I.f(y), or equivalently f([z]4) C [f(z)]e , for every z € R,,.

Now we give important Darboux property (Obtulowicz, 1995 Courant, 1965) for roughly
continuous functions.

Supposes we are given two scales d : [n] — R and e : [m] — R and a function
f i+ R, — R, . Wesay that f has a lower Darbuox property with respect to d and e if for
every ¢ € [n — 1] there exists a € {—1,0,1} such that f.(¢: + 1) = f.(¢) + o, where f is
the lower representation of f with respect to d and e. Similarly one can define the upper
Darboux property of f, by using the upper representation of f.

We will say that f has a rough Darbouz property with respect to d and e if it has both
the lower and the upper Darboux property with respect to d and e.

Proposition 1. (Obtulowicz, 1995, Pawlak, 1995). Let d : [n] — R and e : [m] = R
be scales and let f : R, — R,, be a function such that for all 7 € [n] the function is
continuous in x; in classical sense. Then f is roughly (d,e)-continuous iff f has a rough
Darboux property with respect to d and e.

The above proposition says that a function f is roughly continuous is equivalent that
its lower as well upper representations cannot vary to "fast”, i.e. pass from one value to
another without passing through all intermediate values.

Proposition 2. (Obtulowicz, 1995). Let d : [n] — R and e : [m] — R be scales and let
f:+ R, — R, be a function. Then f has a Darboux property with respect to d and e iff
for all 7,5 € [n],7 # j, and for every ¢ between f,(¢) and f.(j) there exist p € [n] between
i and j for which f.(p) = q.

This proposition is also valid for the upper rough representation of f.
The above properties are counterparts of the intermediate value property in classical
analysis given by the following theorem (Courant and John, 1965, p. 44).

Intermediate Value Theorem. Consider a function f(z) continuous at every point of
an interval. Let a and b be any two points of the interval and let  be any number between
f(a) and f(b). Then there exists a value v between a and b for which f(v) = 5.

It is easily seen that if a function f is continuous, then f is not necessarily roughly
continuous, and conversely, i.e. rough continuity of a function does not imply its continuity.
It can be also observed that for every continuous function in an interval (a, b) one can find
scales of (a,b) and (f(a), f(b)) such that f is roughly continuous with respect to these
scales.

The rough continuity of a function is easily appreciated intuitively. Whether a function
is roughly continuous or not depends on the scales of the domain and range of the function,
i.e. it depends on how exactly we "see” the function through the scale.

The above considerations on roughly continuous real functions can also be applied to
functions with discrete domain and range - which will be called discrete functions.

A discrete function f : [n] — [m] is roughly continuous iff for all 7,5 € [n], |1 —j| =1

implies |£(i) - f(j)| < 1.



For a discrete function f : [n] — [m] we adopt the notation:
As(i) = f(i+1)— f(2) for all ¢ € [n —1].

Then we say that f : [n] — [m] has Darboux property if for every 7 € [n — 1] we have that
Ag(i) € {—1,0,1}. Thus for f: [n] — [m] having rough Darboux property and i € [n — 1]
the value Ag(7) is that o € {—1,0,1} which makes f(: + 1) = f(i) + «a.

Proposition 3. A discrete function f : [n] — [m] is roughly continuous iff f has Darboux
property.

Proposition 4. A discrete function f : [n] — [m] has a Darboux property iff for all
t,7 €[n],7 # j, and for every ¢ between f(¢) and f(j) there exist p € [n] between ¢ and j
for which f(p) = q.

Thus the intermediate value property is also valid for roughly continuous discrete
functions.

4 Rough Derivatives and Rough Integrals

One can also define a very important concept in our approach - the rough derivative of a

real and discrete functions. In confirmity with the classic definition of the derivative, the

rough derivative concept should reflect the basic properties of the classic definition.
Suppose we are given two scales d : [n] — R and e : [m] — R and a function

f: R, — R, . The rough lower derivative of f is defined as

fld' (@) = fldo(@)) _ filit+ 1) = £.(5)
d*(z) — d.(z) (i+1)—i

fi() = -
for 1 = di(x).
If f is roughly continuous with respect to d and e, then f'(x) € {—1,0,1}.
Similar definition can be given for the rough upper derivative of f.

() = frd(z) = f(du(z)) _ fr+1) = ()
d*(z) — d.(z) (i4+1)—1

for 1 = d.(x).

The concept of a derivative can be also extended for discrete functions.

Let f : [n] — [m] be a discrete function. Then one defines in natural way the rough
derivative f' of f as shown below

S +1) = f(3)

@) = (i4+1)—i

= A;(3).

Thus obviously a discrete function f has Darboux property iff f'(¢) € {—1,0,1} for every
i €[n—1].

Higher order derivatives can be also defined in the same manner.

Some important properties are not valid for discrete functions, even for discrete roughly
continuous functions, as shown by the following two propositions



Proposition 5. Assume that a discrete function f : [n] — [m] has a maximum (mini-
mum) at ¢ € (n), where (n) = {1,2,...,n — 1}. Then not necessarily f'(i) = 0.

The Rolle’s theorem does not hold for discrete functions, as shown by the proposition
below.

Proposition 6. Let f : [n] — [m] be a discrete, function, such that f(0) = f(n) = 0. Then
not necessarily there exists ¢ € (n) such that f'(z) = 0.

Next we define integration of discrete functions.
Let f: [n] — [m] be a discrete function. By a rough integral of f we mean the function

[, F9AG) = X 7)AG)

where A(j)=(+1)—-1=1.
The following important property holds.

Proposition 8.

where k is a integer constant.
In other words

5 Conclusion

The basic concept of the real function theory is that of continuity. The idea of continuity is
intuitively best expressed by the Intermediate Value Theorem. But it turned out that the
basic thought of this theorem is preserved if instead of real functions, discrete functions
are considered. Thus the concept of continuity may not be necessarily attributed to real
functions only, for discrete functions it displays similar nature.

The rough (approximate) continuity defined in this note shares some properties of
"classical” continuity, however not all of them are preserved in this case. Thus classical
continuity and rough continuity are different conceps, despite of the fact that both formal
definitions are similar.
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