N e W W e e

Rough Sets,
Rough Relations and Rough Functions

by

Zdzistaw Pawlak

ICS Research Report 24/94

CHNIKA WARSZAWSKA
POLITE it Elokironki

INSTYTUT INFORMATYK!
BIBLIOTE
ol Nowewieidho 12 Tsre

Warsaw, May 1994



Rough Sets, Rough Relations and Rough Functions

Zdzislaw Pawlak
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19, 00 665 Warsaw, Poland

and
Institute of Theoretical and Applied Informatics
Polish Academy of Sciences
ul. Baltycka 5, 44 000 Gliwice, Poland

1 Introduction

It is well known that in classical set theory in order to define a set we have to specify
its membership function px : U — {0, 1}, such that px(z) =1 if and only if  belongs
to X and px(z) = 0 otherwise, i.e. px(z) € {0,1} for every x € U. For fuzzy sets (ct.

[12]& and multisets px(z) € [0, 1] and px(z) € {0,1,2,...} - respectively.
nother philosophy of defining sets is assumed in the rough set theory (cf. [3]).
Basic information about rough sets can be found in [2] and [11]. The relationship of

rough sets to other approaches dealing with similar problems is considered in [8], and
[9]. Besides, several extensions of the rough set theory have been proposed, for example
in [1] and [13].

The rough set theory is based on the assumption that we have initially some infor-
mation (knowledge) about elements of the universe. Because with some elements the
same information can be associated, hence two different elements can be indiscernible
in view of the available information. Thus information associated with objects of the
universe generates an indiscernibility relation on its elements. The indiscernibility re-
lation is the starting point of the rough set theory and can be employed in two ways
in order to define basic concepts of this theory - by defining either approximations or
the rough membership function.

In this paper we are going to present some consequences of both approaches when
defining rough sets, rough relations and rough functions.

2 Rough Sets and Approximations

Let U be a finite, nonempty set called the universe, and let I be a binary relation on
U. By I(z) we mean the set of all y such that z7y. If we assume that I is reflexive and
symmetric, 1.e.

xlz, for every x € U,

xly implies ylx, for every z,y € U,

then [ is a tolerance relation.
If we assume additionally that the [ is transitive, i.e.

xly and yIz implies 1z, for every z,y,z € U,

then [ is an equivalence relation and I(z) = [z];, i.e. - is an equivalence class of the
relation I containing element z. I will be refered to as an indiscernibility relation.

We will define now two basic operations on sets in the rough set theory, called the
I-lower and the [-upper approximation, and defined respectively by

L(X)={z€U:I(z) C X},



FMX)={zeU:I(z)N X #0}.

The difference between the upper and the lower approximation will be called the I-

boundary of X and will be denoted by BN;(X), i.e.
BN;(X)=1I"(X) — L(X).

This is to mean that if we "see” the set X through the information, which generates
the indiscernibility I, only the above approximations of X can be ”observed”, but not
the set X. The boundary region expresses how exactly the set X can be "seen” due to
the indiscernibility /. If the boundary region is the empty set, X can be "observed”
exactly trough the indiscernibility relation 7, and in the opposite case the set X can be
"observed” roughly (approximately) only - due to the indiscernibility 7. The former sets
are crisp (exact), whereas the later - are rough (inexact), with respect to indiscernibility
I, or formally set X is I-exact ifft BNy(X) =10 ,i.e. I*(X) = [.(X). otherwise the set
X i1s I-rough.

Below some properties of approximations are given.

1) L(X)C X CIX),

2) L) = I"(0) = 0, L.(U) = I*(U) = U,
3) I"(XUY)=TI"(X)UI(Y),

1) L(XNY)=L(X)NnL(Y),

5) X C Y implies I(X) C I(Y) and I"(X) C I"(Y),
6) L(XUY)DL(X)UL(Y),

) I'(XnY)Cr(X)nIry)

§) L(=X) = —I(X),

9) I*(—X) = —L.(X),

11) I'"(I"(X)) = L(I"(X)) = I"(X).

It is easily seen that the lower and the upper approximation of a set are interior and
closure operations in a topology generated by the indiscernibility relation.

3 Rough Sets and the Membership Function

Employing the concept of indiscernibility we can define the membership function for
rough sets, the rough membership, as

card (X NI(z)
px (@) = card I(x)

Obviously p(z) € [0, 1].
It can be shown (cf. [7]) that the rough membership function has the following
properties:

a) pk(z)=1iff z € I(X),

b) ph(z) =0iff z € U — I*(X),

¢) 0 < pu(x)<liff z € BN/(X),

d) HIND(I) = {(z,z) : x € U} , then pk(z) is the characteristic function of X,



e) If eIND(I)y, then u%(z) = % (y) provided IND(I) is an equivalence relation,

f) nir_x(z) =1 — pk(z) for any z € U,

8) #xuy(z) max(px(w), py () for any @ € U,

h) pxay(z) min(pk (), pf(2)) for any @ € U,
)

i) If X is a family of pair wise disjoint sets of U, then uly(z) = 3 ,cx 1k () for any

x € U, provided that TN D(I) is an equivalence relation.

The membership function can be understood as a coefficient which expresses uncer-
tainty of an element = being a member of the set X.

The above assumed membership function, can be used to define the two previously
defined approximations of sets, as shown below

L(X)={zr € U: pi(z) =1},
I'(X)={z € U: uk(z) >0}

Obviously the boundary region is defined now as
BNi(X)={z €U :0<pk(z)<1}.

One can see that the both approaches to the definition of the rough set stresses various
aspects of the rough set concept. The definition by approximations brings to light the
topological structure of rough sets, whereas the membership approach - its numerical
properties, which can be interpreted in probabilistic terms as conditional probability
of y belonging to I(z) under the condition that y belongs to X.

4 Rough Inclusion and Rough Equality of Sets

Having defined rough sets we can now proceed to define next important concept in the
discussed approach, the inclusion of rough sets. We can employ both the approximations
as well as the rough membership function to this end.
Suppose we are given two sets X, ¥ C U and an indiscernibility relation I on U.
We will say that

a) set X is bottom I-included in Y, X C,; Y, if and only if I.(X) C I(Y),
b) set X is top [l-included in Y, X C5 Y, if and only if I*(X) C I*(Y),
c) set X is roughly I-included in Y, X C; Y, if and only if I.(X) C I.(Y) and
I"(X) C I*(Y).
If X C; Y (or X Cog YV, X &3 Y) we will say that X is rough [I-subset (lower
I-subset, upper I-subset) of Y.
It is worthwhile to observe that if I is an equivalence relation on U and there are k

equivalence classes in I, i.e. if card(U/I) = k, then there are 2¥ | both the lower and
upper, I-rough subsets of U, but there are

k

S =t

i—1

rough Isubsets of U (cf. [4])
We can also use the rough membership function to define inclusion of rough sets in
the following way

X CinY iff pk(z) <pf(z) for any z € U.

Obviously both definitions of inclusion are not equivalent.
Similarly, equality of sets can be defined also using both approaches like in the case

of inclusion.
We will say that



a) sets X and Y are bottom Il-equal, Y =, Y, if and only if [.(X) = L(Y) or
XCagYandY Cr X,

b) sets X and Y are top I-equal, Y =3} Y, if and only if I*(X) =I*(Y) or X &3 Y
and Y C7 X,

c) sets X and Y are roughly I-equal, X =; Y, if and only if I,(X) = L(Y) and
I(X) =I*(Y).

Using the rough membership function definition of equality of rough sets can be defined

as
X =Y iff ,ui(;v) = ﬂi(l‘) or X C;Y and X D; Y.

Again both definitions of equality of rough sets are not equivalent.

5 Rough Relations

Suppose we are given sets X and Y and P and () two indiscernibility relations on X
and Y respectively. Let R C X x Y be any binary relation on X xY and let I = P x ()
be the product of indiscernibility relation. The I-lower and the I-upper approximation
of R are defined below respectively

L(R)={(z,y) € X xY : I(z,y) C R},

I'(R) ={(z,y) € X XY : I(z,y) N R # 0}.
The difference BN;(R) = I*(R) — I.(R) will be called the I-boundary region of R.

Similarly as in the case of rough sets relation R will be called I-rough if and only if
BN(R) # 0; otherwise the relation R is I-ezact.

Of course one can define in a similar way relations with arbitrary number of argu-
ments (cf. [5]).

Rough relations can be also defined also employing the rough membership function

(cf. [10]), which will be defined as follows

1,y card(RNI(x,y))
:U“R(Iﬂy) - card](;r,y) :

Obviously 0 < ph(z,y) < 1 and the relation R is I-ezact if and only if uh(z,y) = I;
otherwise the relation is I-rough.
Again it is easily seen that both definitions are not equivalent.

6 Rough Functions

It is obvious that the philosophy employed in the definition of rough sets and rough
relations cannot be applied directly for definition of rough functions. Bearing in mind
practical applications we will restrict our definition to rough real functions. To this
end we have first to give definitions of rough sets on the real line, i.e. reformulate the
concepts of approximations and the rough membership function referring to the set of
reals. Another approach to rough functions has been proposed in [6] but we will not
consider that approach in this paper.

Let R* be the set of nonnegative reals and let S C R* be the following sequence
of reals xy,2q,...,2; ... such that z; < 23 < ... < x; . § will be called a cate-
gorization of Rt and the ordered pair A = (R*,S) will be referred to as an ap-
proxzimation space. Every categorization S of RT induces partition 7(S) on R de-
fined as 7(5) = {0, (0, 21), xy1, (21, 22), 2, (T2, 23), T3, . - ., T4, (T4, Tig1), Tigy - - -}, Where
(24, 2;41) denotes an open interval. By S(z) we will denote block of the partition ()
containing x. In particular, if € S then S(x) = {z}. Let @ € (z;,2,41). By S(z) we
denotes the closed interval < w;,x;11 >, called the closure S(x). In what follows we
will be interested in approximating closed intervals of the form < 0,2 >= Q(z) for any
r € RT.



Suppose we are given an approximation space A = (R*,S). (Let us remark that the
categorization S can be viewed as an indiscernibility relation defined on R™).

By the the S-lower and the S-upper approximation of Q(z), denoted by S.(Q(z))
and S*(Q(xz)) respectively, we mean sets defined below:

S(Q(z)) ={y € R : S(y) € Q()}
S*(Q(2)) ={y € B" : S(y) N Q(z) # 0}.

The above definitions of approximations of interval < 0,z > can be understood as
approximations of the real number z which are simple the ends of the interval S(z).
If X C R, then A(X) = Supzyex|z — y|. In particular A(S(x)) will be denoted by
AS(CE)

In other words given any real number = and a set of reals S, by the S-lower and
the S-upper approximation of @ we mean the numbers S,.(z) and S*(z), which can be

defined as
Si(z) = Sup{y € S:y <z}

S*(x)=Inf{y € S:y >z}
We have
S(e) = (5.(x), 57(2)).

We will say that the number z is ezact in A = (R*,S) iff S,(z) = S*(z), otherwise the
number z is inexact (rough) in A = (R*,5). Of course x is exact iff x € S. Thus every
inexact number x can be presented as pair of exact numbers S,(z) and S*(z) or as the
interval S(z). For example if N is the set of all non negative integers then every real
number z such that non = € N is inexact in the approximation space A = (R, N).
In general if A = (R",S) is an approximation space then the categorization S can
be interpreted as a scale by means of which reals from R are measured with some
approximation due to the scale S.

The introduced ideas of the rough set on the real line correspond exactly to those
defined for arbitrary sets and can be seen as a special case of the general definition.

Now we give the definition of the next basic notion in the rough set approach - the
rough membership function - referring to the real line.

The rough membership function for the set of reals will have the form

pat(y) = L)

The membership function pg(,)(y) says to what degree any element y belongs to the
interval Q(z), or in other words it can be interpreted as the degree to which = < y.
Now we are ready to give the definition of a rough real function, in short rough
function.
Suppose we are given a real function f: X — Y, where both X and Y are sets of
non negative reals and let A = (X, 5) and B = (Y, P) be two approximation spaces.
By the (S, P) lower approximation of f we understand the function f, : X — Y

such that
fulz) = P(f(2)) for every z € X.
Similarly the (S, P)—upper approzimation of f is defined as

f*(z) = P*(f(x)) for every x € X.

We say that a function f is ezact in x iff f.(x) = f*(z); otherwise the function f is

inezact (rough)in x. The number f*(z)— f.(x) is the error of approximation of f in z.
Many basic concepts concerning functions can be expressed also in the rough func-

tion theory. For example the rough continuity of function can be defined as follows.
A function f is (S, P) — continuous (roughly continuous) in z iff

f(S(2)) € P(f(=)).



If f is roughly continuous in x for every x € X we say that f is (5, P) — continuous
(roughly continuous).

The intuitive meaning of this definition is obvious. Whether the function is roughly
continuous or not depends on the information we have about the function, i.e. it de-
pends how exactly we "see” the function through the availably information (the indis-
cernibility relation).

7 Conlusions

We have tried in this paper to point out some problems occurring in the rough set
theory, when defining basic concepts such as rough set, rough relation and rough func-
tion. There is no unique way to define these concepts, and either approximations or
rough membership can be applied to this end. In general, both approaches are not
equivalent. The first approach stresses the topological character of the concepts in-
volved, whereas the second shows their numerical structure which can be sometimes
interpreted in probabilistic terms. To understand better the relationship between both
approaches further inquiry is necessary.
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