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ROUGH SETS - BASIC NOTIONS

Zdzislaw Pawlak

1. Introduction

Objectives of this note are to give basic ideas of the rough set
theory. More elaborated consideration on rough sets and their applications
can be found in Pawlak (1991), Skowron and Rauszer (1991) and Slowinski

(1992).
2. Information System

The starting point of our considerations will be the notion of an
information system. By an information system we will mean an ordered pair S
= (U,A), where U in non empty finite set called the universe, element of
which will be refered to as objects - and A - is a nonempty, finite set of
elements called attributes.

Every attribute a € 4 is a total function a:U —> Va’ where Va- is the

set of values of a, called the domain of a, and a(x) € Va'

With every subset of attributes B £ A, we associate an equivalence
relation IND(B), called an indiscernibility relation and defined thus:

IND(B) = {(x,y) € U2: for every a € B, a(x) = a(y)}.

Obviously we have

() rypepy =N X1,
ae€B

where [x]g, denotes an equivalence class of the relation R containing

an element x.

In fact an information system is a finite table in which rows are
labelled by objects, columns - by attributes and entries are values of the
corresponding functions. Such tables are very convenient to represent
various algorithms related to the rough set theory.

Example of an information system is given in Table 1. We will use this
example to illustrate notions considered in this paper.

U a b c d e

1 1 (0] 2 1 4]

2 0 0 1 2 1

3 2 0 2 1 0

4 0 0 2 2 2

S 1 2 2 1 0
Table 1
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If an object x € POSB(X). then x will be called a B-positive example

of X, and similarly for NEGB(X) and BNB(X).

The positive region POSB(X) or the lower approximation of X is the
collection of those objects which can be classified with full certainty as
members of the set X, using attributes B.

Similarly, the negative region NEGB(X) is the collection of objects

for which it can be determined without any ambiguity, employing attributes
B, that they do not belong to the set X, and, they belong to the complement
of X.

The boundary region is in a sense undecidable area of the universe,
i.e. none of the objects belonging to the boundary can be classified with
certainty into X or -X emplying the set of attributes B.

We will say that set X is B-definable iff BX = BX, otherwise the set
is B-undefinable or B-rough.

For example set. X = {1,3,4} is {b,c}-definable but it is {a,b}-
undefinable.

Properties of approximations can be found in Pawlak (1991).

In order to express numerically how a set can be defined using set of
attributes B we will use the accuracy coefficient as given below:

card BX
ap(X) = —————
card BX
where X # @.

Obviously 0 = aB(X) <= 1, for every B € A and X € U; if aB(X) = 1 the
B-boundary region of X is empty and the set X is B-definable; if aB(X) <1
the set X has some non-empty B-boundary region and consequently is

B—-undefinable.

For example for B = {a,b} and X = {2,3} we have aB(X) = 1/3.

Besides characterization of rough sets by means of numerical values
{(accuracy coefficient), one can also define another characterization of
rough sets employing the notion of the lower and the upper approximation.
It turns out then that there are four important and different kinds of
rough sets defined as shown below:

a) If BX # o and BX # U, then we say that X is roughly
B-definable



b) If BX = & and BX # U, then we say that X is

internally B-undefinable

c) If BX # @ and BX = U, then we say that X is

externally B-undefinable

d) If BX = @ and BX = U, then we say that X is totally

B-undefinable
For example for B = {a} we have

{2,4} is B-definable

{1,2,4} is roughly B-definable

{2,5} is is internally B-undefinable
{1,2,3,5} is externally B-undefinable

XX XX
I nn

There is no totally {a}-undefinable set in the system.

It is also important to have the notion of approximation of
classifications. Let F = {Xl,X s e ,Xn}, Xi € U, be a classification of

U and let B S A. By BF = {BX,,BX . BX} and BF = {BX ,BX

2’ 2’

,EXn}, we denote the B-lower and the B-upper approximation of the family F.

We will define two measures to describe inexactness of approximate
classifications.

The first one is the extension of the coefficient defined to describe
accuracy of approximation of sets, defined as follows:
¥ card @Xi
aB(F) =

2 card EXi

The second coefficient called the quality of approximation of F by R
is the following:

2 card QXi

WB(F) =

card U

Besides numerical characterisation of rougness (vaguenes) of sets we
can Introduce another nuemerical coefficient, defined as follows

4
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card(X n [x1p)

X(x) =
“B
card U

Obviously O = qu(X) =< 1 and can be consider as a rough membership

function (cf. Pawlak and Skowron (1993)) expressing how "strongly" an
element x belong to the rough set X in view of information about the
element expressed be the set of attributes B.

4, Reduct and Core of Attributes

We will say that attribute a € B is superfluous in B, if IND(B) =
IND(B - {a}); otherwise the attribute a is indispensable in B.

If all attributes a € B are indispensable in B, then B will be called
orthogonal.

Subset B’S B is a reduct of B, iff B’ is orthogonal and IND(B) =
IND(B’). B

The set of all indispensable attributes in B will be called the core
of B, and will be denoted CORE(B).

Proposition 1

CORE(B) = | R »
R € RED(B)
where RED(B) is the family of all reducts of B. n

To compute easily reducts and the core we will use discernibility
matrix (cf. Skowron et all. (1991)), which is defined next.

Let S = (U, A) be an information system with U = {xl,xz, ...,xn}, and
let B € A. By an discernibility matrix of B in S, denoted MS(B), or M(B) if

S is understood - we will mean n x n matrix defined thus:

(Cij) = {a € B: a(xi) # a(xj)} for i,j=1,2, ... , n.

Thus entry Cij 15 the set of all attributes which discern objects X5

and x,.

J

The discernibility matrix M(B) assigns to each pair of objects x and y
a subset of attributes 8(x,y) € B, with the following properties:
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1) o(x,x) =2
ii) &(x,y) = &(y,x)
i1i) 8(x,z) ¢ 8(x,y) v 8(y,z)

These properties resemble properties of semi-distance, and therefore
the function 8 may be regarded as qualitative semi-metric and &{(x,y) -
qualitative semi-distance. Thus the discernibility matrix can be seen as a
semi-distance (qualitative) matrix.

Let us also note that for every x,y,z € U we have

0

iv) card &(x,x)

v) card 8(x,y) card 8(y,x)
vi) card 8(x,z) = card 8(x,y) + card 8(y,z)

It is easily seen that the core is the set of all single element
entries of the discernibility matrix M(B), i.e.

CORE(B) = {a € B: Cij = (a), for some i, j}.

It can be easily seen that B’ € B is the reduct of B, if B’ is the
minimal (with respect to inclusion) subset of B such that

B’ n ¢ # @ for any nonempty entry c¢ (c # @) in M(B).

In other words reduct is the minimal subset of attributes that
discerns all objects discernible by the whole set of attributes.

Every discernibility matrix M(B) defines uniquely a discernibility
(boolean) function f(B) defined as follows.

Let us assign to each attribute a € B a binary boolean variable a, and
let ¥ 8(x,y) denotes boolean sum of all boolean variables assigned to the
set of attributes &8(x,y). Then the discernibilitry function can be defined
by the formula

f(B) = I Y 8(x,y)

(x,y) € U2

The following theorem establishes the relationship between disjunctive
normal form of the function f(B) and the set of all reducts of B.
Proposition 2 (Skowron et all. (1991))

All constituents (prime implicants) in the disjunctive normal form of
the function f(B) are all reducts of B. n

For example the indiscernibility matrix for the system given in Table
1 is as follows:
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1

2 a,c,d,e

3 a a,c,d,e

4 a,d,e c,e a,d,e

S b a,b,c,d,e a,b a,b,d,e
Table 2

The core of the set of attributes {a,b,c,e,d} is the set {a,b}. The
discernibility function for this set is

(atc+d+e)alatc+d+e) (a+d+e) (c+e) (a+d+e)bla+b+c+d+e) (a+b) (a+b+d+e).

By employing the absorption law ({x+y)x = x)) and by "multiplying"
all the constituents we get the following disjunctive normal formula

ab(c+e) = abc+abe.

Thus the set of attributes has two reducts {a,b,c} and {a,b,e}. That
means that instead Table 1 we can use either Table 3 or Table 4

<
[\
o
0

N WN =
P ONO®P
NOOOO
NN =N

Table 3

<
[
o
o

N WN =
= O0ONO M
NOOOO
ONO=O

Table 4

Next we can eliminate attribute values, which are unnecessary to
discern objects in the system. To this end we can apply similar procedure
as to eliminate superfluous attributes, which is defined next.

We will say that the value of attribute a € B, is superfluous for x,
if [X]IND(B) [X]IND(B—{a)); otherwise the value of attribute a is

indispensable for x.




If for every attribute a € B the value of a is indispensable for x,
then B will be called orthogonal for x.

Subset B’S B is a reduct of B for x, iff B’ is orthogonal for x and

(T rvpeey = ¥ apee )

The set of all indispensable values of attributes in B for x will be

called the core of B for x, and will be denoted COREX(B).
The counterpart of Theorem 1 holds also in this case.

Proposition 1’

CORE*(B = | R '
R € RED*(B)

where REDX(B) is the family of all reducts of B for x. ]

In order to compute the core and reducts for x we can also use the
discernibility matrix as defined before and the discernibility function,
which must be slightly modified now, as shown below:

£f(B) = 1Y &x,y) .
yelU

For example let us consider the information system given in Table 3.
For this system we have the following discernibility matrix:

1 2 3 4 5
1
2 a,c
3 a a,c
4 a c a
5 b a,b,c a,b a,b
Table 5

For this system we have the following discernibility functions and
their normal forms:

fl(A) = (a+c)ab = ab
fz(A) = (a+c)c(a+b+c) = ¢
3

f7(A4) = ala+c)(a+b) = a

8
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f4(A) ac(a+b) = ac

fs(A) b(a+b+c)(a+b) = b,

This means that Table 3 can be simplified as shown below in Table 6.

<
]
o
0

1 1 0 X
2 X X 1
3 2 X X
4 0 X 2
S X 2 X
Table 6

where x denotes "do not care" values of attributes. It means in our
approach that concepts represented by x are superfluous in our Kknowledge
since they are included in some others, more general concepts.

For Table 4 thefé corresponds simplified form shown in Table 7 below

<
)
o
o

1 1 0 X
2 X X 1
3 2 X X
4 X X 2
S5 X 2 X
Table 7

Often we might be interested whether properties of objects expressed
in terms of attributes C can be expressed in terms of attributes B. In turn
this is the same as decision tables analysis. In our approach decision
table is an information system in which to subsets of attributes B,C € 4,
called condition and decision attributes respectively, are distinguished.
The problem in terms of decision tables boils down to decision tables
simplification. To investigate this problem in details we need the notion
of a relative reduct and the relative core of attributes.

Let B,C € A, and let

PosB(c) = U Bx
xe U/IND(C)

We will say that attribute a € B is C-superfluous in B, if POSB(C)=

POS (C); otherwise the attribute a is C-indispensable in B.

(B-{a})
9



If all attributes a € B are C-indispensable in B, then B will be
called C-orthogonal.

Subset B’S B is a C-reduct of B, iff B’ is C-orthogonal and POSB(C)=

POs , (C).

BI

The set of all C-indispensable attributes in B will be called the
C-core of B, and will be denoted COREC(B). The counterpart of the

Proposition 1 has the form.
Proposition 1’

CORE,(B) = (] R :

R € REDc(B)
where REDC(B) is the family of all C-reducts of B. u
If B = C we will get previous definitions. Relative reducts can be

computed also using discernibilitry matrix which needs slight modification.

Let S = (U, A4) be an information system with U = (xl,xz, ...,xn}, and
let B,C € A. By an C-discernibility matrix of B in S, denoted Mb(B), we

mean n X n matrix defined thus:

(c, ) ={a eB: alx ) # a(x ) and (x_,x ) ¢ IND(C) }

ij i J i3
for i,j =1,2, ... , nand x or x_belong to POSR(C).
i J
Thus entry ¢ is the set of all attributes which discern objects x.1
1]

and x. which do not belong to the same equivalence class of the relation

IND(C).

The remaining definitions need a little changes as shown below.

The C-core 1is the set of all single element entries of the
discernibility matrix MC(B), i.e.

COREC(B) = {a € B: cij = (a), for some i, j}

Set B’ € B is the C-reduct of B, if B’ is the minimal (with respect to
inclusion) subset of B such that

B’ n c # @ for any nonempty entry ¢ (¢ # @) in MC(B).

Thus C-reduct is the minimal subset of attributes that discerns all
equlvalence classes of the relation IND(C) discernible by the whole set of
attributes.

10




Every discernibility matrix MC(B) defines uniquely a discernibility

(boolean) function fC(B) which is defined as before and the Proposition 2

has now the form

Proposition 2’
All constituents in the disjunctive normal form of the function fC(B)

are all C-reducts of B. =

For example consider a decison table with B = {a,b,c} and C = {d,e}
as condition and decision attributes respectivelly. Discernibilty matrix
for this table is gven below:

A WN =
[V
O

I\

Table 8

The discernibility function and its disjunctive normal form is the
following:

ac(a+c) (a+b+c)(a+b) = ac.

Thus set B = {a,b,c) has only one C-reduct, which is {a,c}. The means
the the attribute b 1is superfluous, i.e. objects of the universe can
equally well classified to classes of the equivalence relation IND({d,e})
without attribute b, or what is the same the decision table shown in Table
1 can be simplified as Table 9 below:

<
[\
0
Q

1 1 2 1 0

2 0 1 2 1

3 2 2 1 o

4 0 2 2 2

5 1 2 1 0
Table 9

We can be also interested to drop unnecessary values of condition
attributes in this decision table. To this end we must also have a notion
of a relative reduct and the relative core of values of attributes, which
requires slight modification of previous definition.

11



Suppose we are given B,C S A, and x € U. We say that value of
attribute a € B, is C-superfluous for x, if

[x] < [x] implies {x] s [x]

IND(B) IND(C) IND(B-{a}) IND(C) '’

otherwise the value of attribute a is C-indispensable for x.

If for every attribute a € B value of a is C-indispensable for x, then
B will be called C-orthogonal for x.

Subset B’S B is a C-reduct of B for x, iff B’ is C-orthogonal for x
and

[x]

implies [x]

o) < e o) < " inpiey-

The set of all C-indispensable for x values of attributes in B will be
called the C-core of B for x, and will be denoted COREXC(B).
The counterpart of Theorem 1 now has the form

Proposition 1°*°

CORE™,(B) = R ;
R € RED*(B)

where REDXC(B) is the family of all C-reducts of B for x.

For computing reducts and the core for this case we use as a starting
point the discernibility matrix MC(B) and the discernibility function, will

have the form:

fXC(B) = MY ax,y).
yelU

For Table 9 we get the following discernibility functions and their
disjunctive normal forms:

f C(B) = (atcla = a

2

f C(B) = (a+c)cla+c) = ¢
3 - -

f C(B) = (a+cla = a

4 _

f C(B) = ac

12



S -
f C(B) = a .

That means that the decision table shown in Table 9 can be presented
in equivalent form as shown in Table 10 below:

U a c d e

1 1 X 1 0

2 X 1 2 1

3 2 X 1 0

4 0 2 2 2

5 1 X 1 o]
Table 10

The above decision table can be also regarded as a set of decision
rules of the form

->
a d1 e

1 0

az -> d1 eO

c1 -> d2 e1

aoc2 -> d2 e2

or

alv az -> d1 eO

c1 -> d2 61

->
a.c d2 e

02 2

where o, means "attribute o has value i" and symbols v" and "->" denote

propositional alternative and implication respectively. In the decision
rule ¢ -> ¥ formulas ¢, ¥ are called condition and decision respectively.
Minimization of set of attributes and values of attributes with respect to
some other set of attributes means simply reduction of unnecessary
conditions in decision rules, which is also known as decision rule
generation from data.

5. Dependency of Attributes
Next important definition concerns dependency of attributes.

Intuitively speaking set of attributes Q & A depends on set of
attributes P < A (P » Q), if values of attributes in Q are uniquely
determined by values of attributes in P, i.e. if there exists a function
which assigns to each set of values of P set values of Q. Formally

13



P » Q iff IND(P) s IND(Q).

Below a property which establishes relation between reducts and
dependency is given.

Proposition 3

Let S = (U,A) be an information system and let B € A. If B’ is areduct
of B, then B’s B-B’. ]

The following property is direct consequence of the definition of
dependency.

Proposition 4

P > Q, implies P 2 Q’, for every Q' < Q. -

Propositions 3 and 4 enables us to find all dependencies among
attributes.

Proposition 5

If B> is a reduct of B, then neither {a} 3 {b} nor {b} = {a} holds,
for every a,b € B’,i.e. all attributes in the reduct are pairwise

independent. ]

Assume for example that for the system presented in Table 1, B =
{a,b,c} and C = {d,e}. It is easily seen that B 3 C, which yields the
dependencies {a,b,c} = {d} and {a,b,c} = {e}. Now it can be seen clearly
the role of the relative reduct. It means that instead the above
dependencies we can use dependencies {a,c} » {d,e}, {a,c} = {d} and {a,c} =»

{e}.

The above definition of the dependency of attributes can generalized
as follows.

Let B, C € A. Ve say that B depends in a degree k (0 = k = 1) on C,
symbolically B ak C, if

card POSB(C)

k = (C):

Y
B card (U)

If k = 1, then we say that C totally depends on B, and the definition
coincides with the previous one;if O < k < 1, we say that C partially
depends on B, and if k = 0 we say that C is totally independent on B.

For example in the system presented in Table 1 we have the following
partial dependencies of attributes

{a,b} 2. {c}

6
14
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{b,c} 20 4 {d}

{a,c} %0.6 {b}.
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