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Abstract

There are any models of concurrency. An elegant and successful one has been
proposed by Petri (cf. Petri (1962)). The paper is an attempt to present a new
approach to concurrency based on the rough sets philosophy.

1. Introduction

Suppose a finite set A = {81, 8y e an} of elements éalled agents is
given. With every agent a € A a finite set of its internal states Va is

associated. Each agent can be viewed as a kind of finite state machine
(automaton, device etc.). In this note we will consider the following two

seemingly similar problems.

1. Analysis. Suppose that agents of 4 are changing their states according
to some rules. The changes are watched by an observer who does not know the
rules. The results of the observation can be presented in a form of a table as
shown in the example below.

U a b c d e

1 1 0 2 1 0

2 0 0 1 2 1

3 2 0 2 1 0

4 0 0 2 2 2

5 1 2 2 1 0
Table 1

In the table the set of agents is A = {a,b,c,d,e}. Each row in the table
contains record of observed states of the set of agents 4, and each record is
labelled by an element from the set U, in this case by numbers 1,2,3,4 and 5.
For example record 3 reveals that during this observation agents a,b,c,d and e
were in states 2,0,2,1 and 0, respectively.

The task of the observer is to find out, on the basis of his observations,
the rules governing the behavior of the system. More specifically, his task is
to find out whether the agents are changing their states independently or the
changes are interrelated functionally. In what follows we will identify
independence of events with concurrency. On the contrary if such a dependency
dose exist we assume that the functional relationship between the agents states
is due to the cause-effect principle (however in general this may be not
necessarily the case) and therefore they must change their states sequentially.
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Note also that discovering relations between observed data is the main
objective of machine discovery (cf. Zytkow (1991)).

Two approaches here are possible, called the Closed World Assumption (CWA)
and the Open World Assumption (OWA). In the first case we assume that the table
contains all possible states combinations, the remaining ones being prevented by
the intrinsic nature of the system. In other words the table contains the whole
knowledge about the observed behavior of the system - whereas in the second case
only a part of possible observations is contained in the table, i.e. it contains
partial knowledge about the system behavior only. For the sake of simplicity we
will consider in this note only the first case.

2. Synthesis. Tables as shown before can be also treated as a specification
of the system required behavior. In this case the problem is whether such
specification defines concurrent or sequential system and what are the rules
describing the system behavior.

The above both mentioned problems can be solved by employing the concept of
an information system and the rough set as formulated in Pawlak (1991).

Before we enter more specific consideration, first we give some basic
definition and properties which will be needed in what follows.

2. Information Systems

Informally an information system is a table rows of v)hich are labeled by ”
objects, columns - by attributes and entries of the table are values of
attributes. Formal definition goes as follows.

Information System is a pair S = (U,A), where

U - is a nonempty, finite set called the universe,
A - iIs a nonempty, finite set of attributes.

Every attribute a € A is a total function & U —> Va’ where Va— is the set

of values of a, called the domain of a;

If S = (U,A) and X ¢ U, B c A, than S = (X,A) and S = (U,B) will be
refereed to as X-subsystem or B-subsystem respectively.

We will identify information system S = (U,A) with a Finite States System
(FSM), elements of U are interpreted as states of the system, attributes are
meant to denote individual components of the system (finite states machines,
called agents) and values of attributes are understood as agents states.

It is obvious that every subset of attributes defines partition of elements .
of U, which is defined as follows.

Suppose we are give a system S = (U,A). Every subset B ¢ A4, defines a
binary relation IND(B), called an indiscernibility relation and defined thus:

IND(B) = {{x,¥) € UZ for every a € B, alx) = a(y)}.
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Obviously IND(B) is an equivalence relation and

IND(B) = () IND(a)

ae€ B

By U/IND(B) (in short U/B) we will denote the family of all equivalence
classes of the relation IND(B), i.e. partition generated by the set B, and [X]B
denotes the equivalence class of U/IND({B) containing element x € U.

Partitions generated by attributes are basic tools used to define further
notions needed in the presented approach.

3. Reduction of Attributes

As mentioned in the Introduction we identify concurrency with the
independence of actions of agents. Hence we need a formal definition of
independence of attributes., Minimal subset of B ¢ A which preserves
classification generated by B will be called a reduct of B. It turns out that
any reduct of B is the maximal set of agents which can act independently
(concurrently). Next the necessary formal definitions are given.

We will say that an attribute a € B is superfluous in B, if IND(B) = IND(B)
- {a}); otherwise the attribute a is indispensable in B.

If all attributes a € B are indispensable in B, then B will be called
independent.

Subset B B is a reduct of B, iff B' is independent and IND{(B) = IND(B”)

Obviously any subset of an independent set of attributes is also
independent.

If § =(U, A) is a system and B c A4 is a reduct of 4 then S = (U, A) will
be called partially concurrent.

The set of all indispensable attributes in B will be called the core of B,
and will be denoted by CORE(B).

The following theorem establishes important relationship between the core
and the reducts.

Proposition 1
CORE(B) = n R
R € RED(B)
where RED(B) the family of all reducts of B. ]

To compute reducts and the core we will use the method proposed by Skowron
(cf. Skowron et all. (1991)), which is defined below.

Let S = (U, A4) be given, where U = {Xl, X, ...,Xn}, and let Bc A. By a
discernibility matrix of B in S, denoted MS(B), or M(B) if S is understood - we

will mean n x n matrix defined thus:
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cij = {a € B a(xi) # a(xj)} for 1,j = 1,2, +oo. 4y N
Intuitively entry Cij is the set of all attributes which discern objects x;

and Xx..
J

The discernibility matrix M{(B) assigns to each pair of objects x and y a
subset of attributes &(x,y) ¢ B, which satisfies the following conditions.

i) 5( x,x) ]

1]

ii) o(x¥) 3(y,x)

iii) 8({x,z) < 8(x¥) u &(y,2)

It is easily seen that the core is the set of all single element entries of
the discernibility matrix M(B), i.e.

CORE(B) = {a € B: Cij = {a), for some 1i,j},

whereas B’ ¢ B is a reduct of B, if B' is the minimal (with respect to
inclusion) subset of B such that

B’ n ¢ # ¢ for any nonempty entry c (c # ¢) in M(B).

In other words reduct is a minimal subset of attributes which discerns all
objects discernible by the whole set of attributes.

With every discernibility matrix M(B} we can associate uniquely a
discernibility (boolean) function f(B), defined as shown below.

Let us assign to each attribute a € B a binary boolean variable a, and let

5(x,y) denote the boolean sum of all boolean variables assigned to the set of

attributes &(x,y), provided &(x,y) # @ The discernibility function can be
defined now as

flB) = N {} 8(xy): (x¥) € * and 8(x,y) # 9}

The following Proposition gives an important property which enables us to
compute easily all reducts of B.

Proposition 2 (Skowron et all. (1991))

All constituents in the minimal disjunctive normal form of function f{B)
are all reducts of B. =

Thus in order to compute the "concurrent part" of the system we have to
compute first discernibily matrix for the required subset of attributes, next
discernibility function must be computed and finally the normal form of the
function gives us all reducts. The example below depicts the proceedure more
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exactly.

Example 1

Consider system as represented in Table 1. For this system we have the
following discernibility matrix.

1 2 3 4 5
1
2 a,c,d,e
3 a ac,dye
4 a,d,e c,e a,d,e
5 b " ab,c,dye a,b a,b,d,e
Table 2

After simplification (using the absorption law) we get the following
discernibility function and its minimal disjunctive normal form

ab(cte) = abctabe.

Thus the core of the set A = {a,b,c,d,e} is the set {a,b} and there are two
following reducts {a,b,c} and {a,b,e} of the set A .

This means that if the observed behavior of the system, is as shown in
Table 1, we can not uniquely determine which part of the system is sequential.

4. Dependency of Attributes

Having defined the concurrent part of the system next we would like to
recognize which subsystems are sequential. To this end we need the notion of
dependency of attributes.

Intuitively speaking set of attributes B ¢ A depends on set of attributes C
¢ A (Cs B), if values of attributes in B are uniquely determined by values of

attributes in C, i.e. if there exists a function which assigns to each set of
values of C set values of B. Formally

C » B iff IND(C) < IND(B).

If C» Band B=s C we say that C and B are equivalent.

If on the right hand side of the dependency there is only one attribute we
will call this kind of dependency elementary.

The next propositions give an important relationship between the notions of
a reduct and the dependency.




Proposition 3

Let S = (U,A) be given and let B c A. If B’ is a reduct of B and B-B'#g,
then B's B-B. ]

The next two propositions are a direct consequence of the definition of
dependency.

Proposition 4
B 3 C, implies B s (', for every g # C’ ¢ C. =
In particular B 3 C, implies B » {a}, for every a € C.

Proposition 5

If B’ is a reduct of B, then neither {a} = {b} nor {b} s {a} holds, for
any a,b € B,a # b, i.e. all attributes in the reduct are pairwise independent.n

Theorems 3 and 4 enables us to find all dependencies among attributes and
the example which is given next will serve as an illustration of the just

defined ideas.
Example 2.

By Proposition 3 we get for system presented in Table 1 the following
dependencies

{a,b,c} 3 {d,e} and {a,b,e} 3 {c,d},
and consequently by Proposition 4 we have the elementary dependencies as below
{a,b,c} » {d}
{a,b,c} » {e}
and
{a,b,e} > {c}
{a,b,e} = {d}
The intuitive meaning of the obtained results is that from the observation
we can infer that agent d is dependent no matter which reduct is chosen ,
whereas agents c and e are dependent accordingly to the chosen reduct. n
Now we are ready to define the notion of totally concurrent system. Before,

we need the definition of partial dependency of attributes. Let B,C<c Aand k(0
s k s 1) be given. We say that C depends on B in the degree k (B = k C)if

. | POS z(C)|
| Ul



Note that in the case of B = C, i.e. k =1, we get the previous definition,
and we will say in this case that C depends totally on B; if 0 < k<1 - we will
say that C partially depends on B and if k = 0 we will say that C is totally

independet on B.

The definition which follows is a slight modification of a definition
proposed by A. Skowron.

System S = (U,A) is totally concurrent iff
|4l =1 or A- {a}s g {a} for every a € A

For example in the system shown in Table 1 there are two partially
concurrent subsystems S’ = (U, {a,b,c}) and S = (U,{a,b,e}) but the system
does not contain any totally concurrent subsystem. This means that on the basis
of the observed behavior of the system we can only say that there are two
possible candidates for partial concurrent subsystems S’ and S§’’, however we are
unable to conclude positively, using the available information, what is the real
one. In the case of synthesis of the specified by Table 1 system, the obtained
result means that we have two options in the design of the system, i.e. we can
choose either S’ or S’ as a concurrent (partially) subsystem, and the remaining
agents must work sequentially.

5. Reduction of Dependencies

Suppose we are given a dependency B = C. It may happen that the set C
depends not on the whole set B but on its subset B’ and therefore we might be
interested to find out this subset. In order to solve this problem we need the
notion of a relative reduct, which will be defined and discussed next.

- Let B,C c A, and let

POSB( C) = UBX
X € U/IND(C)

where BX = {Y € U/IND(B): Y ¢ X} is so called the lower approximation of X
by B (the B-lower approximation of X).

We will say that attribute a € B is C-superfluous in B, if POSB(C)=
POS(B-{a})(C); otherwise the attribute a is C-indispensable in B.

If all attributes a € B are C-indispensable in B, then B will be called
C-independent.

Subset B B is a C-reduct of B, iff B’ is C-independent and POSB( C)=
POSB,(C).
The set of all C-indispensable attributes in B will be called the C-core of

B, and will be denoted by COREC(B). The counterpart of Proposition 1 has now the

form.




Proposition 1’

CORE,B) = [} R
R € RED{B)

where RED C( B) is the family of all C~reducts of B. n

If R = C we will get the previous definitions.

Relative reducts can be computed similarly as before, we have only to
modify slightly the discernibilitry matrix in this case.

Let § = (U,A) given with U = {Xl,X R ...,Xn}, and let B,C ¢ A By an
C-discernibility matrix of B in S, denoted MC(B), we mean n X n matrix defined

thus:

Cij = {ae€ B a(xi) # a(xj) and W(Xi,Xj)}

where w(xj,xj) = xgPOSg(C) and xgPOSpB(C) or
xf#POSB(C) and xgPOSB(C) or
Xj,XﬁPOSB( C) and (xpxjRIND(C)
for i,j = 1,2, ... , n (cf. Skowron et all. (1991)).
If the partition defined.by C is definable by B then the

condition W(Xi,Xj) in the above definition can be reduced to

(Xj,Xj)e‘IND( C).

Thus entry Cij is the set of all attributes which discern objects X and Xj

that do not belong to the same equivalence class of the relation IND(C).
The remaining definitions need also slight modifications.

The C-core is the set of all single element entries of the discernibility
matrix MC(B), i.e.

COREC(B) = {a € B: (a) is an element of M {B)}

Set B' ¢ B is the C-reduct of B, if B' is the minimal (with respect to

inclusion) subset of B such that

B n c # ¢ for any nonempty entry c (c # ¢) in MC(B).

Thus C-reduct is the minimal subset of attributes that discerns all
equivalence classes of the relation IND(C) discernible by the whole set of
attributes.

Every discernibility matrix MC(B) defines uniquely a discernibility
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(boolean) function fC(B), defined as before
£4B) =T (F 8(x7) : (x3) € U° and 8(x7) # o}
Proposition 2 has now the form

Proposition 2’

All constituents in the minimal disjunctive normal form of the function
fC(B) are all C-reducts of B. ]

In the example which follows we will illustrate the idea more closely.

Example 3.

Let us compute the relative reducts for all elementary dependencies valid
in the system

{a,b,c} » {d} {a,b,c} > {e}
and |
{a,b,e} > {c}

{a,b,e} > {d}.

We are going to compute relative reducts of the left hand sides of the -
above dependencies.

In order to compute d-reduct of {a,b,c} first we have to define the
corresponding discernibility matrix, which is given below

1 2 3 4 5
1
2 a,c
3 - a,c
4 a - a
5 - a,b,c - a,b
Table 3

The disernibility function for this table is a, hence the dependency
{a,b,c} 3 {d} can be simplified as {a} » {d}.

For the dependency {a;b,c} » {e} e-reduct of {a,b,c} can be computed from
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the following discernibility matrix

1 2 3 4 5
1
2 a,c
3 - a,c
4 a c a
5 - a, byc - a,b
Table 4

This table yields the discernibility function ac and consequently the
dependency {a,b,c} » {e} can be simplified as {a,c} = {e}.

Proceeding in a similar way for the second set of dependencies {a,b,e} =
{c} and {a,b,e} 3 {d}, we get the following results. For the dependency {a,b,e}
3 {c} the discernibility matrix is

1 2 3 4 5
1
2 a,e
3 - a,e
4 - e -
5 - a,b,e - a,b,e
Table §

which reduces the dependency {a,b,e} = {c} to {e} = {c}.

For the last dependency {a,b,e} 3 {d} we have the discernibility matrix

1 2 3 4 5
1
2 a,e
3 - a e
4 a,e - a,e
5 - a,b,e - a,b,e
Table 6
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which yields the that the dependency {a,b,e} = {d} can be reduced either to {a}
= {d} or {e} = {d}.

Intuitive interpretation of the obtained results is left for the interested
reader. [

6. Reduction of States

Suppose we are given a dependency B=s C where Bis a relative C-reduct of
B. To further investigation of the dependency we might be interested to know
exactly how values of attributes from C depends on values of attributes from B,
To this end we need a procedure eliminating values of attributes from B which
does not influence on values of attributes from C. It turns out that this can be
achieved by very similar thinking as in the case of elimination of superfluous
attributes. In this section we will discuss this problem more formally.

- Suppose we are given B,C ¢ A, and x € U. We say that value of attribute a ¢
B, is C-superfluous for x, if

(5 rvpemy € 0¥ oy implies [x]pun g oy € Bl pypiy 5
otherwise the value of attribute a is C-indispensable for x.

If for every attribute a € B value of a is C-indispensable for x, then B
will be called C-independent for x.

Subset B Bis a C-reduct of B for x, iff B’ is C-independent for x and

implies [x]

U pvpeey € ¥ vpi o w8 < X vpcoy

The set of all C-indispensable for x values of attributes in B will be

called the C-core of B for x, and will be denoted CORE‘XC(B).

The counterpart of Proposition 1 now has the form

Proposition 1"

CORE" (B) = ] R
R e RED™ (B)

where REDXC(B) is the family of all C-reducts of B for x. ]
For computing reducts and the core in this case we use as a starting point

the discernibility matrix MC(B) and the discernibility function, defined as

below:

£ 4B =1 (] 8(x»): ¥y e Uand 8(xy) # 8)
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Example 4

In the considered example there is only one interesting elementary
dependency {a,c} = {e}, which will be used to illustrate the ideas considered in
this section. To this end we will need the discernibility matrix given in Table
4 from which we get the following discernibility functions

r Mach = a
fez({a,c}) =c
£ ach = a
7 *fach) = ac
£ Hach = a

The obtained result means that the dependency {a,c} = {e} can be presented
in a form shown in the table below

U a c e

OV W W =
bt O DN M
WODO W e
SO~ O

Table 7

where crosses "x" denote "don’t care" values of attributes, i.e. states which do
not contribute to the dependency and as such can be eliminated.

Dependencies can be also presented in a form of decision rules. For example
the considered dependency {a,c} = {e} can be presented as the set of the
following decision rules:

al -2 eo
a, -> €
b1 -> &y
a0b2 -> €y

or in shorter version

al + az -> eo
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30b2 -> ey
The decision rules can be viewed as a formal description of function
defined by the dependency {a,c} » {e}. Similarly decision rules can be obtained
for the remaining elementary dependencies. =

4. Conclusions

The application of the rough set philosophy enable us to detach from the
observation of a finite state system its concurrent and sequential subsystems,
when the analysis from observation is of primary concern. In the case when a
system should be designed according to a preassumed specification the obtained
results enable us to find out parts of the system which can be performed
concurrently and those which must act sequentially.
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