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Abstract. A variety of numerical approaches for reasoning
with uncertainty have been investigated in the literature.
We propose rough membership functions, rm—functions, for
short, as a basis for such reasoning. These functions have
values in the interval [0,1] of the real numbers and they
are computable on the basis of the observable information
about the objects rather than on the objects themselves. We
investigate properties of the rm-functions. In particular we
show that our approach is intensional with respect to the
class of all information systems [PS1]. As a consequence we
point out some differences between the rm-functions and the
fuzzy membership functions [285), e.g. the rm-function
values for XUY XNYD cannot be computed in general by
applying the operation max (min) to the rm—function -values
for X and Y. We propose the algorithm for computing the
rm—functions for the sets from a given field of sets.

Key words: reasoning with incomplete information, rough
sets, fuzzy sets, evidence theory.

1. Introduction

One of the fundamental problem studied in artificial
intelligence is related to the object classification that is
the problem of associating a particular object to one of
many predefined sets. We study that problem. Our approach is
based on the observation that the classification of objects
is performed on the basis of the accessible information
about them. Objects with the same accessible information
will be considered as indiscernible [PO1). Therefore we are
faced with the problem of determining whether or not an
object belongs to a given set when only some properties
(i.e. -attribute values) of the object are accessible.

Ve introduce the rough membership function
(rm—functions, for short) which allow us to measure the
degree with which any object with given attribute values
belongs to a given set X. The information about objects is
stored in data tables called information systems [PS1]. Any

rm—function yﬁ is defined relatively to a given information

system A and a given set X of objects.



The paper is structured as follows.

Section 2 contains a brief discussion of information
systems [(P91], information functions [Sk91] and rough sets
[(PE1]., In Section 3 we define a partition of boundary
regions [SO1]1 and we present some basic properties of this
partition, which we apply latter.

Ih Section 4 we define the Arm-functi.ons and we study
their basic properties.

In Section 5 we present formulas for computing the

A A
rm—f‘ugction values pXUny) and pXmYCx) from the values pxCx)
and pny) Cwhen it is possible, i.e. when classified objects

are not in a particular boundary regiond if information
encoded in the information system A is accessible. In the
construction of those formulas we apply a partition of
boundary regions related to X and Y defined in Section 3.
One can interpret that result as follows: the computation of

A : A . .
rm—fu§ction values pxU},Cx) and anYCx) Cif one exlude a
particular boundary region 12> is extensional under the
condition that the information system is fixed.

¥We show also, in Section 8, that our approach is
intensional with respect to the set of all information
systems Cwith a universe including sets X and YJ, namely it
is not possible, in general, to compute the rm—-function

values pﬁunyD and ,ui nYc x> from the values ui(x) and p?(x)
when information about A is not accessible (Theorem 3D.

In Section 5 we specify the maximal classes of
information systems such that the computation of rm—-function
"values for union and intersection is extensional when
related to those classes, and is defined by the operations

min and max Cas, in the fuzgy set approach [Z685, DP801),
i.e. the values pnyCx) and pxﬂYCx) are cbtained by applying

the operation min and the operation max to the values pi(x)
and u?(x), respectively. Cif A belongs to those - maximal

classes).

In Section B we present an algorithm for computing the
rm—function wvalues ;J?{be for xeX, where X 1is any set

generated by the set theoretical operations U,N,- from a
given family of finite sets.




k]

2. Information systems and rough sets

Information systems (sometimes called data tables,
attribute-value systems, condition-action tables etc.) are
used for representing knowledge. The information system
notion presented here is due to Pawlak and was investigated
by several researchers (see the references in [(PS11).

The rough sets have been introduced as a tool to deal
with inexact, uncertain or vague knowledge in artificial
intelligence applications, like for example knowledge based
systems in medicine, natural language processing, pattern
recognition, decision systems, approximate reasoning. Since
1982 the rough sets have been intensively studied and by now
many practical applications based on the theory of rough
sets have been implemented.

In this section we present some basic notions related
to information systems and rough sets which will be
necessary for understanding our results.

An information system is a pair A = CU, A>, where

U- a non-empty, finite set called the universe and
A - a nonempty, finite set of attributes i.e.
a: U — Va for aeAd,

where Va is called the value set of a.

With every subset of attributes Bc4A we associate a
binary relation INDCB>, called B-indiscernibility relation,
and defined as follows: :

IND(B)={Cx.y)eU2: for every aeB, alxd=aly).
By EXJIND(B) or [xJB we denote the equivalence class of
the equivalence relation INIXB) generated by x, i.e. the set
{yel: xINDCBOy>.

We have that
INDCBS> = ) INDCaD.
" a € B ’

If x INIXBY> y then we say that the objects x and y are
indiscernible with respect to attributes from B. In other
words, weé cannot distinguish x from y in terms of attributes
in B.



Some subsets of objects in an information system cannot
be expressed exactly in terms of the available attributes,
they can be only roughly defined.

If A=CU,4) is an information system, BCA4 and X¢U then

the sets
§X={er [x] < X> and BX = {xeX: [x] N Xz

are called the B- lower and the B—upper approxa.matr.on of X in
A, respectively.

" The set BNB(X) = BX - BX will be called the B-boundary
of X.

Clearly, BX is the set of all elements of U, which can

be with certainty classified as elements of X with respect
to the values of attributes from B; and BX is the set of
those elements of U which can be possibly classified as
elements of X with respect of the values of the attributes

from B; finally, BNEﬂXD is the set of elements which can be

classified neither in X nor in =X on the basis of the values
of attributes from B.

A set X is said to be B-definable if BX = BX. It is,
easy to observe that BX is the greatest B-definable set

contained in X, whereas BX is the smallest B-definable set
containing X. One can observe that a set is B-definable iff
it is the union of some equivalence <classes of the
indiscernibility relation INDCBD.

By [PCXDO we denote the power set of X. _
Every information system A=CU, A determines an
information function :
InfA : U— PCAX V b
acA
defined as follows:

IanCxD = {Ca,alxdd: aeAd>.
Hence xINDC Ay iff In.fACxD=Inf&Cy).

We restrict our considerations in the paper to the
information functions related to information systems but our
results can be extended to the case of more general
information functions {Sko11. One can consider as
information function an arbitrary function f defined on the
set of objects U with values in some computable set C.

For example, one may take as the set U of objects the
set Totﬁ of total elements in the Scott information system A

[Sc82]1 and as. € a computable Can accessibled subset of the



set D of sent,er;ces in A. The information function f related
to C can be defined as follows fC(xD>=xnC for xeTotA.

Every such general information function f defines the
indiscernibility relation INDCSfO ¢ UxU as follows

xINDCfdy  iff  fCxD =fCyd.

3. An approximation of classifications

In this section we introduce and study the notion of
approximation of classification. It was preliminary
considered in [SSG1, S£SG81]1. The main idea is ‘based on’
observation that it is possible to classify boundary regions
corresponding to sets from a given classification, i.e. a
partition of object universe. .

Let A=CU,4> be an information system and let X,Z be
families of subsets of U such that ZgX and |2|>1 where |2|
denotes the cardinality of 2. The set’

N BN, N CU—-BNAC)O)
XeZ XeR-2Z

is said to be the Z-boundary region defined by X and A and

is denoted by BdACZ.R).

By CLASS_APPRACX) we denote the set family

CAX: XeR> U (Bd CZ,%: 2SR and |Z[|>1).

From the above deflnltlons we get - the following
proposition [{SS11]:

Proposition 1. Let A=(U,A4) be an information system and let
X be a family of pairwise disjoint subsets of U such that
UXR=U. Let Z<R and |Z|>1. Then

CiD The set BdACZ.XD is definable in A;

Ciid CLASS_APPRACKD - @ is a partition of U;
Ciiid If xeBd. CZ,XR> then [x], < Uz;

A

Civd> 1If xeBdACZ,R) then for every XeX the following

equivalence is true:
[x]AnX#Qiff‘ XeX,
CvD The following equality holds:
ACUY> = U4ax u | Bd (2,%R, where YCXR.

Xe¥  |Z|>1 A
2cYy



, 1
(2 Let xedlyY, i.e. I[xIc¥. If x&d4X for Xe¥ then let
Zx={Xe\7 :‘ ,tx]A Nn X # &. Hence AIZX[>1 and [x]A < sz'
Thus, we have xeBdACZx.R).

4. Rough membership functions - definition and basic
properties

One of the fundamental notions of set theory is the
membership relation, usually denoted by €. When one consider
subsets of a given universe it 1s possible to apply the
characteristic functions for expressing the fact whether or
not a given element belongs to a given set. We discuss the
case when only partial information about objects is
accessible. In this section we show it is possible to extend
characteristic function notion to that case.

Let A=CU,AD be an information system and let O=Xcl/). The
rough A-membership function of the -set X Cor rm—function,

for shortd denoted by 'pi, is defined as follows

I.[xJ nXl
uﬁ(x) =4 for xelU.
I[x]AI

The above definition is illustrated on Fig.1.

U

[x], N X—is |Ix]

Figure 1

One can observe a similarity of the expression on the
right hand side of the above definition with that expression
used to define the conditional probability. .

From the definition of pﬁ we have the following.

proposition characterizing some basic properties of
rm—functions. :



.Proposition 2. Let A=C(U,A4) be an information system and let

X, YgU. A .
The rm-function Hy has the following

properties:
Cid yi(x) =1 iff xedX;
cn;ﬁﬁcw = 0 iff xeU-AX;

Ciiid 0 < pﬁcm <1 iff xeBNCXD;

Civd If INDCA=HCx,x]: x&l/> then ,uﬁ is the characteristic
function of X;

Cvd If xINDCADy then uACx) = yACy).
Py A X X

Civd pU_XCx) =1 - uxCx) for any xeX;
Cviid A Cx2 2 maxC ACx) ACx) > for any xe&U,;
. Hyuy = Hye v Hy \nYy ;
A A A
. < mi .
Cviiid uxﬂ},(x) < minC uxCx), pYCx) 3 for any xeU,;
(ixd If R is a family of pairwise disjoint subsets of U

then
A _ A
quCx) = pxCx) for any xeU.
. XeX
Proof. (i) We have xedX iff [xJAgX iff pi(x) = 1.

Ciid We have xelU-AX iff [x]A N X =0 iff yi(x) = O.

Ciiid> We have
xeBNACX) iff
C[xJA N X # © and [XJA N CU-X0=aD iff
' ' .\ A
CpxCx)>O and uXCxD<1).

Civd If INDCA = €Cx,>D : xel> then |[x],|[=1 for any xeX.

n

Moreoverl[xJA N X[=1 if xeX and ][xlA N X|=O if xelU-X.
(vD Since [xJA = [y].A we have ui(x) = pﬁ(y).
) [Ix1, n CU=XD | fIx] , N X|
cvid X o = A =1 - — A4 4 - B,
U-X X
‘ |[xJA| l[x]Al
[[x1 , N CXUYD | [Ix3 , N X |
Cviid pi (x> = 4 > 4 = ,UACXD . In
()4 X
|[x]A| ’[x]AI

the similar way one can obtain yiuYCx) = pﬁ(x).

Cviiid Proof runs as in the case C(vid.



§
|[x]An UX| _ |U<[x]Anx: XeX | _

CixDd y?JxCx) = = =

| |tx1 |tx1 |
= Z p&Cx).
X

XeX
The last equality follows form the assumption that X is

a family of pairwise disjoint sets.

The set {Ian(x) : x€l> is called the A-information set
and it is denoted by INFCAD. For every XcU we define the
rough A—information function, denoted by ﬁﬁ. as follows:

ﬁi(u) = yi(xb. where ueINFCAD and IanCx) = u.
. The correctness of the above definition follows from
Cvd in Proposition 1.

If A=CU, 4D is an information system then we define
rough A-inclusion of subsets of U in the standard way,

namel y: A A .
X SA Y iff pxCxD < uYCx) for any xeU. ‘

Proposition 3. If X <, Y then 4X < 4Y and 4X ¢ AY.
Proof. Follows from Proposition 2 (see (i3 and (iidD>.
a

The above definition of the rough A-inclusion is not
equivalent to the one of [PS1]. Indeed in [P911]1 the reverse
implication to that formulated in Proposition 2 1is not
valid. ’ ‘

One can show that they are equivalent for any
information system A only if AXgAY. This is a consequence of

our definition taking into account some additional
information about objects from the boundary regions.

5. Rough membership functions for union and intersection

Now we present some results which are obtained as a
consequence of our assumption that objects are observable by
means of partial information about them represented by
attribute wvalues:. In this section we prove that the
inequalities in Cviid and Cviiid of Proposition 1 cannot be
in general substituted by the equalities.

We also prove that for some boundary regions it is not
possible to compute the values of the rm—functions for union




XUY and intersection XnY knowing the values of rm-functions
for X and Y only (if information about information systems
is not accessible and do not hold some special relations
between sets X and Y). These results show that the
assumptions about properties of the fuzzy membership
functions [DP80 p.11] related to the union and intersection
should be modified if one would like to take into account
that objects are classified on the basis of a partial
information about them. We present also the necessary and
sufficient conditions for the following equalities C(which
are the ones used in fuzzy set theoryd) to be true:

A _ A A

unyCx) = max(C yxCx). uny) D> and

A . A A

anny) = minC pXCx), yny) 3 for any x&l/.

These conditions are expressed by means of the boundary
regions of a partition of U defined by sets X and Y or by
means of some relationships which should hold for the sets X
and Y. In particular we show that the above equalities are
true for arbitrary information system & iff XcY or Y¢X.

First we prove the following two lemmas.

Lemma 1. Let A=CU, 4 be an information systems, X,Ycl and X
= XY, XN=Y, XY, -XN-Y>. If xet-Bd, CKR,R> then

A Cxd = .
Hxny
if xeBdAC {XN-Y, =XnY>, R U Bd&C{Xﬁ—Y, =X NY, ~-XN-Y>, R
then O A A
else if xeBdAC <XNY , XN-Y, -XNY> , R then pXC D +[JYC x> ~1

else minC yic x>, -u?,( x) D.

Proof. In the proof we apply the property Ciiid) from

Proposition 1.

Let xeBd&C <{XN-Y, —XnY}UBdAC{Xm-Y, XY, -XN-Y>. Hence [x]A

€ CXN-YD U C=XNYD U C(~-XN-YD, so txJA N CXNYD = @ and pﬁmYCx)
= O.

If xeBdAC{XnY, XM=Y, -XNY>,A> then

[x]A < CXNY U XNn—-Y U —-XNYD
Hence [ x) = [ x] NCXNYD U lxl, n CXN-YD U [x] N C-XNYD,

A A A A
[xJA NnXu [XJA N. Y. We obtain |[x] |[xJA N X|

so [xJA AI =

+ |[xJA nY| - |[x]A N CXNYD |. Hence yﬁnnyD=,ux(x)+py(xD-—1.

10



If xeACXNYD then [XJA < XNY. Hence p?}nny)=1. We have.

also [_x]A € X and IZx]“1 S Y because XnY ¢ X and XnY < Y.

Hence [JQC xD =p§,( x>=1.

If xeACXn-Y> then [x], € Xn-Y. Hence [x], N CXr¥> = 0
and [xJA NY g CXN-YONY=0, so

A s A A
uxh},(x) =mi nCpxCx) , pny)) .

If xeAC-XNY> the proof is analogous to the latter

case.
IfxeAC-XN-YD we obtain A CxxD= &Cx3= ACXD =0
£ _ Hxny Hyx Hy :
If xeBdﬁc{XnY,Xn~Y},R) we havevaJA =-[xJA N CXnY) u
[x]A N CXN-Y). Hence [x}A N CXNYD = [x]A N Y{and [x]A = [x]A

N X ¢ X. Hence }JA (fx3=yACxDS uACx3=1.
XnY Y X

If xeBd&C{XnY, ~XNY>, A the proof is analogous to the

latter case.

: : A _
If xeBdAC{Xn Y,-Xn-¥>,R) one can calculate'annyD =

,u'?,(x) = 0 < ,ui(x). Similarly, in the case when
xeBd C{-XNY,-XN-Y>,RD one can calculate that uA (x> =
A A A XnY
‘= <
pxCx) 0O =< .Lfnyb,

If xeBdAc<xo¥,—Xn—y>.x>'we have pﬁ

A A
r\'},Cx)» = uxCx) pny?.
o
Lemma 2. Let A=CU,4> be an information systems, X,YcU and X
= LXNY,XN-Y,-XnY,-XNn-Y>. If xeU-Bd_, (XR,ARD then

A (x> = ?
Hyxuy ) ‘
if xeBdg ({XN=Y, —XNY> , RIUBd, CLXN=Y, =X NY, -XN-Y>, R

then pﬁc xD +p§( b
else if xeBdAC{XﬁY, XN-Y, -XNY>, R then 1
else max(C pﬁ( xJ, u?( XD D.

Proof. In the proof we apply the prdperty Ciiid> from
Proposition 1.

11




‘ if xeBdAC{Xﬁ—}’,-XhY} then

[x]A = [x]A KXN-Y> U [xJA C=XNYD.

Hence[xJAnX=(xJAann—Yi, [xJAnY=[x]An-Xn}’.

Since
[xJAnCXUY) =C[x]Ah)O UC[xIAﬁY)and
C[xJAhX)ﬁC[x]AnY)=[xJ N XN-Y N =XnY = O

. A
we get uﬁuyCXD = pi('x) +. u?,(x).

If xeBdAC<Xn—Y{—X nY, -XN-Y>,R> then
[x]A = [x]A N CXN=-Y) u [x]A N C=XNYD U [x]A N C=XN-YD.
Since .
[x]A N CXUYD = C[xJA N XD u Ctx]A N YD) and
C[x]A N XD N C[x)A Nn Y = [xJA'm XN=-Y N =XnY = ©

we get pﬁuy(xb = pi(x) + u?CxD.

If xeBdAC{XﬂY,Xm—Y.—XhY},R) then

‘chA = [x], N CXAY U [x], N CXN=¥> U [x)

A N C—Xn?’D.

A

Hence [x] , N CXUYD = [x] (x> = 1.

SO A
A A’ Hyxuy

If x€AC-XN-Y> then [x]A = [XJA N (-XN-¥Y). Hence

[x]A N CXUYD = [x]A N X = [x]A NnY = 0.

If x€ACXNYD then [XJA = [x] N XNY. Hence

A
[xJA N CXUYD = [XJA = [x]A N X =[x]A N Y.
If x€AC-XNYD then [xJA = [xJA N C=XNYD. Hence
[xJA N CXUYD = [x]A N Y # @ and [xJA NnNX =@ If xeéC—Xan

a proof is analogous as in the latter case.

If xeBdAC{XnY,Xﬁ—Y},K) then
[x]A = [x]A N CXNYD U [xJA N CXN=YD.

' = =2 =
Hence [x]A N CXUYD ' [xJA N X 2 [xJA N CXNYD '[x]A N Y.

If xeBdAC{XﬁY,—XnY}.K) then the proof is analogous as

in the latter case.

iz



A _ A _ A
If xeBdAC{Xn}’. XN—-Y>,R> then pXUYCx) = uXCx) = pny).
If xeBd C{XN-Y,-XNn-Y>,A then A (xD = ACxD and | &be
XEECh ' ’ Hyuy Hx Hy
= O.
If xeBd, ({-XNY,-XN—-Y>,R> then uA (x> = uACx) and yACx)
A ’ ’ Xy Y X
= O.

If xeBd,({XN~Y,XNY, -XN~Y>,R> then pﬁuyc x) = ,u&C xJ ?.u?,( xJ.

A X

‘ A A A
- —_ — = >
Ir xeBdgC{ XNY , XNY, —=XN—-Y> ,AD then Hy nyD pny)_pxCxD.

[}

Theorem 1. Let & be a Cnon-emptyd) class of infor mat;i on
systems with the universe including sets X and Y. .The
following conditions are equivalent:

¢id yﬁnYCx)ﬂnin C,ui(x), u?,(x)) for any xeU and A=CU,A3€.ﬂ;.

Ciid BdAC\?,K) = @ for any ¥ 2 {.XO—Y,—XHY} and A=CU, Ded.

Proof.
Ciid — CiD
Follows from Lemma 1.
€id —— CiiDd
Suppose that BdACY:’.ZD # O for some Y 2 {XN-Y,-XNY) and

Qe

If xeBdAC{Xn—Y,—XﬁY}.XZ) z @ for some Aex then

[x]A N CXN=YD#0 and [x]A N C=XNY2 =3,

Hence pﬁ(x))O and u?,(x)>0. We also have from Lemma 1

(OO #min C,uﬁ(x),p?(x)), i.e . a

Cx>=0. Thus we have "lin}’

A
Hyry
contradiction with (iD.

If xeBdAC{Xn—Y.—Xn}’, ~XN=-Y>, R for some Aed and xsU

then one can see that it contradicts (i) in the same manner
.as before.

If xeBd,({XN-Y,-XNY, XNY>,RD # O for some Aed then we

A
have [XJA = [x]A N CXN-Y> U [x], N C-XnYD> U [xJA N CXNYD.

A
Hence

[x:A N X = foA A CXN=Y> U Ix], N CXNYD and

13



: [x]AﬂY= {xJAﬁC—Xﬂ)O U [xJAﬁCXﬁY).

Since [xJA N CXN—-YD) = O and [xJA N C=XNY) # O we would have

A A A A
uxCx) > annyD and ,uYCxD > u

assumption (id.

XnY;XD but this contradicts the

If xeBdAC{Xn-Y, =-XNY, -XN-Y, XNY >,R for some Aed then

[xJA=

[x]A N CXN-YD U_[x]A N C=XN¥Y> U [x]A N CXNYD> v [XJA N (-XN-YD.

Again we would have .
[x]A N X = [XJA ] CXm-—Y)V U [xJA N CXNYD and

[x]A nYy= [xJA N C=XNY> U [xJA N CXNYD.

Since [x]A N CXN-YD #0 and [XJA N C=-XNnYD # @ we would have

A A A A
pxCx) > anny) and pYCxD > anny) but this con#radicts the

assumption CidJ.

This completes the proof of (i) —s Ciid.

=]

Theorem 2. lLet & be a (non-empty) class of information
systems with the set of objects including sets X and Y. The
following conditions are equivalent: ‘

cid yﬁu},(x)=max Cpi(x). u?,(x)) for any xeU and A=CU, e,

Ciid BdACY?.RD = @ for any Y 2 {XnN-Y,-XNY> and A=CU, ADedb.

Proof.

Ciid —o Cid
Follows from Lemma 2.

Cid) — Ciid
Suppose that Bd

Aesg. .
If xeBd

AC\?,KD # O for some Y 2 {XN-Y,-XNY> and

AC(Xr\—Y,—XﬁY),XD # O for some Aed then

[x]A N (XN-YD#0 and [x]‘4 N C=-XNYD =B,
Hence u?}(x) > O and p?(x) > O. We have also from Lemma 2 that
A A

o A . . A A A
,unyCx)— [JXCX)*']JYCX). This gives unyCx) > ,uxCx) and pnyCx)

> u?()&), contrary to CidD. .

If xeBdAC{Xn-—Y,—XnY, -XN-Y>,KRD) for some Aed and xeU

14




then one can see that it contradicts €id in the same manner
as before. .

If xe€Bd ({XN~Y,-XnY, XNY>,R » O for some Aed then we

A
have [x] = [XJA N CXN-Y> U {xlA N C=-XNY> v [x]A N CXNYD and
Ix], NnZ # @ for ZelXn-Y,-XNY, XNY>. Hence

‘DdAl >.|[XJA N X| and |[x]A| > I[XJA nY|.

' A A A _ ‘ -
Thus yxCxD<1 and pny)<1. However pXUYCx) = 1Afrom Lemma 2.

This contradicts our assumption (i)d.

_ Now let us assume that

xeBdAC{Xn—Y. -XNY, —-XNn-Y, XNY)>,RD for some Aesd.

Then [x]‘4 =

[x], N CXA=YD U Ix], N C=XnY> U [x], N CXnYD U [x], N C-Xn=Y>
and - )
[x), N Z* © for ZelXn-Y, -XnY, —Xn-Y, XNY>.

Hence [xJ, N.CXUYD = [x], N XU Ix], NC=-XnY

[x]‘4 N CXUYD = [XJA N YU [xJA' N CXN-YD.
C uentl A Cxd> > A(x) and A Cxd> > AC D This
ensequently “XUY ’UX “XUY u}’ X2

contradicts our assumption C(id>, which completes the proof of
Cid —— Ciid. ~ :
D

Now we would like to characterize the conditions related
to the boundary regions occurring in Theorem 1 and Theorem 2.

Lemma 3. Let & be a class of information systems with the
set of objects including sets X and Y. The following
conditions are equivalent for arbitrary A=(U,Aed :

Cid BdAC\f.R) = @ for any ¥ 2 {Xn-Y,-XNY>,;

Ciid ovpBvyvbSve where

a: =CXgY or YgXD;

f:= CX-Y#@ and Y-X#@ and XUY=U

and XNY=8 and Bd C{XN-Y,-XY>,R0=eD;
y:= CX-Y®3 and Y-X#0 and XUY=U and XNY=@ and

Bdy C{XN~Y, -XAY> , X =8 and

BdAC(Xn—Y. =XNY, XNY>,R)=0 D;
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1]

C(X~-Y=9Q and Y-X#@ and XUY#U and XnY=0 and
Bd, CL{XN~Y,-XNY>, A =& and

BdpCLXN=Y, =XNY, ~XN=Y> ,R0=8 );

&>
"

A

)
il

(X-Y#0 and Y-X#0 and XuY#U and XNY#@ and
BdyC{XN-Y, -XnY>, > =8 and ’
By CLXN-Y, =X, -XA-Y>,R)=@ and
Bd CCXN-Y,-XNY, XnY>=8 and

BdAC{Xh—Y,—XﬁY. XnNY, —-Xn-Y>,R=0 5.

Proof. We have the following equivalencies:
Bd CLXN=Y,=XNY>,RD = B iff XY or Y¢<X or (X-Y#0 and

A
Y-X=0 and BdAC(Xﬁ-Y,~XhY}.X) = 0D,

BdAC{Xm—Y.-XhY. -XN-Y>, R =0 iff

X$Y or YEX or XUY =U or (X-Y=#0 and Y-X#0 and XuUY=U and

BdAC{Xﬁ-Y.-XﬂY, -XN-Y>,%X> =0 J;

BdAC{Xﬂ—Y.—XﬂY. XNY>, R = @ iff

XCY or Yo or XNY =0 or (X-Y=0 and Y-X=#0® and XNY=#0 and

BdAC{Xﬁ—Y,-XOY, XNY> , K>

|
e
v

BdAC{Xh—Y. -XNY, =-XN-Y, XNY)>, R =0 iff
ngY or YcX or XnY =0 or XUY =U or
CX-Y=»0 and Y-X#0 and XnY=0 and XUY>U and

BdAC(Xﬁ~Y, =XnY, -XN-Y, XNY>,R =0O.

Hence, taking the conjunction of above equivalencies, we
obtain:

A
conditions o,f3,7,68,£ from (iid is satisfied.

Bd,CY¥,R = © for any ¥ 2 <{XN-Y,-XNY> iff one of the

Let us remark that only when condition a holds, i.e.
when XgY or YgX, condition (iid is independent from the
properties of boundary regions in the information systems.

Below we illustrate the conditions formulated in (iid
of Lemma 3.
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3: U ' X and ¥ form a partition

: of U. :
The condition for the boundary
regions is the.following:

X Y B XM=Y, —XNY> , RO =20 .

v U The conditions for the boundary
regions are the following:
Bd, CL{XN~-Y, —XNY> , A= and

A
By CL{XN~Y, =XNY , XNY> , RO =0 .
¥y
S: U ; The conditions for the boundary
X Y regions are the following:
BdyCL{XN=Y, ~XNY>, R>=6D and
By CL{XN=Y, =XNY, =X"=Y> , RO =0
&E: U
X 4

The conditions for the boundary regions are the following:

Bd CL{XN-Y,=-XNY>, R =@ and
Bd,C{XN-Y, —XNY, XNY> , R =@ and

Bd CL{XN-Y, —XNY, -XN-Y> ,A=0D and
Bd_ CL{XN=Y, —XNY, XNY, -XN-Y> , R =0D .

2 2 B B
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Now we prove that the assumptions from Lemma 1 and
Lemma 2 related to the boundary region Bd&CX,R) cannot be

removed because otherwise it will not be possible to compute

A A A >
the v;lues of ,uXUYCx) and pxm,Cx) knowing the values px(x
and uny) only.

Theorem 3. There is no function F :[0,1Ix[0,1] — (0,11

such that for any finite sets X and Y and any information
system A=CU, D such that X,YclU the following equality holds:
A

A A
unyCx) = FCpxCx), yny)) for any xeU.

Proof. Let us take X=(1,2,3,8> and Y=<(1,2,3,4)>. Let U=
{1,...,8>. It is easy to construct an attribute sets 4 and
A’ such that [1]A=U and [1]A,={1.4.5,6}.
Thus we have
A A A _ _
,uxC1)—pyC1)—1/2 and ”XUYCi) = 5,8, where A=CU, A

and u[sC13=p[$C1)=1/2 and y[)l?uy(1) = 374 , where [B=CU,A’).

Similarly one can prové:

Theorem 4. There is no function F : [0,1]1x[0,1) —» 10,11

such that for any finite sets X and Y and any information

system A=CU, 4> such that X,YQU the following equality hold:
A A

Hymy©XO = FCu 0, yf‘,(x’)) for any xeU.

2]

6. An algorithm for computing the rough membership £ unction
values :

In the previous section we proved that it 1is 'not
possible, in general, to construct a function such that it
can be wused for computing values of the rm-function
corresponding to the XuY¥ or XnY from the values of the
rm-functions corresponding to X and Y. Hence any particular
functions e.g. min or max applied for computing the values
of rm—functions will give incorrect values. This shows a
major drawback of some approaches in fuzzy set theory.

We present an efficient algorithm for computing values
of rm—functions based on the properties of the atomic
components of the sets.
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Let X be a (non-emptyd) family of subsets of a given
finite set U. By BC(AR) we denote the field set generated by
R, i.e. BCA> is the least family of sets satisfying the
following two conditions:

Cid R ¢ BCA;
Ciid if X,YeBCRD then XUY, XnY, -X eBCRD.

If XU then we define XO=X a;nd X1=_U-X. By ATCA,R> we
denote the set of all non-empty atoms generated by R =

{Xl.....Xk}, i.e. ATCA,XR =

{Xi‘n ..n xi": i1,...,ixe€0,1> and x:‘n .. N xi";em.

We will apply the well known properties of atoms.

Proposition 3. Let X be a Cnon-empty) family of subsets of a
given set U. The following properties hold :

Cid If Y,Y’eATCA,Xd) and Y=Y’ then ¥YNY’=0.

Ciid If ©O=YeAT(A,A then there exists a uniquely
determined set of C(non-empty) atoms Y<cATCA,XRD such
that Y= |J X.

Xef
o

Let A = (U, 4D be an information system and let X be a
family of subsets of U. For every ueINFCA) we define the set
ATCA,XR,w of all atoms YeATCA,XD such that

Y N uA# © , where uA= {xeU: IanCx)=u).

Moreover, let fCA,X,w be a function from ATC(A,X) into
non—negative reals such that
|uA N Y|
SCA, X, WOCY) = —lTT_ for any YeATCA,XRD.
[\

From the definition we have the following equality:
fCA\.K,IanCxD)CY)aJ?,- (x) for any xeX and YeATC(A,XD.

There is a simple method for computing all functions
from the family {fCA'x’u)}ueINFCA) for a given information

system A. We represent the family {fCA'x’u)}ueINFCRD in a

table TCA,XA> in which rows correspond to different
information ue€INFCAD and the columns correspond to different
atoms from ATCA,X>. 1In the table TCA,X) the position
corresponding to an information u and to an atom YeAT(A,XD
- is empty if Y&ATCA,X,w and contains the value fCA,X,wWCYD
if YeATCA,X,w.
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Example 1. Let wus consider the following information
system. Let U =<(1,...,20>, 4 = {a,b.c,d,e>, X={X1.X2}.

)(1 =(5,...,15>, X8={1O, ...,20> and the attributes are defined

as follows:

aldblcldle laldblcldle
1 |1]1lo]ojo 11 Jojoli o1
2 Jolojilols 12]olojojojo
3 J1]olilolr 13jojof1 1|1
4 ijahhhh s 14]1]1]ofjolo]
s |olol1]o]s 1sjojolojolo
6 i1t ]s isjil1]1]olo
7 l1]jolilols 17joloj1 o1
s |1]1]olojo =1 BN ER EN N
o jojilof1i}o 1ofihhh i1
10 jololili |a aolojojojlojo

From the above definitions we get:

ATCA R = (Y » Y Y3 Y >, where ¥, = X nX_ = {10,...,15>,

2’ 4 ! 1 1" %2
Y, = X,0X, = <5,...,0,
Yg = “X,nX, = <16,...,20,
Y, = X0 X, = <1, 40
" INFCAY = {11000, 00101, 10101, 11111, 01010, 00111, 00000,
11100>; :
11oboA = €1,8,14>; 00101, = €2,5,11,17>; 10101, = €3,7);
111114 = <4,6,18,10>; 01010, = (9; 00111, = €10,13>;
00000, = {12,15,203; 11100, = <16;
ATCA,%,11000> = <¥,,Y,,Y,>; ATCA,R,00101> = <Y, ,Y,.Y5.Y,>;
ATCA,%,10101)> = <y2 Y,>; ATCA,R, 11111) = g y3 Y25
ATCA,R,01010) = <Y>; ATCA,R,00111> = <¥,>;

ATCA, X, 000002 {4)’1.)’3}; ATCA,X,111000 = {Y3}.
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Thus, we have the following table TC(A,X
specifying the functions fC(A,X,uwD> for uelNFCAD:

u Yi Ya Y3 Y4
11000 13 13 1.3
00101 14 14 14 174
10101 12 i2
11111 174 12 174
01010 1
,00111‘ 1
00000 273 13
11100 | 1

Let us denote by [4,X] the extension of the data table
corresponding to A by the columns corresponding to the
characteristic functions of sets form XK.

One can show that the table TC(A,X) can be _constructed
from [A,X] in the number of steps of order OCn Cm+k)D>, where
n—|U| m=|A4|, and k-lﬂ]

Let us observe that by a slight modification of the
construction of the table TCA,X> one can obtain a table for
computing the belief and plausibility functions of the
information systems {891, SG81]. This modification can be
realized by adding to TCA,X) one additional column in which
on the position corresponding to u the cardinality of ug is

stored.
After such a modification one can easily compute the

A-basic probability assignment mACQD for. any non-empty set 8

of atoms. It is sufficient, if fact, i) to find all rows
with non-empty entries corresponding exactly to elements of
8, iid> compute the sum s of all numbers appearing in the
last column of these rows, and iii) put mACGD = s/|U|.

Now we are ready to present a simple method for
computing the rm-function wvalues.
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We assume that the family {fCA'x’u)}ueINFCA) is

represented by its data table TCA,XRD in the way described
before. We also assume that the information system A is
represented in the standard way by its data table. The data
table of a given information system A is extended by one
additional column containing for any xeU a pointer to the
row labelled by In.fACx) in the table TCA,AR>. A set X of

objects is represented by marking all columns in the table
TCA,AD) corresponding to atoms included in X.

ROUGH MEMBERSHIP FUNCTION PROCEDURE :

INPUT:. representations of X, A, {fc'%’x’u))'ueINFCR\) and
Xe BCAR) in the form described above.

A

OUTPUT: Hy -

1. For any xelU perform the following steps:

1.1 For a given x find in the table TC(A,X) the row
~ corresponding to u =IanCx);

1.2 Compute ,ui(x) = Z fCA, X, WOCYD ,

where the above sum is taken for all Y such that
i> the entry in TC(A,XD corresponding to the
column labelled by ¥ and the row labelled by u
is nonempty and ii) ¥ corresponds to a marked
column in TCA,XD.

The correctness of this method follows from Proposition
2 (part (ix>) and from the construction of the table TCA,X).
One can see that the sum in Step 1.2 is taken for all Ye¥ n
ATCA,R,w, where ¥ is a set of atoms such that X={JY.

The number of steps to realize Step 2 is of order OCnaD
Cat most n additions for each w, where n=lU|.

Example 2. Ccontinuation of Example 1.
Let X = xiuxa. We have X = xinxa U )(11’1--)(8 U -Xihxa =

Y1 U Ya (V] }’3. Hence ¥ = {Y1 .Ya .Y3}.

Let x=7. Then IanCTD = 10101,
) ¥ N ATCA,X,10101D> = <y2>

AC?) = fCA,XR, 101015CY_D> = 1.2.

and Hy >
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§
Let x = 6. Then IanCSD = 11111,

¥ N ATCA,R,11111> = <Y, Y >,
and pﬁcsa = FCALR, 111110CYD + fCA, R, 111113CY)

= 1,4 + 1/2 = 3/4.
(@]

Conclusions

We introduced the rough membership functions
(rm-functions) as a new tool for reasoning with uncertainty.
The definition of those functions is based on the
ocbservation that objects are classified by means of partial
information which is available. That definition allows us to
overcome some problems which may be encountered if we used
other approaches (like the ones mentioned in Section 5). We
have investigated the properties of the rm-functions and in
particular, we have shown that 'the rm—-functions are
computable in an algorithmic way, so that, their wvalues can
be derived without the help of an expert.

We would also like to point out one important topic for
further research based on the presented here results. Our
rm—functions are defined relatively to information systems.
We will look for a calculus with rules based on properties
of rm-functions and also on belief and plausibility
functions for information systems. One important problem to
be studied is the definition of strategies which can allow
to reconstruct those rules when the information systems are
modified by environment. In some sense we would like to
embed a non—monotonic reasoning on our rm—functions approach
as well as the belief and plausibility functions related to
the information systems [Sh76, S81, SGo11l.
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