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DECISION LOGIC

Zdzistaw Pawlak

1. Introduction

The concept of the rough set (cf. Pawlak (1982)) have
inspired a variety of logical research (cf. Jian-Ming et
al. (1990), Konikaowska (1987), Nakamura et al.(1988), Orlowska
(1984, 1985a,b, 1989), Pawlak (1987b), Rasiowa et al. (198S,
1986a,b), Rauszer (1985, 1984), Szczerba (1987), Vakarelov
(1981, 1989) and others). Most of the above mentioned logical
research has been directed to create deductive logical tools
to deal with approximate (deductive) reasoning.

In contrast to the above line of research we propose in
this chapter logic which is of inductive character (cf.
Ajdukiewicz (1974)) and is intended as a tool for data
analysis, i.®. our main concern is in discovering
dependencies in data and data reduction, which is rather
closer to statistical then deductive methods, however to this

end we shall use deductive tools.

Let us explain these ideas more exactly. Our main goal
is reasoning about knowledge concerning certain reality. We
have assumed that knowledge is represented as a
value-attribute table, called sometimes Information System
(cf. Pawlak (1981)) or Knowledge Representation System (cf.

Pawlak (1984)). '

Representation of knowledge in tabular form, has great
advantages in particular for its clarity. It turns out that
the data table may be looked at as a set of propositions
about the reality and consequently can be treated by means of
logical tools, which will be developed in this paper. We
offer two possibilities here, one based on normal form
representation of formulas and the second employing
indiscernibility to investigate whether some formulas are
true or not. The latter approach, referring to
indiscernibility, leads to simple algorithms for data
reduction and analysis, and is fundamental to our philosophy.

In fact the data table can be viewed as a model for
special logic, called here decision logic, which will be used
to derive conclusions from data available in the knowledge
representation system. We will be basically concerned in
discovering dependencies in knowledge and also in knowledge




#duction, and to this end we shall use syntactical™tools
#vailable in the proposed logic.

One of the chief implications of the presented
philosophy is that our main concern is the fundamental notion
6f the decision logic, the decision algorithm, which is a set
of decision rules (implications). Because an algorithm is
- uBuAlly meant as a sequence (not set) of instructions
{decimion rules), thus the decision "algorithm" fails to meat
the usual understanding of the notion of an algorithm,
navertheless, for the lack of a better term, we will stick to

the proposed terminology.

Still one more important remark concerning the decision
algorithm seems in order. Formulas can be true or false but
the decision algorithm, which is a set of formulas, can not
hava attributes of truth or falsity. Instead consistency and
inconsistency will be the basic features of decision.
algorithms. In other words our account, in contrast to
philosophy of deduction, stress rather consistency (or
inconsistency) of data then their truth (or falsity), and our
main interest is not in investigation of theorem proving
mechanisms in the introduced logic, but in analysis, 1in
somputational terms (decision algorithms, or condition-action
rules), of how some facts are derived from data.

With the above remarks in mind we start in the next
section considerations on a formal language for decision

logac.

2. Language of Decision Logic

The language of decision logic (DL-language) we are
ygyoing to define and discuss here will consists of atomic
farmulas, which are attribute-value pairs, combined by means
of sentential connectives and, or, not etc. in a standard
way, forming compound formulas.

Formally the lanquage is defined inductively as follows.
First we start with the alphabet of the langquage which

tone1sts of @ v

a) A - the set of attribute constants
by v = Va —~ the set of attribute value constants
a € A

c) Set { ~, v ya , => , =} of propositional
connectives, called respectively negation,
disjunction, conjunction, implication and eguivalence
respectively.
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The propositional connectives symbbls may be cbnsidered.
as abbreviations of the logical connectives "not”, "or",
Iland“, "iF - s a8 then‘.’ ..iF and only iF'I.

Let us note that the alphabet of the language contains
no variables and its expressions will be built up only from
the above symbols, i.e. attribute and attribute value
symbols, logical connectives and some auxiliary symbols like
parenthesis — which means that formulas in the DL-language
are in fact sentences.

" Moreover, we should pay attention to the fact that sets
A and Va are treated as sets of names of attributes and

attribute values respectively. Hence in order to distinguish
if necessary, attributes and attribute names we will use
bold and italic alphabets respectively. For example color is
the attribute and color is the attribute constant (name).

The case of values of attributes is quite similar. For
example, if one of the values of the attribute color were
red, then the corresponding attribute value constant would be
red.

Next we define the set of formulas in our language,
which are defined below.

The set of formulas of DL-language is the least set
satisfying the following conditions:

1) Expressions of the form (a, v2, or in short a s

called etementary (atomic) formulas, are formulas of the
DL -language for any a € 4 and v & Va.

2) 1¥ ¢ and ¥ are formulas of the DL-language, then so
are ~3, (2 v ¥), (& A ¥, (2 -> ¥, and (3 = ¥).

3. Semantics of Decision Logic Language

Formulas are meant to be used as descriptions of objects
of the universe. Of course some objects may have the same
description, thus formulas may describe also subsets of
objects pbeying properties expressed by these formulas. In
particular atomic formula (a, v) is interpreted as a
description of all objects having value v for attribute a.
Compound formulas are interpreted in the usual way.

In order to express this problem more precisely we
define Tarski’s style semantics of the DL-language employing
the notions of a model and satisfiability.

o
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By the model we will simply mean the knowledge
representation system (KR-system) S =(U, A), where U is a
finite set called the universe, 4 is the set of attributes
and each attribute a € 4 is a function a:U -> Va ,which to

each object x € U assigns an attribute value v € Va' In other

words a model is an attribute-value table columfis of which
are labelled by attributes and rows = by objects; every entry
of the table corresponding to an object x and an attribute a
is attribute value alxDd. o
W

Thus the model S describes the meaning of symbols of
predicates Ca, v2 in U, and if we properly interpret formuias
in the model then each formula becomes a meaningful sentence,

expressing properties of some objects.

This can be voiced more precisely using the the concept
of satisfiabllity of a formula by an object, which follows
next.

An object x € U satisfies a formula ¢ in S = (U, A,
denoted x |=3 @ or in short x |= ¢ , if $ is understood, if

and only if the following conditions are satisfied:

(1> x |=Ca,vd {iff fla,xd=v

(2> x |=~¢ Iff non x |= ¢

(3 x |=¢ vyliff x |=¢ or x |= ¥
(4 x |= ¢ Ay iff x |= ¢ and x |= ¥

As a corollary from the above conditions we get

(B x |=¢ > wiff x |=~p vy
(B> x |=¢ =y iff x |=¢ > yand x |=y -> ¢

If ¢ is a formula then the set |¢|S defined as follows
]¢|S ={x € U;: x |=S &>

will be called the meaning of the formula ¢ in S. Thus the
meaning is a function whose arguments are formulas of the

language and whose values are subsets of the set of objects
of the system.




The following is an important perDSitiDanhiCh explains the

meaning of an arbitrary formula.

Proposition 1

(a)
{b)
(c)
(d)
(e)

()

Thus meaning of the formula ¢ is the set of all objects
having the property expressed by the formula ¢,

| (a, v),s = {x € Uz alx) = v}
[~ls = - lels

[ v Wls = l¢|5 U lwls

¢ ~ Wls = |¢|5 n les

¢ -> W's =~ |¢|5 U lwls

¢ = Wls ='|¢|3 n lwls u - |¢1s it _|W|5

or the

meaning of the formula ¢ 1s the description i1n the
KR-language of the set of objects |¢|S.

We need also in our logic the notion of truth.

A formula ¢ is said to be true in a KR-system S, |=S P
if and only 1f |¢|S = U, 1.e. the formula is satisfied by all

cbjects of the universe in the system S.

Formulas ¢ and ¥ are equivalent in S if and aonly if |¢ls

= |¥]s-

The following proposition gives simple properties of the

introduced notions.

Proposition 2

(a)
(b)
(c)
(d)

At the end let us stress once more that the meaning of

|=c ¢ iff |¢|s =V
=~¢ iff |p| = O
|=s ¢ —> v iff [¢|g5 5 |vlg

|=s ¢ = v iff |o|g = |¥]g

the formula depends on the knowledge we have about the

universe,

1.e.

on the knowledge representation system. In

particular a formula may be true in one knowledge

representation system but false in another one.
there are formulas which are true independent of the actual

values of attributes appearing in them,

their formal structure.
considerations.

Note,

S

However,

but depend only on

They will play special role 1n our
that in order to find the meaning of

i
¥
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such formula, one need not to be acquainted witn the
knowledge contained i1n any specific knowledge representation
system because their meaning 1is determined by its formal
structure only. Hence, 1+ we ask whether a certain tact is
true in the light of ocur actual knowledge (represented 1n a
given knowledge representation system), it i1s sufficient to
use this knowledge in an apprapriate way. However, 1n case of
formulas which are true (or not) in every possible knowledge
representation system, we do not need in fact any particular
knowledge but only suitable logical tools. They will be
considered in the next section.

4. Deduction in Decision Logic

In this section we are going to study the deductive
structure of the decision logic.To this end we have to
introduce some axioms and inference rules.

Before we start a detailed discussion of this problem,
let us first give some intuitive background for the proposed
sclution.

The language introduced in the previous section was
intended to express knowledge contained in a specific
knowledge representation system. However, the same language
can be treated as a common language for many knowledge
representation systems with different sets of objects but
with 1dentical sets of attributes and identical attribute
values sets. From syntactical aspects, all the languagesz of
such systems are 1dentical. However, their semantics differ
due to the different sets of objects and their properties are
represented in specific knowledge representation systems, in
which the meaning of formulas is to be defined.

In order to define our logic, we need to verify the
semantic equivalence of formulas. To do this we need to end
up with suitable rules for transforming formulas without
changing their meanings are necessary. 0Ff course, in theory
we could also verity the semantic equivalence of formulas by
computing their meaning accordingly to the definition, and
comparing them 1n order to check whether they are i1dentical
or not. Unfortunately, such a procedure would be highly
unpractical, though — due to the finiteness of the considered
knowleage (tables) - 1t 1s always possible. However, this
method cannot be used for verifying the equivalence of
formulas 1in every knowledge representation system because of
the necessity of computing the meanings of these formulas in
an infinite number of systems. Hence suitable axioms and
inference rules are needed to prove equivalence of formulas
1in a formal way.

Basically axioms will correspond closely to axioms of
classical propositional calculus, however some specific
axioms connected with the specific properties ot knowledge

)




representation systems are also needed — and the Grizy
inference rule will be modus ponens.

Thus the set of all axioms of DL-logic consists of all
propositional tautologies and some specific axioms.

Before we list specific axioms which hold in each
concrete ' knowledge representation system we need some
auxiliary notions and denotations.

We will use the following abbreviations:
§A~¢=dF0and§v~¢=dF1

Obviously |= 1 and_|= ~0. Thus O and 1 can be assumed to
dencte falsity and truth respectively.

Formula ot the form

{a ul) A Ca v2) A see A~ Ca_, vn),

1? 2? n

where v, € Vai, P = {al, a2, cae an), and £ ¢ A, will be
called a P-basic formula or in short P-formula. A-basic
formulas will be called basit formulas.

Let P < A, ¢ be a P-formula and x € U. . If x |= ¢, then ¢
will be called the P-description of x in S. The set of all
A—-basic formulas satisfiable in the KR-system S = (U, A4) will

be called the basic knowledge in S.

We will need also a formula ZS(P), or in short Z(P),

which 1s disjunction of all P-formulas satisfied in $; 1f P =
A then Z(A4) will be called the characteristic formula of the
KR—-system $ = (U, A).

Thus the characteristic formula of the system represents
somehow the whole knowledge contained in the XR—system S.

In other words each row 1n the table, is 1n ocur language
represented by a certain A-basic ftormula, and the whole table
is now represented by the set of all such formulas so that
instead tables we can now use sentences to represent
knowledge.

Example 1

Let us consider the following KR-system
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Or =0
A= =N

Table 1

The following are all basic formulas (basic knowledge)
1n the KR-system. For simplicity we will omit the symbol of

disjunction A in basic formulas: ay bo Cos s bO s @y b1

') ;
; Cyr Ao b1 Czs Ay bo €3 ;
I N
The characteristic formula of the system is

va, b c..

@) by cpvad 3 1 %0 3

1 %6 v a b1 c1 v a2 bl c

o °3 1

For the sake of illustration let us give meanings of
some formulas in the system.

¢ | ay v b, c,] = €1, 3, 4, 63
11 [~ta, 0| = €1, 2, 3, 4, 63
Ib@ - c2| = {1, 3, 4, S3
Iaq = b0| = {1, 2, 3, 4, 5, &3 =
o=
e Now <let us give specific axiom of DL-logic.
its (1) (@, v) A (a, u) = 0, for any a € A, v,u Va and
v & u
age
ale (2) V (a, v) = 1, for every a € A
v eV
a
(3) ~a, v =V (a, u), for every a € 4
u €V
a
u v

We will also need the following proposition.

SR s 5 T




Proposition 3

]=§ ZS(P) =1, for any P ¢ A.

The axioms of the first group are counterparts of
propositional calculus axioms. The axioms of the second group
require a short comment, for they are characteristic to our
notion of the knowledge representation system.

\\

The axiom (1) follows from the assumption that each
wdject can have exactly one value of each attribute. For
example, if something is red, it cannot be either blue or
green.

The second axiom (2) ¥ollows from the assumption that
each attribute must take one of the values of its domain for
every object in the system. For example, if the attribute in
question is color, then each object must be of some color
which is the value of this attribute.

The axiom (3) allows us the get rid of negation in such
a way that instead of saying that an object does not posses a
given property we can say that it has one of the remalining
properties. For example instead of saying that something is
not red we can say that it is either green, or blue or violet
etc. Of course, this rule is admissible due to the finiteness
assumption about the set of values of each set of attributes.

The Proposition 3 means that the knowledge contained in
the knowledge representation system is the whole knowledge
available at the present stage, and corresponds to so called
closed word assumption (CWA).

Now we are ready to define basic concepts of this
section.

We say that a formula ¢ is derivable from a set of
formulas Q, (i.e.from ZS) denoted Q l- ¢ , if and anly 1f it

i1s derivable from axioms and formulas of Q, by finite
application of the inference rule (modus ponenes) .

A formula ¢ is a theorem of DL-logic, symbolically ,~¢,
if it is derivable from the axioms only.

A set of formulas Q is consistent if and only i1f the
tformula ¢ A~ -¢ is not derivable from Q.

The set of theorems of DL-logic is identical with the
set of theorems of classical propositional calculus with
specific axioms (1-3), in which negation can be eliminated.

#




5. Normal Forms

Formulas in the DL-language can be presented in a
special form called normal form, which 1s similar to that in
- classical propositional calculus.

Let P ¢ A be subset of attributes and let ¢ be a tormuia
in DL-language.

ip
We say that ¢ is in a P-rormal form in S, (in short in
P-normal form)y if and only i1f either ¢ 1s O or ¢ 15 1, or ¢
is a disjunction of non empty P—-basic formulas in S. (The
formula ¢ 1is non—empty if |¢|S ® Q).
A—-normal form will be referred to as normal form.
The following is an important property of formulas in
the DL-language.
r
n Proposition 4
Let ¢ be a formula in DL-language and let P contain all
attributes occurring in ¢. Moreover assume axioms (1) —~(3)
h and the formula ZS(A). Then, there i1s a formula v 1n the
a P-normal form such that |-¢ = y.m
ot ; Example 2
55 Below are given normal forms of formulas considered in
S, Example 1.
- b =a, b b b
@ Y P9 27 % % 2Y % %1 1Y% % 3
Y| - = g -~ - -
“'(a2 bl) al bo 62 v a2 bo 63 v a1 bl €y v oay bo €<
bo —r e, = oa) bo cor v ay b1 ¢y v ay bl ¢
a, = bo = a, bo €3 v ay bl <y

Examples of formulas in {a,b>—normal in Table 1 are
1t given next.

WV Q
O 2

val bl

bov a, &, v a, b,

1 171 1 "0

—(a, b, = a
. = a

It

L, ®
b, ) o - 9 %

The following are examples ot tormulas in {&, ¢i-normai
forms 1n Table 1.

10




Thus 1in order to compute the normal form of a formula we
have to transform the formula by means of propositiconal
calculus axioms and the specitic axioms for a given
KR—-system. v

6. Decision Rules and Decision Algorithms

In this section we are going to define two basic concept
in the DL-language, namely that of a decision rule and a
decision algorithm.

Any implication ¢ —> w will be called a decision rule in
the KR—language; ¢ and y are referred to as the predecessor
and the successor of ¢ —> y respectively.

I+ a decision rule ¢ —> w 1s true 1n S we will say that
the decision rule is consistent in S, otherwise the decision
rule is inconsistent in S.

If ¢ -» v is a decision rule and ¢ and ¢ are P-basic and
Q-basic formulas respectively, then the decision rule ¢ —> y
will be called a PQ-basic decision rule, (in short PQ-rule’,
or basic rule when PQ is known. The sets of attributes P ana
Q will be refered to as condition and decison (action)
attributes respectivelly.

n
rules then the decision rule ¢1 V @y V waaV ¢n —-> yw will be

If ¢1 T2 ¥, ¢2 -2 Yy = ¢ -~ w are basic decision

called combination of basic decision rules ¢1 =2 Y, ¢2 =2 W,

e ¢n -> y, Or in short combined decision rule.

A PQ-rule ¢ —> yw is admissidble in S if ¢ ~ y is
satisfiable in S.

Throughout the remainder of this paper we will consider
admissible rules only, except when the contrary is explicitly
stated.

The following simple praperty can be employ to check
whether a PQ-rule is true or false {(consistent or
inconsistent)

Proposition 5

A PQ-rule 1s true (consistent) in S, if and only 1f all
(P U Q~-basic formulas which occur in the {P U @Qi-normal form
of the predecessaor of the rule, and occcur also in the {F U
Q)—-normal form of the successor of the rulej otherwise the
rule 1s false (incansistent) in S.»

11
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Example 3

s

The rule bO - € 15 false in Table 1, because the
&, ci—normal form of b0 is bo Cn v bo c3,

and the formula bo c_ does not occur in
-k

b, ci—normal
form of c2 15 b0 C2’
the successor of the rule.

On the other hand the rule a, —> ¢ is true in the

table, because the {a, ci-normal form of a, 15 a, ¢, whereas
r- .

~

the {a, ci—normal faorm of € is a, €z v a, c..m
e

s

Any finite set of decision rules in a DL-language, 1is
referred to as a decision algorithm in the Dl-language.

We recall, as already mentioned in the Introcduction,
that by an algorithm we mean a set of instructions {(decision
rules), and not as usually - a seguence of instructicns. Thus
our conception of algorithm differs from the existing one,
and can be understood as generalization of the latter.

Now we are going to define the the basic concept of this
section. ‘
\b
Any finite set of basic decision rules will be called a
bosic decision algorithm.

I+ all decision rules i1n a basic decision algorithm are
FPQ-decision rules, then the algorithm 1s said to be
PQ-decision algorithm, or in short PQ-algortittun, and will be
denoted by (P,Q).

A PQ—-algorithm is admissidle in S, if the algorithm is
the set of all PQ—-rules admissible in S.

A PQ-algorithm 1s complete in $, if for every x € U
there exists a PQ-decision rule ¢ —> ¢ 1in the algorithm such
that x|= @ A~ ¥ 1n S5; otherwise the algorithm 1s incomplete 1n
5. ‘

In what follows we shall consider admissible and
complete PQ-algorithms only, if not stated otherwise.

The FPQ-algorithm 1s consistent in $, 1f and only 1+ ail
1ts decision rules are consistent (true) in S; otherwise the
algorithm 1s inconstistent in 5.

Sometimes consistency (inconsistency) may be interpreted
ws determiniem (1ndeterminism), however we shall stick to the
concept of conmistency (inconsistency) instead of detarminism
(nondeterminiem), 1f not stated otherwise.




Thus when we are given a KR—system, then any two
arbitrary, nonempty subsets of attributes P, Q in the system,
daetermine uniquely a PQ—-decision algorithm. Note that the
KR-system with distinguished condition and decision
attributes may be regarded as a decision table. (c+. Fawlak
(1985, 1986, 1987a)).

Example 4

Consider the KR-system shown below.
N

U a b c d e
1 1 0 2 1 1
2 2 1 0] 1 0
3 2 1 2 9] 2
4 1 2 2 b 1
S5 1 2 0 0 2
Table 2
Assume that P = {a,b,c} and Q@ = {d,e} are condition and

decision attributes respectively. Sets P and Q uniquely
associate the following PQ—-decision algorithm with the table:

a, b0 Cn -> d1 €y
a, bl o -> d1 €5
a, b1 €o -> do €5
ay b2 € -> dl ey
a, b2 €o -> do en
If we assume that R = {a,b> and T = {c,d} are condition

and decision attributes respectively, the then RT—-algorithm
determined by Table 2 is the following:

a, bo - €5 df
Ao b1 - <o dl
a, bl -> € do
a, b2 -2 €o d1
a, b2 -> o do -

Of course both algorithms are admissible and complete.

13
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7. Truth and Indiscernibility

Iln order to check whether a decision algorithm 1s consistent
or not we have to check whether all its decision rules are
true or not. To this end we could employ Froposition S,
however the following propositions gives & much simpler
method to solve this problem which will be used in what
follows.

Proposition 6

A PQ-decision rule ¢ —> yw in a PQ-decision algorithm 1s
consistent (true) in S, if and only if for any FQ-decision
rule ¢> —> ¥’ in (P,Q}, ¢ = ¢* implies ¢y = y’ .»

Note that in this proposition order of terms 1s
important, since we require equality of expresions.

Let us also remark tha in order to check whether a
decision rule ¢ —-> y is true or not we have to show that the
predecessor of the rule (the formula @) discerns the decision
class y from the remaining decision classes of the decision
algorithm in question. Thus the concept of truth is somehow
replaced by the concept of indiscernibility.

We will depict the above i1deas by the following example.

Example S5

Consider again the KR—-system as in Example 4

U a b c d e
1 i 0 2 1 i
2 2 i 0 1 O
I 2 1 2 0 2
4 1 2 2 1 1
S5 1 2 O 0O 2
Table 3
with 2 = {a,b,¢c? and Q = {d,e} as condition and decision

attributes respectively. Let us check whether the
PQ-algorithm

14
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% %5 €2 dy €y
A b1 €5 -> d1 €5
An bl €5 -> do 92
a, 62 €5 -> d1 ey
ay b2 o -> do €

1z consistent or not.

Because the predecessors of all decision rules i1n the
algorithm are different, (i.e. all decision classes are
discernible by predecessors of all decision rules in the
algorithm), then all decision rules i1in the algorithm are
consistent (true) and consequently the algorithm 1is
consistent. This can be also seen directly +rom Table 4. The
RT-algorithm, where R = {a,d} and T = {c,d>

ay by ~r ey d)
a, b1 -> €o d1
a, b1 -> €0 do
a, b2 - € d1
ay b2 - <5 do

1is 1nconsistent because the rules

a2 b1 -> c0 d1

bl ->c.. d

@ 2 %o

2

have the same predecessors and different successors, i.e. we

are unable do discern decisions ¢, d1 and ¢, dD by means of
o

conditions a, bl' Thus both rules are inconsistent {(false) in
the KR-system. Similarly, the ruiles

.

ay b2 —-> c2 d1
a, b, —> c¢c. d

1 72 O G

are also inconsistent (false).

There 1s only one consistent rule ay bo —-> ¢, d, 1n the

2 71
TR—algoFxthm and consequently the algorithm 1is
inconsistent. This 1is visible much easily when representing
the decision algorithm as decision table
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U a b c d

1 1 O 2 1

4___ 1 2 2 1

2 2 1 0 1

;_ 2 1 2 __—g

S 1 2 O O
Table 4

For simplicity we rearranged the rows, and separated
decision classes by underlining.ms

We will often treat decision tables as a convenient way
of representation of decision algorithms, for this form 1is
more compact and easy to follow, then the DL-language. Note
however that formally decision algorithms and decision tables
are different concepts.

8. Depenedency of Attributes

Now we are ready to define the most essential concept of
our approach - the dependency of attributes.

We will say that the set of attributes Q depends
totally, (or in short depends) on the det of attributes P 1n
S, 1f there exists a consistent PQ-algorithm in S. I+ Q
depends on P in S we will write P *c Q or 1n short P =+ Q.

We can also define partial dependency of attributes.

We say that the set of attributes Q depends partially on
the set of attributes P in S 1+ there exists only an
inconsistent PQ—algorithm in S. '

Similarly as before we are able to define the degree of
dependency between attributes.

Let (P,;Q) be a PQ—algorithm in S. By a posittive region
of the algorithm (P,Q), denoted POS{(P,Q) we mean the set of
all consistent (true) PQ-rules i1in the algorithm.

In other words the positive region of the decisiaon
algorithm (P,Q) 1s the consistent part (possibly empty) of
the i1nconsistent algorithm.

Obviously a PQ-algorithm i1s i1nconsistent 1+ and only 1+
POS (P,Q) = (P,Q) or what 1s the same card (POS (P,0;) =
card (FP,Q).

Wwith every PQ-decision algorithm we can asscciste a
number k = card (POS (P,Q)) / card (P,Q), called the degree

16
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of conststency of the algorithm, or in short the degree of
the algorithm, and we will say that the PQ-algorithm has the
degree {(of consistency) k.

Obviously 0 £ k < 1. If a PQ-algorithm has degree R we
can say that the set of attributes Q depends in degree k on
the set of attributes P, and we will write F ke Q.

Naturally the algorithm is consistent if and only 1f R =
i1, otherwise, i.e. if k # 1, the algorithm is i1nconsistent.

For example the degree of dependency between attributes
{a, b, ¢ and {d, e> in the algorithm considered in Example 5
in the previous section is 1, whereas the dependency between
{a, b} and {c, d} is 0.2, because there is only one
consistent (true) decision rule out of five decision rules in

the algorithm.

Let us note that in the consistent algorithm all
decisions are uniquely determined by conditions in the
decision algorithm, which is not the case in 1nconsistent
algorithm. In other words all decisions in a consistent
algorithm are discernible by means of conditions available 1in
the decision algorithm.

9. Reduction of Consistent Algorithms

The problem we are going to consider in this section,
concerns simplification of decision algorithms, more exactly
we will investigate whether all condition attributes are
necessary to make decisions. In this section we will discuss
the case of a consistent algorithm.

Let (P,Q) be a consistent algorithm, and a € F.

We will say that the attribute a is dispensable 1n the
(P,Qi—algorithm 1+ and only if the algorithm ({(FP-{a3),Q) 1is
consistent; otherwise the attribute a i1s indispensable 1n the
algorithm (P,Q).

If all attributes a € P are indispensable in the
algorithm (F,Q), then the algorithm (P;Q) will be called
independent .

The subset of attributes R € F will be called a reduct
of P in the algorithm (P,Q), 1f the algorithm (R,Q) 1s
1ndependent and consistent.

If R 1s a reduct of P i1n the algorithm (P,Q), tnen the
algorithm (R,Q) 1s said ta be a reduct of the algorithm
(P,Q).

The set of all indispensable attributes i1n an algorithm

o
Nt
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(P,Q) will be called the core of the algorithm (#,Q), and
will be denoted by CORE (P,Q).

1w

One-can prove the following imporatnt theorem.

n
! Proposition 7
L= CORE (P,Q) = [y RED (P,Q)
where RED (P,Q) is the set of all reducts of (P,Q). a
s
2 5
M If all rules in a basic decision algorithm are reduced,
then the algorithm is said to be reduced.
in :
The following example will illustrate the above ideas.
Example 6
Let us consider the following XR-system
in
U a b c d e
1 1 0 2 i 1
2 2 1 0 1 o
3 2 b 2 o 2
1y 4 1 2 2 1 1 %
S 1 2 o 0] 2 2R
155
Table S
he and the PQ-algorithm in the system shown below, where P = {a,
is b, ¢ and Q = {d, e} are condition and decision attributes
the respectively.
ay bo €5 -> dl ey
a, bl €0 - d1 s
a, b1 €, -> do e
t @y b3 €3 > @y &
a, b2 o -> do €5
i
che : asn in Example 4, where P = {a, b, ¢} and Q = {d, e} are
condition and decision attributes respectively.
Lok us first compute reducts of condition attributes in
1thm lgarlthm. It is easy to see that the set of attributes P

[ ] in the algorithm, and the core attribute is c.

18




Hence there are two reduct of P, namely {a,c? and {b, ci. The
PQ-algorithm can be reduced then as

ay €, -> d1 e,
a5 g -> d1 €
a, €, -> dO e
a, ¢, - d1 el
a, ¢g5 ~° do €,
or
bo €o -> d1 e1
b1 <o -> d1 €5
bl €q - do e,
b2 Co -> d1 e,
b2 € -> dO e )

The above considerations can be easily followed,
employing tabular form of representing algorithms, for the
basic operations on algorithms can be traced easily, when
using this kind of notation.

The PQ-alqgorithm given in this example can be present as
the following decision table

U a b c d e

1 1 0] 2 1 1

4 1 2 2 11

2 2 1 0 10

3 2 1 2 0 2

5 »1 2 &) o 2
Table &

1in which for simplicity we rearranged the decision rules ana
the decisiony Classes are separated by underlining.

In order to find core set of attributes we have to drop
condition attributes, one by one and see whether thus

obtained decision table (algorithm) is consisted or not.

Removing the attribute a we get the table

19
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“e U b c a e
1 O 2 1 1
i 4 2 2 1 1
% 2.1 90 __ 1 __®
3 1 2 0 2
; 5 2 O O 2
Table 7
which 1s consistent. Dropping attribute b we get again
caonsistent decision table
15} a c d e
1 1 2 1 1
4 1 2 1 1
2 2. 9 1 _ 9
3 2 2 (0] 2
S 1 (o) 0 2
Table 8
as However when dropping attribute ¢ the result 1i1s
inconsistent table
U a b ad e
1 1 0 1 1
4 1 2 1 1
2___ =z S S S
3 2 1 0O 2
S 1 2 o 2
Table 9
and Rules 4 ahd 5 are inconsistent and so are rules 2 and 3,

therefore the attribute ¢ is the core of the set of condition

attributes {a, b, ¢}, and there are two reducts of this set
rop : of attributes, (a, c> and (b, c¢?. Thus the algor:itha has two
{ readced forms as shown in tabular form in Tables 7 and 8. =

10. Reduction of Inconsistent Algorithms

In the case of i1nconsistent PQ-algorithm 1n S tne
Feduction and normalization goes 1n a similar way.



Let (P,Q) be a inconsistent algorithm, and a < p£.

AN attribute o is Jdispensable in PyQ-algorithm, 1f POS
(F,Q) = POS ((P - (a),Q); otherwise the attribute a is
tndispensable in (P,Q).

The algorithm (P,Q) is independent if all « < F are
1ndispensable in (P,Q).

The set of attributes R ¢ P will be called a reduct of
(P,Q), if (R,Q) is independent and POS (P,Q) = POS (R,Q).

As before the set of all indispensable attributes in (P,
Q) will be called the core of (P,Q), and will be denoted by
CORE {(P,Q). In this case the Froposition 7 is also valid.

Thus the case of the consistent algorithm is a special
case of the inconsistent one.

Example 7
Consider again KR-system as shown in Table 3, and the

following set of condition and decision attributes T = {a, b2
and W = {c,d. The corresponding TW—-algorithm will have the
+orm ,

U a b c d

1 1 O 2 1

4 1 2 2 1

2 2 1 o 1

3 2 1 2 0

S 1 2 O 0

Table 10

As mentioned before, the only consistent (true) decision

rule is the rule number 1, i.e. a, bo -2 <, di' Hence the
.

positive region of the TW-aldgorithm consists only ot this
rule. In order to see whether the attribute a or b 1s
dispensable or not we have to drop each of the attributes and
check whether the positive region of the algorithm has
cthanged or not, which is demonstrated below.

Removing attribute a we get the same positive region

AGNTRR
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RO |
MRD
SRS

A
2 1 o 1
3 1 2 O
3 2 O 0
3f
Table 11
(P, v : ) .
Sy whereas when removing attribute © we changed the positive
region, which is now the empty set, because all decision
rules 1n the algorithm are inconsistent (false).
al
U a c d
1 1 2 1
4 1 2 1
e 2 2 o 1
;eb’ 3 2 2 )
S 1 0 0
Table 12
Hence the attribute a is dispensable, whereas the
attribute & 1s the core and the reduct of the algorithm and
consequently the reduced for of this algorithm is as follows
U b c d
1 O 2 1
4 2 2 1
2 1 e 1
ision
. 3 1 20
- 5 2 Q O
s and Table 13

This means the the algorithm




a, bo - <. d1
a, b2 —-> €5 d1
a, bl - o d1
a., b1 - €5 dO
a, b2 - €5 do

has only one reduced form shown below
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11. Reduction of Decision Rules

The purpose of this section is to show how the decision
logic can be used to further simplification of decision
algorithms by elimination of unnecessary conditions in each
decision rule of a decision algorithm separately, in contrast
to reduction pertormed on all decision rules simultaneously,
as detined in the previous sections. Before we give the
necessary definitions, let us first introduce auxiliary
denotation. If ¢ is P-basic formula and Q € P, then by ¢/Q we
mean the Q-basic formula obtained from the formula ¢ by
removing from ¢ all elementary formulas (a, va) such that o €

P - Q.
Let ¢ —> y be a PRQ-rule, and let ¢« € P. We will say that

the attribute a is dispensable in the rule ¢ ~> y i+ and only
1t

l=5 ¢ —» w implies |=S @/ (P—{ak) —> y

otherwise the attribute e is indispensable in ¢ —> w.

If all attributes a € P are indispensable i1n ¢ -> ¢ tnhen
¢ -5 ¥y will be called independent.

The subset of attributes R ¢ P will\be‘called a reduct
of PQ-rule ¢ —» y, if ¢ -> y is independent and |=S ¢ —F y
implies |=S @P/R —> y.

I+ R is a reduct of the PQ-rule ¢ —-> yw, then ¢/R —> y 1s
sald to be reduced.

M
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The set of all indispensable attributes in ¢ —- w will
be called the core of ¢ —> yw, and will be denoted vy CORE (p
- ).

One can easily verify that the following theorem 1is
true.

Proposition 8

CORE (P -> QO = N RED (P -> Q),
where RED (P -> Q) is the set of all reducts of (P -> Q). =

Example 8

As we already mentioned we are going now eliminate
unnecessary conditions in each decision rule of a decision
algorithm separately, i.e.compute core and reducts of each
decision rule in the algorithi.

There are two possibilities available at the moment.
First we may reduce the algorithm, i.e. drop all dispensable
condition attributes in the whole algorithm and afterwards
reduce each decision rule in the reduced algorithm, 1.e. drop
all unnecessary conditions in each rule of the algorithm. The
second option consists in reduction at the very beginning
decision rules, without elimination attributes from the whcle
algorithm.

-

Let us first discuss the first option, and as an example

consider the KR-system

U a o) d e
1 1 O 2 1 1
2 2 1 0 1 0
3 2 1 2 Q 2
4 1 2 2 1 1
S 1 2 O 0 2
Table 14
and the PQ-algorithm 1in the system shown below, where P = {a,
b, ¢} and Q = {d, e} are condition and decision attributes
respectively - as in Example 4.
"
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a; bo oy —2 d1 e,
a, b1 o -> d1 €5
a, bl € o -> dO €5
a, b2 €5 -> d1 ey
ay b2 o -> do e,

We have to eliminate unnecessary conditions in each ruile
of the algorithm separately.

Let us start with the first rule a, bo c, —> d e, - The

core of this rule is the the empty set, because a, b and ¢
ai'e dispensable 1in the rule, i.e. the following decision

-

1 > - b —~ — » - >
rules bo €o > d1 s @y €5 72 d1 €y and @, bO > dl e, are
true. In other words either of the conditions 00 Cry @ €, OF

a, b uniquely determine the decision d1 & Thnere are two

1 70 1°

reducts of the rule namely {&} and {a,cY. Hence the rule ay
bO c., =2 dl e, can be replaced by either one of rules bo -
d1 e, Or a, ¢, —-> d1 e, -

Each of the remaining four rules have one core attricute
¢, and consequently two reducts {a, ¢J and (&, c¢}. Thus, for

example the second rule, «, b1 o -> d1 o has two reduced
forms a, €, 72 d1 °q and b1 o -> d1 €45"

Let us summarize the above considerations in tabular
t+torm. Table 15 contains cores of each decision rule.

U a b c d e

1 - - - 1 1

2 - - 0 1 0]

3 - - 2 0 2

4 - - 2 1 1

S - - 0 0 2
Table 1S

In Table 16 all reduced decision rules are listed.
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U a b c d e
| 1 - 0 - 1 1

1’ 1 - 2 1 1

2 2 - O 1 0

2 - 1 O 1 0

3 2 - 2 O 2

3° - 1 2 0 2
uie 4 1 - 2 1 1

47 - 2 2 1 1

S 1 - O ] 2
he 5’ - 2 0 0 2

Table 16

e
2 er Because each decision rule in the algorithm have two
3 reduced forms, hence in order to simplify the algorithm we
. ; nave to choose one of them, and as a result we get the
1 algorithm with reduced decision rules as shown for example in
- : Table 17.

U a b c d e
cute 1 - 0O - 1 1
for : 2’ - 1 0 1 0]
d : 3 2 - 2 ¢ 2

4 - 2 2 1 1

S 1 - 0 Q 2

Table 17

which can be also presented in the DL-language as

bO -> d1 e,y
b, ¢, —> d1 ey
b1 g -> d1 €5
a, ¢, =2 d0 e,
ay <4 -> do €5

Note that rules 17 and 4 are identical, hence choosing
on of the rules we obtain decision algorithm with smaller
number of decision rules, as shown for example in Table 18

26




U a (o] c d e

1’ - 2 1 1

R EEPPLECRPPE LR

LSRR PR CRPRE PR :

s 1 - o o 2
Table 18

or 1n decision logic notation

1

& R O Q

N o e
> & 0o o
N N © .

1
0O
o

-

We may also first reduce the algoarithm and then reduce
further decision rules in the reduced algorithm. In this case
the above example of decision algorithm would be reduced as
follows:

- As already shown 1n Example 6 the algorithm has two
reduced forms

a1 c2 d1 el
a2 co > d1 eo
a2 c2 -> d0 92
a1 CO -> dO 92
and
bO c2 -> d1 91
bl CO -> d1 eO
bl c2 -> d0 e2
b2 02 -> d1 el
b2 cO -> d0 92 '

which can be presented in tabular form

LAl R o RGN
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2 2 __ 0 1___.9

3 2 2 O 2

S 1 (8] 0 2
Table 19

and

U a c d e

1 o) 2 1 1

4 2 2 i1

2 1 O i 0

3 i 2 O 2

S 2 O O 2
Table 20

All decision rules in the decision algoritnm snown
1n Table 19 are already reduced, hence the algorithm cannot
be simplified further. In the decision algorithm in Table 29
rules 2, 3, 4 and 5 are are already reduced, whereas' i1n the
rule 1 the condition €, can be eliminated and the rule will

nave the form b, -7 d1 e Thus the algorithm takes the +orm

0] 1°

->

by 7> 41 &y
bl CO -> d1 eo
bl c2.—> d0 e,
b2 c2 -> d1 e,
b2 c.. —-> d0 €, -

12. Minimization of Decision Algorithms

In this section we will consider whether all decision
rules are necessary in a decision algorithm, or more exactly
we aim at elimination of superfluous decision rules
assocCiated with the same decision claks. It is obvious that
s0m@ oecision rules can be dropped without disturbing the
decision making process, since some other rules can overtake
of the eliminated rules. This i1s equivalent to the
of elimination of superfluous sets in union of
sets, discussed in Chapter 3.4., which become more
as the study progress. Before we state the problem




more precisely some auxiliary notions are needed.

Let & be a basic algorithm, and let S = (U,A} be a
KR-system. The set of all basic rules in & having the same
successor y will be denoted M@, and ?w is the set of all

predecessors of decision rules belonging to ﬂ?

A basic decision rule ¢ —-> y in & is dispensable in #,
if |=S Vv ?w =V {?w ~- {¢¥¥, where V?w denotes disjunction of

all formulas in ?w; otherwise the rule is indispensable in .

If all decision rules in.#w are indispensable then the set of

rules ﬂ@ is called independent.

A subsetﬂ; of decision rules of ﬂ@ is a reduct of ﬂ@ if

all decision rules in.ﬁ; are independent and |=. V ?W =V ?;.

A set of decision rules ﬂ@ is reduced, if reduct of ﬁ?

is ﬂ@ 1t shel+f.

Now we are ready to give the basic definition of this

section.
A basic algorithm & is minimal, if every decision rule in

-

# 1s reduced and for every decision rule ¢ —> y in ¥, ﬂ@ is

reduced.

Thus in order to simplify a PQ-algorithm, we must first
reduce the set of attributes, 1.e. we present the algorithm
in a normal form (note that many normal forms are possible in
general). The next step consists in the reduction of the
algorithm, i.e. simplifying the decision rules. The least
step removes all superfluous decision rules from the
algorithm.

The example which follows will depict the above defined
concepts.

Example 9

Supouse we are given the following KR~-system

N
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1 1 O O 1 1
2 1 O o) 0O 1
3 @) (0] 0 O 0
4 1 1 0 1 0
S i 1 O 2 2
& 2 2 0 2 2
7 2 2 2 2 2
Table 21
and assume that P ={a, b, ¢, d} and Q = {e} are condition and

decision attributes respectively.

It is easy to compute that the only e-dispensable
condition attribute is ¢. Thus Table 22 can be simplified as
shown in Table 23 below.

U a b d e
1 1 0O 1 1
2 1 0 0 1
3 0 0] 0 0
4 1 1 1 0]
o] 1 1 2 2
& 2 2 2 2
7 2 2 2 2 £
Table 23

In the next step we have to reduce the superflucus
values of attributes, i.e. reduce all decision rules in the
algorithm. To this end we have first computed core values of
attributes, and the result is presented in Table 24.
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i - 0] - 1
2 1 - - 1
3 0 - - 0
4 - 1 1 0
S - - 2 2
b6 - - - 2
7 - - - 2
Table 24

In the table below we have listed all value reducts

U a b d e
1 1 0 X 1
1’ % (o) 1 1
2 1 0 X 1
27 1 x o _1
3 0] % ® O
4 % 1 1 O
S X X 2 2
& 2 1 x 2
&’ 2 X 2 2
677 X 1 2 2
7 2 2 X 2
77 2 X 2 2
77 X 2 2 2
Table 25

As we can see from the table in row 1 we have two

reducts of condition attributes - ay bo and bO dl' Similarly

for the row number 2 we have also two reducts - al bo and al

do. There are two minimal sets of decision rules for decision

class 1, namely

1) alb -> e

0 1
2) bod1 -> e,
aldo -2 e1

or




bod1 \% aldo -> 61

For decision class O we have one minimal set ot decision

rules
ao - eo
bldl - eo
or
ao v bldl -7 eo

For the decision class 2 we have also one minimal
decision rule

and

arly The combined form of these algorithms are

d a

cision albo -> e

and

H
]

A




bodl v aido ~7 €y
A, v bldl -> eo

—-> e

MO
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