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§ 0. INTRODUCTION

The purpose of this paper is an extension of the results
of {1]. Probably the approach we present here is a better ap-
proximation of the reality than that one in the above paper, It
should be mentioned that even though the present paper extends
[1] properly it 1s possible to interprete our system within the
frame work of [17].
We assume knowledge of standard settheoretical and logical

notation like P (X) (powerset of I),?:X 2> Y etec.

§ 1. SYNTAX

Definition 1.1. Let A, be given two nonempty, disjoint
sets, let {Ai}iel be some fixed partition of A (i.e. (i)(1”)
1 #£1 %Ain Ai»= £), Uiel Ai = 4),

For given set A we define the language LA as follows: The alpha-
bet of I‘A contains:

1° Gonstants c,(for aeA)

2° Symbols T, F, V, A

3% puxiliary Symbols — , v, &ydymy + 9 * 5 =

50 Symbol =.

Definition 1,2, The sst 3”0: terms is the least set satisfying
1°42°%; _

1° 2T, FeT, qaéﬁ"('aea)

2° 12 t,, 5,€9 then.~ t,, Tyttn, tyrty, by > b, €7

In the sequel t,s(possibly witk indices) range over terms.
Definition 1.3. The gset * of formulas is the least set

satisfying 1°%2°
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1° 1f t,, t, are terms then 't, = tyeF
2% 1 $4+ 94&F then ‘1-1{11 PV €0 ¥q k¢, Yy, => 9, €F.
e assume as axioms:
1° Substitutions of proposition calcules axioms te£[2D
- for formulas
2° Substitutions of the axioms of Boolea:n Algebra

- for terms

3° If i€I, aei; , then

c, = 1(1;5'_1',' cb)
bia

Where 5. is an abbrenation for sum of bigger amount of terms,
(In case when each Ai, i€l is finite, If we admif Ai infinite,
we need some modifications in syntax). A is called basic dictio-

nary and I~ family of features,

§ 2. SEMANPICS, CONNECTIONS WITH THE SYNTAX

Definition 2,1, A system of information storage over basic
dictionary 4 and family of features I is a guadruple
S = <X,4,1,U)> where U:A — P(X) satisfies conditions
1° 1 ieI, a,b€d,, afb then U(a)n U() = 4 ‘

[+
U U{a) = X

asAi

2 If i€I then

Definition 2,2, Valuation of terms.

Given system S = <X,A,I,U) we define inductively HNtfl_ ,.lyli,
as follows: ’

(@) [C,lig = Ula)

(®) fi~tlg=X - jithg

. Po———y
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@) g + tollg = He il g

(e) ’IFHS = 91

) JTPg =%

@) ity = tzus = & - Ilt1us) A CPUPY

Now assume IH:MS is defined for all t€T

voAL g = it
e, = tollg = {A - 3 . +d S
1"5 llvaus
A if "Y" =V
Wagng = { 8

v if H?HS = A

For other conneciives we extend our definition in natural way.
Theorem 2,1, If ¢ is an axiom then flgl = V
Proof: Inductively through definition of axioms.
Definitiorn 2,3, Let 5 = « K,A,I;U) be a system x¢X.
(a) An information on x in S iz a function

£:I — A such that f(i)EAi and

(1); (xeU(£(1))) »
(b) A description of x in S is a term

1

Cr1)
ler (3

Clearly an information on x determines a descripiion of x (up
to possible order of I1). )
Definition 2.4, A system S is selective iff for all zeX,

if t is a description of x in S then IIWS = {xz}

Thus selective system is the one in which any two elements are

distinguishable,

§ 3. COMPLETENESS FPROPERTY OF INFORIATIONAL SYSTEMNS

FLitre)

Definition 3.1. (a) We defime ¢l =c¢c , ¢ =~ ¢
a
. 3
(b) A term t is called primitive if ¢t = c? taeies © K gnere sach
- a
o k

i{ is O or 1,
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(¢) A term t is in normal additive form if & = o ty where
sach tj is primitive term.

(@) A term t is in positive form 1?2 ~, —> does not occur in t.

The axioms accepted (§ 1) allow us to prove formulas (in the

theory of information systems). We use I %o denote existence

of proof of the formula.

Theorem 3.1.(a) If t is 2 term then there is a term t, in nor-

mal additive form such that =t

) If t is a term then there is a term tz in positive normal

additive form such that b & = ta.

?roof: (a) A proof of this sort may be found in [2]. (b) By (a)

we may assume that t 1s in normal form. Using axiom 1.5.(3°)

and law x =y =pr~x =~y we gt ~ C, =b§cﬁ.ﬂow in any pla-

'b;éa1

ce where there is a negation we substitute appropriate .sum and

usé distribution laws,

Definition 3.2. (a) A primitive term is called complete 1ff for

every i€I there 1is exactly one a.e.é.i such that °a occurs in ¢,

(b} A term t is in camplete positive normal additive form 1ff

t = 2, t, and edch t, 18 complete positive primitive term.
- :

Theopem 3.2, If T is finite then for each term & there is
exactly one terrw tB (being in complete positive normal
additive form) such that ¥ = B3

Proof: It is clear that it is enough to prove that each primitive
positive term is equivalent %o a term 1# c.p.n.a, form.
Proceeding inductively we assume that for given i€l no ¢,

(with a A;) occur in ¥ . Stnee ~c, = S thus Shcy =T and
bEAc bGAi
b#a

8o, since tAT = t we get ¥ A E T'C"‘ = t, Using distributive
be ”
i

S S

et
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laws we iminish the number of i’s which are not represented
in t. Uniquenes (up to the order of I) is obvious. ’

Using usual reasoning we can get analogous results on dual -
multiplicai:ive form. Since they are similar we will not purse
the matter here. A8 a consegquence of the theorem 2 we will get
some completeness results,

Definition 3.3. We introduce relations £ , = on T as toll&rs
1° t,§ t, &> There is t such that |— t + t, = ta‘

2° 1, W b, <= bty =% '

This is nothing else but L:Lndenba;m algebra on T

Lemma 3.3. (a)< is a partical ordering in T

(b) 2 is an equivalence relation in J

(c) § generzzes ® iie ta“s bRt T, >t ® b,

Proof: (a) and (b) are obvious. .

(c) There are terms t and s such that |— t + ¥; = ¥, and

b~ s + t, = t;. thus Ft+s+t, =ty thus ¢+t +s+t =t +t,
but +t + t = ¥ and so 5—t+s+t1:t+t1

i,e Ft+8+8;=%; 1. |ty =2,
Clearly if t, < %5 then for all systems S I|t1||ss i t2“§° However
converse property also is true.
Definition 3.4, (a) term t 1s semantically less then term s if
for all information systems S

utns c lislig
(b) Term t is semantically equal to the term s iff for all infor;-
mation systems S : ltus = fsig.
Theorem ’3.4. (Completeness property for terms)
(2) The term % is semantically less then the term s iff t s s
(b) The term % is semantically equal to the fterm s iff t w«s.
Proof: (b) => follows from (a) and 3.3(c).
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{b) & follows from adeguacy of our axioms,

(a) €= was already remarked after the proof of 3.3,
(a) = We may assume that both t and s are in complete normal
positive additive form. If all primitive components of t occur
as primitivé components of s then clearly t<s. Assume now that
there is component of t which does not occur in s, (This is nothing
else than assumiﬁéﬂnab t <8) Then, since values of all primitive
- positive complete terms are identical or disjoint we easily
construct é system 8 in which lltllsiﬂslls .
Note that the construction here reminds the components as
presented in [3].
Using theorem 3.4, we are sble to prove:
Theorem 3.5. (Completeness pmroperty for formulas) +{ iff for
all information systems S, elg = V. ' _
The proof imitates usual Henkin technique for completeness
proof and we do not give if here. Fiﬁally let us see how our
system is connected with that of [1].
Let X be a set of elementary descriptors (as in [1]) consider an
additicnal set I, disjoint with X and ¢ : X k& . We assune,
for x€X~x =% (x). In this way we get I = X, each A1= {z ' ¢ (x)} .
Elementary descriptors are primitive terms in our language. The
essetrtial result of {1], theorem 5 is thus obtained as theorem R
31 within our framework. .
In the further work we will present operations on‘ information
systems and other results concerning selective systems.
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