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Abstract

Worldwide, there has been a rapid growth in interest in rough set theory and its applications in recent years. Evidence of
this can be found in the increasing number of high-quality articles on rough sets and related topics that have been pub-
lished in a variety of international journals, symposia, workshops, and international conferences in recent years. In addi-
tion, many international workshops and conferences have included special sessions on the theory and applications of rough
sets in their programs. Rough set theory has led to many interesting applications and extensions. It seems that the rough
set approach is fundamentally important in artificial intelligence and cognitive sciences, especially in research areas such as
machine learning, intelligent systems, inductive reasoning, pattern recognition, mereology, knowledge discovery, decision
analysis, and expert systems. In the article, we present the basic concepts of rough set theory and point out some rough set-
based research directions and applications.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The basic ideas of rough set theory and its extensions as well as many interesting applications can be found
in a number of books (see, e.g., [28,33,44,48,74,97,112,113,131,182,194,195,206,237,241,244,245,272,305,374]),
issues of the Transactions on Rough Sets [225–228], special issues of other journals (see, e.g., [25,129,218,
255/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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193,281,306,377,378]), proceedings of international conferences (see, e.g., [1,88,130,243,280,293,300,301,331,
336,337,350,376,380]), tutorials (see, e.g., [110]). For more information one can also visit web pages www.
roughsets.org and logic.mimuw.edu.pl.

The basic notions of rough sets and approximation spaces were introduced during the early 1980s (see, e.g.,
[199,201,202]). In this paper, the basic concepts of rough set theory are presented. We also point out some
research directions and applications based on rough sets. In articles [210,214], we discuss in more detail
two selected topics, namely, extensions of the rough set approach and the combination of rough sets and Bool-
ean reasoning with applications in pattern recognition, machine learning, data mining and conflict analysis.

2. Sets and vague concepts

In this section, we give some general remarks on the concept of a set and the place of rough sets in set theory.
The concept of a set is fundamental for the whole of mathematics. Modern set theory was formulated by

Cantor [19]. Bertrand Russell discovered that the intuitive notion of a set proposed by Cantor leads to antin-
omies [266]. Two kinds of remedy for this problem have been proposed: axiomatization of Cantorian set the-
ory and alternative set theories.

Another issue discussed in connection with the notion of a set or a concept is vagueness (see, e.g.,
[15,53,87,105,106,267]). Mathematics requires that all mathematical notions (including set) must be exact
[55]. However, philosophers (see, e.g., [105,106,262]) and recently computer scientists (see, e.g., [206,370]) have
become interested in vague concepts.

2.1. Sets

The notion of a set is a basic one of mathematics. Most mathematical structures refer to it.
The definition of this notion and the creation of set theory are due to German mathematician Georg Cantor

(1845–1918) [19], who laid the foundations of contemporary set theory over 100 years ago.
The birth of set theory can be traced back to Georg Cantor’s 1873 proof of the uncountability of real line

(i.e., the set of all real numbers is not countable) [18]. It was Bernhard Bolzano (1781–1848) who coined the
term Menge (‘‘set’’), which Cantor used to refer to objects in his theory. According to Cantor, a set is a col-
lection of any objects, which can be considered as a whole according to some law. As one can see, the notion of
set is very intuitive and simple.

Mathematical objects such as relations, functions, numbers, are examples of sets. In fact, set theory is
needed in mathematics to provide rigor.

The notion of a set is not only fundamental for the whole of mathematics but it also plays an important role
in natural language. We often speak about sets (collections) of various objects of interest such as collection of
books, paintings and people.
The intuitive meaning of a set according to some dictionaries is the following: ‘‘A number of things of
the same kind that belong or are used together.’’

Webster’s Dictionary
‘‘Number of things of the same kind, that belong together because they are similar or complementary to
each other.’’

The Oxford English Dictionary
Thus a set is a collection of things which are somehow related to each other but the nature of this relation-
ship is not specified in these definitions.

In fact, these definitions are due to the original definition given by Cantor.

2.2. Antinomies

In 1903, the renowned English philosopher Bertrand Russell (1872–1970) observed [266] that the intuitive
notion of a set given by Cantor leads to logical antinomies (contradictions), i.e., Cantor set theory is contra-

http://www.roughsets.org
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dictory (there are other kinds of antinomies, which are outside the scope of this paper). A logical antinomy
(for simplicity, we refer to ‘‘antinomy’’ in the rest of this paper) arises whenever correct logical reasoning leads
to a contradiction, i.e., to propositions A and non-A, which is not allowed in logic.

As an example let us discuss briefly the so-called Russell’s antinomy. Consider the set X containing all the
sets Y, which are not the elements of themselves. If we assume that X is its own element then X, by definition,
cannot be its own element; while if we assume that X is not its own element then, according to the definition of
the set X, it must be its own element. Thus while applying each assumption we obtain contradiction.

Antinomies show that a set cannot be a collection of arbitrary elements, as was stipulated by Cantor.
One could think that antinomies are ingenuous logical play, but it is not so. They question the essence of

logical reasoning. That is why there have been attempts to ‘‘repair’’ Cantor’s theory for over 100 years or to
substitute another set theory for it but the results have not been good so far. Is then all mathematics based on
doubtful foundations?

As a remedy for this defect several axiomatizations of set theory have been proposed (e.g., [101]).
Instead of improvements of Cantors’ set theory by its axiomatization, some mathematicians proposed

escape from classical set theory by creating a completely new idea of a set, which would free the theory from
antinomies [3,126,347].

No doubt the most interesting proposal was given by Polish logician Stanisław Leśniewski, who introduced
the relation of ‘‘being a part’’ instead of the membership relation between elements and sets employed in clas-
sical set theory. In his set theory called mereology, being a part is a fundamental relation [126]. Mereology is a
significant part of recent studies on the foundations of mathematics (see, e.g., [20,54,124,271,345]), artificial
intelligence [314], cognitive science [311], natural language [52], and research in rough set theory (see, e.g.,
[237,242,246]).

The problem of finding an alternative to classical set theory has failed to be solved until now.
The deficiency of sets, mentioned above, has rather philosophical than practical meaning, since sets used

practically in mathematics are free from the above discussed faults. Antinomies are associated with very ‘‘arti-
ficial’’ sets constructed in logic but not found in sets used in ‘‘everyday’’ mathematics. That is why we can use
mathematics safely.

2.3. Vagueness

Another issue discussed in connection with the notion of a set is vagueness. Mathematics requires that all
mathematical notions (including set) must be exact, otherwise precise reasoning would be impossible. How-
ever, philosophers [105,106,262,268] and recently computer scientists [140,177,179,278] as well as other
researchers have become interested in vague (imprecise) concepts.

In classical set theory a set is uniquely determined by its elements. In other words, this means that every
element must be uniquely classified as belonging to the set or not. That is to say the notion of a set is a crisp
(precise) one. For example, the set of odd integers is crisp because every integer is either odd or even.

In contrast to odd integers, the notion of a beautiful painting is vague, because we are unable to classify
uniquely all paintings into two classes: beautiful and not beautiful. Some paintings cannot be decided whether
they are beautiful or not and thus they remain in the doubtful area. Thus, beauty is not a precise but a vague
concept.

Almost all concepts we are using in natural language are vague. Therefore, common sense reasoning based
on natural language must be based on vague concepts and not on classical logic. Interesting discussion of this
issue can be found in [262].

The idea of vagueness can be traced back to the ancient Greek philosopher Eubulides of Megara (ca.
400BC) who first formulated so-called ‘‘sorites’’ (heap) and ‘‘falakros’’ (bald man) paradoxes (see, e.g.,
[105,106]). The bald man paradox goes as follows: suppose a man has 100,000 hairs on his head. Removing
one hair from his head surely cannot make him bald. Repeating this step we arrive at the conclusion that a
man without any hair is not bald. Similar reasoning can be applied to a hip of stones.

Vagueness is usually associated with the boundary region approach (i.e., existence of objects which cannot
be uniquely classified relative to a set or its complement) which was first formulated in 1893 by the father of
modern logic, German logician, Gottlob Frege (1848–1925) (see [55]).
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According to Frege the concept must have a sharp boundary. To the concept without a sharp boundary
there would correspond an area that would not have any sharp boundary-line all around. It means that math-
ematics must use crisp, not vague concepts, otherwise it would be impossible to reason precisely.

Summing up, vagueness is

• not allowed in mathematics;
• interesting for philosophy;
• a nettlesome problem for natural language, cognitive science, artificial intelligence, machine learning, phi-

losophy, and computer science.
3. Rough sets

This section briefly delineates basic concepts in rough set theory.

3.1. Rough sets: an introduction

Rough set theory, proposed by Pawlak in 1982 [202,206] can be seen as a new mathematical approach to
vagueness.

The rough set philosophy is founded on the assumption that with every object of the universe of discourse
we associate some information (data, knowledge). For example, if objects are patients suffering from a certain
disease, symptoms of the disease form information about patients. Objects characterized by the same informa-
tion are indiscernible (similar) in view of the available information about them. The indiscernibility relation
generated in this way is the mathematical basis of rough set theory. This understanding of indiscernibility
is related to the idea of Gottfried Wilhelm Leibniz that objects are indiscernible if and only if all available
functionals take on them identical values (Leibniz’s Law of Indiscernibility: The Identity of Indiscernibles)
[4,125]. However, in the rough set approach indiscernibility is defined relative to a given set of functionals
(attributes).

Any set of all indiscernible (similar) objects is called an elementary set, and forms a basic granule (atom) of
knowledge about the universe. Any union of some elementary sets is referred to as crisp (precise) set – other-
wise the set is rough (imprecise, vague).

Consequently, each rough set has boundary-line cases, i.e., objects which cannot with certainty be classified
either as members of the set or of its complement. Obviously crisp sets have no boundary-line elements at all.
This means that boundary-line cases cannot be properly classified by employing available knowledge.

Thus, the assumption that objects can be ‘‘seen’’ only through the information available about them leads
to the view that knowledge has granular structure. Due to the granularity of knowledge, some objects of inter-
est cannot be discerned and appear as the same (or similar). As a consequence, vague concepts in contrast to
precise concepts, cannot be characterized in terms of information about their elements. Therefore, in the pro-
posed approach, we assume that any vague concept is replaced by a pair of precise concepts – called the lower
and the upper approximation of the vague concept. The lower approximation consists of all objects which
surely belong to the concept and the upper approximation contains all objects which possibly belong to the
concept. The difference between the upper and the lower approximation constitutes the boundary region of
the vague concept. Approximations are two basic operations in rough set theory.

Hence, rough set theory expresses vagueness not by means of membership, but by employing a boundary
region of a set. If the boundary region of a set is empty it means that the set is crisp, otherwise the set is rough
(inexact). A non-empty boundary region of a set means that our knowledge about the set is not sufficient to
define the set precisely.

Rough set theory it is not an alternative to classical set theory but it is embedded in it. Rough set theory can
be viewed as a specific implementation of Frege’s idea of vagueness, i.e., imprecision in this approach is
expressed by a boundary region of a set.

Rough set theory has attracted attention of many researchers and practitioners all over the world, who have
contributed essentially to its development and applications. Rough set theory overlaps with many other
theories. Despite this overlap, rough set theory may be considered as an independent discipline in its own
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right. The rough set approach seems to be of fundamental importance in artificial intelligence and cognitive
sciences, especially in research areas such as machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, knowledge discovery, decision analysis, and expert systems. The main advantage of
rough set theory in data analysis is that it does not need any preliminary or additional information about data
like probability distributions in statistics, basic probability assignments in Dempster–Shafer theory, a grade of
membership or the value of possibility in fuzzy set theory (see, e.g., [48] where some combinations of rough
sets with non-parametric statistics are studied). One can observe the following about the rough set approach:

• introduction of efficient algorithms for finding hidden patterns in data,
• determination of optimal sets of data (data reduction),
• evaluation of the significance of data,
• generation of sets of decision rules from data,
• easy-to-understand formulation,
• straightforward interpretation of obtained results,
• suitability of many of its algorithms for parallel processing.
3.2. Indiscernibility and approximation

The starting point of rough set theory is the indiscernibility relation, which is generated by information
about objects of interest (see Section 3.1). The indiscernibility relation expresses the fact that due to a lack
of information (or knowledge) we are unable to discern some objects employing available information (or
knowledge).

This means that, in general, we are unable to deal with each particular object but we have to consider gran-
ules (clusters) of indiscernible objects as a fundamental basis for our theory.

From a practical point of view, it is better to define basic concepts of this theory in terms of data. Therefore
we will start our considerations from a data set called an information system. An information system is a data
table containing rows labeled by objects of interest, columns labeled by attributes and entries of the table are
attribute values. For example, a data table can describe a set of patients in a hospital. The patients can be
characterized by some attributes, like age, sex, blood pressure, body temperature, etc. With every attribute a
set of its values is associated, e.g., values of the attribute age can be young, middle, and old. Attribute values
can be also numerical. In data analysis the basic problem we are interested in is to find patterns in data, i.e., to
find a relationship between some set of attributes, e.g., we might be interested whether blood pressure depends
on age and sex.

Suppose we are given a pair A ¼ ðU ;AÞ of non-empty, finite sets U and A, where U is the universe of
objects, and A – a set consisting of attributes, i.e. functions a : U! Va, where Va is the set of values of attribute
a, called the domain of a. The pair A ¼ ðU ;AÞ is called an information system (see, e.g., [200]). Any informa-
tion system can be represented by a data table with rows labeled by objects and columns labeled by attributes.
Any pair (x,a), where x 2 U and a 2 A defines the table entry consisting of the value a(x).1

Any subset B of A determines a binary relation I(B) on U, called an indiscernibility relation, defined by
1 No
xIðBÞy if and only if aðxÞ ¼ aðyÞ for every a 2 B; ð1Þ

where a(x) denotes the value of attribute a for object x.

Obviously, I(B) is an equivalence relation. The family of all equivalence classes of I(B), i.e., the partition
determined by B, will be denoted by U/I(B), or simply U/B; an equivalence class of I(B), i.e., the block of
the partition U/B, containing x will be denoted by B(x) (other notation used: [x]B or [x]I(B)). Thus in view
of the data we are unable, in general, to observe individual objects but we are forced to reason only about
the accessible granules of knowledge (see, e.g., [194,206,247]).

If (x,y) 2 I(B) we will say that x and y are B-indiscernible. Equivalence classes of the relation I(B) (or blocks
of the partition U/B) are referred to as B-elementary sets or B-elementary granules. In the rough set approach
te, that in statistics or machine learning such a data table is called a sample [56].
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the elementary sets are the basic building blocks (concepts) of our knowledge about reality. The unions of
B-elementary sets are called B-definable sets.2

For B � A we denote by InfB(x) the B-signature of x 2 U, i.e., the set {(a,a(s)) : a 2 A}. Let Inf(B) =
{InfB(s) : s 2 U}. Then for any objects x,y 2 U the following equivalence holds: xI(B)y if and only if
InfB(x) = InfB(y).

The indiscernibility relation will be further used to define basic concepts of rough set theory. Let us define
now the following two operations on sets X � U
2 On
B�ðX Þ ¼ fx 2 U : BðxÞ � Xg; ð2Þ
B�ðX Þ ¼ fx 2 U : BðxÞ \ X 6¼ ;g; ð3Þ
assigning to every subset X of the universe U two sets B*(X) and B*(X) called the B-lower and the B-upper

approximation of X, respectively. The set
BN BðX Þ ¼ B�ðX Þ � B�ðX Þ; ð4Þ

will be referred to as the B-boundary region of X.

From the definition we obtain the following interpretation:

• The lower approximation of a set X with respect to B is the set of all objects, which can be for certain clas-
sified as X using B (are certainly X in view of B).

• The upper approximation of a set X with respect to B is the set of all objects which can be possibly classified
as X using B (are possibly X in view of B).

• The boundary region of a set X with respect to B is the set of all objects, which can be classified neither as X

nor as not-X using B.

In other words, due to the granularity of knowledge, rough sets cannot be characterized by using available
knowledge. Therefore with every rough set we associate two crisp sets, called lower and upper approximation.
Intuitively, the lower approximation of a set consists of all elements that surely belong to the set, whereas the
upper approximation of the set constitutes of all elements that possibly belong to the set, and the boundary

region of the set consists of all elements that cannot be classified uniquely to the set or its complement, by
employing available knowledge. The approximation definition is clearly depicted in Fig. 1.

The approximations have the following properties:
B�ðX Þ � X � B�ðX Þ
B�ð;Þ ¼ B�ð;Þ ¼ ;; B�ðUÞ ¼ B�ðUÞ ¼ U

B�ðX [ Y Þ ¼ B�ðX Þ [ B�ðY Þ
B�ðX \ Y Þ ¼ B�ðX Þ \ B�ðY Þ
X � Y implies B�ðX Þ � B�ðY Þ and B�ðX Þ � B�ðY Þ
B�ðX [ Y Þ � B�ðX Þ [ B�ðY Þ
B�ðX \ Y Þ � B�ðX Þ \ B�ðY Þ
B�ð�X Þ ¼ �B�ðX Þ
B�ð�X Þ ¼ �B�ðX Þ
B�ðB�ðX ÞÞ ¼ B�ðB�ðX ÞÞ ¼ B�ðX Þ
B�ðB�ðX ÞÞ ¼ B�ðB�ðX ÞÞ ¼ B�ðX Þ:

ð5Þ
Let us note that the inclusions in (5) cannot be in general substituted by the equalities. This has some impor-
tant algorithmic and logical consequences.

Now we are ready to give the definition of rough sets.
e can compare data tables corresponding to information systems with relations in relational databases [58].



Fig. 1. A rough set.
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If the boundary region of X is the empty set, i.e., BNB(X) = ;, then the set X is crisp (exact) with respect to
B; in the opposite case, i.e., if BNB(X) 5 ;, the set X is referred to as rough (inexact) with respect to B. Thus
any rough set, in contrast to a crisp set, has a non-empty boundary region.

One can define the following four basic classes of rough sets, i.e., four categories of vagueness:
3 car
B�ðX Þ 6¼ ; and B�ðX Þ 6¼ U ; iff X is roughly B-definable

B�ðX Þ ¼ ; and B�ðX Þ 6¼ U ; iff X is internally B-indefinable

B�ðX Þ 6¼ ; and B�ðX Þ ¼ U ; iff X is externally B-indefinable

B�ðX Þ ¼ ; and B�ðX Þ ¼ U ; iff X is totally B-indefinable:

ð6Þ
The intuitive meaning of this classification is the following.
If X is roughly B-definable, this means that we are able to decide for some elements of U that they belong to

X and for some elements of U we are able to decide that they belong to �X, using B.
If X is internally B-indefinable, this means that we are able to decide about some elements of U that they

belong to �X, but we are unable to decide for any element of U that it belongs to X, using B.
If X is externally B-indefinable, this means that we are able to decide for some elements of U that they

belong to X, but we are unable to decide, for any element of U that it belongs to �X, using B.
If X is totally B-indefinable, we are unable to decide for any element of U whether it belongs to X or �X,

using B.
Thus a set is rough (imprecise) if it has non-empty boundary region; otherwise the set is crisp (precise). This

is exactly the idea of vagueness proposed by Frege.
Let us observe that the definition of rough sets refers to data (knowledge), and is subjective, in contrast to

the definition of classical sets, which is in some sense an objective one.
A rough set can also be characterized numerically by the following coefficient:
aBðX Þ ¼
cardðB�ðX ÞÞ
cardðB�ðX ÞÞ ; ð7Þ
called the accuracy of approximation, where card(X) denotes the cardinality of X 5 ;.3 Obviously 0 6 aB(X) 6
1. If aB(X) = 1 then X is crisp with respect to B (X is precise with respect to B), and otherwise, if aB(X) < 1 then
X is rough with respect to B (X is vague with respect to B). The accuracy of approximation can be used to
d (X ) is also denoted by 1 · 1.
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measure the quality of approximation of decision classes on the universe U. One can use another measure of
accuracy defined by 1 � aB(X) or by 1� cardðBN BðX ÞÞ

cardðUÞ . Some other measures of approximation accuracy are also
used, e.g., based on entropy or some more specific properties of boundary regions (see, e.g., [59,279, 297]). The
choice of a relevant accuracy of approximation depends on a particular data set. Observe that the accuracy of
approximation of X can be tuned by B. Another approach to accuracy of approximation can be based on the
Variable Precision Rough Set Model (VPRSM) [375].

In the next section, we discuss decision rules (constructed over a selected set B of features or a family of sets
of features) which are used in inducing classification algorithms (classifiers) making it possible to classify to
decision classes unseen objects. Parameters which are tuned in searching for a classifier with the high quality
are its description size (defined using decision rules) and its quality of classification (measured by the number
of misclassified objects on a given set of objects). By selecting a proper balance between the accuracy of clas-
sification and the description size we expect to find the classifier with the high quality of classification also on
unseen objects. This approach is based on the minimal description length principle [263,264,298].

3.3. Decision systems and decision rules

Sometimes we distinguish in an information system A ¼ ðU ;AÞ a partition of A into two classes C,D � A

of attributes, called condition and decision (action) attributes, respectively. The tuple A ¼ ðU ;C;DÞ is called a
decision system.

Let V ¼
S
fV aja 2 Cg

S
fV d jd 2 Dg. Atomic formulae over B � C [ D and V are expressions a = v called

descriptors (selectors) over B and V, where a 2 B and v 2 Va. The set FðB; V Þ of formulae over B and V is the
least set containing all atomic formulae over B and V and closed with respect to the propositional connectives
^ (conjunction), _ (disjunction) and : (negation).

By kukA we denote the meaning of u 2FðB; V Þ in the decision table A which is the set of all objects in U

with the property u. These sets are defined by ka ¼ vkA ¼ fx 2 U jaðxÞ ¼ vg, ku ^ u0kA ¼ kukA \ ku0kA; ku_
u0kA ¼ kukA [ ku0kA; k:ukA ¼ U � kukA. The formulae from FðC; V Þ, Fðd; V Þ are called condition formu-

lae of A and decision formulae of A, respectively.
Any object x 2 U belongs to the decision class k

V
d2Dd ¼ dðxÞkA of A. All decision classes of A create a

partition U/D of the universe U.
A decision rule for A is any expression of the form u) w, where u 2FðC; V Þ, w 2FðD; V Þ, and

kukA 6¼ ;. Formulae u and w are referred to as the predecessor and the successor of decision rule u) w. Deci-
sion rules are often called ‘‘IF . . . THEN . . .’’ rules. Such rules are used in machine learning (see, e.g., [56]).

Decision rule u) w is true in A if and only if kukA � kwkA. Otherwise, one can measure its truth degree

by introducing some inclusion measure of kukA in kwkA.
Given two unary predicate formulae a(x),b(x), where x runs over a finite set U, Łukasiewicz [137] proposes

to assign to a(x) the value cardðkaðxÞkÞ
cardðUÞ , where ka(x)k = {x 2 U : x satisfies a}. The fractional value assigned to the

implication a(x)) b(x) is then cardðkaðxÞ^bðxÞkÞ
cardðkaðxÞkÞ under the assumption that ka(x)k5 ;. Proposed by Łukasiewicz,

that fractional part was much later adapted by machine learning and data mining literature.
Each object x of a decision system determines a decision rule

^

a2C

a ¼ aðxÞ )
^

d2D

d ¼ dðxÞ: ð8Þ
For any decision table A ¼ ðU ;C; dÞ one can consider a generalized decision function oA : U! Pow(·d2DVd)
defined by
oAðxÞ ¼ fi : 9x0 2 U ½ðx0; xÞ 2 IðAÞ and dðx0Þ ¼ i�g; ð9Þ
where Pow(Vd) is the powerset of the Cartesian product ·d2DVd of the family {Vd}d2D.
A is called consistent (deterministic), if card(oA(x)) = 1, for any x 2 U. Otherwise A is said to be inconsis-

tent (non-deterministic). Hence, a decision table is inconsistent if it consists of some objects with different deci-
sions but indiscernible with respect to condition attributes. Any set consisting of all objects with the same
generalized decision value is called a generalized decision class. Now, one can consider certain (possible) rules
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(see, e.g. [75,80]) for decision classes defined by the lower (upper) approximations of such generalized decision
classes of A. This approach can be extend, using the relationships of rough sets with the Dempster–Shafer
theory (see, e.g., [273,279]), by considering rules relative to decision classes defined by the lower approxima-
tions of unions of decision classes of A.

Numerous methods have been developed for different decision rule generation that the reader can find in
the literature on rough sets. Usually, one is searching for decision rules (semi) optimal with respect to some
optimization criteria describing quality of decision rules in concept approximations.

In the case of searching for concept approximation in an extension of a given universe of objects (sample),
the following steps are typical. When a set of rules has been induced from a decision table containing a set of
training examples, they can be inspected to see if they reveal any novel relationships between attributes that
are worth pursuing for further research. Furthermore, the rules can be applied to a set of unseen cases in order
to estimate their classificatory power. For a systematic overview of rule application methods the reader is
referred to the literature (see, e.g., [9,147]).

3.4. Dependency of attributes

Another important issue in data analysis is discovering dependencies between attributes in a given decision
system A ¼ ðU ;C;DÞ. Intuitively, a set of attributes D depends totally on a set of attributes C, denoted
C) D, if the values of attributes from C uniquely determine the values of attributes from D. In other words,
D depends totally on C, if there exists a functional dependency between values of C and D. Hence, C) D if
and only if the rule (8) is true on A for any x 2 U. D can depend partially on C. Formally such a dependency
can be defined in the following way.

We will say that D depends on C to a degree k (0 6 k 6 1), denoted C)k D, if
k ¼ cðC;DÞ ¼ cardðPOSCðDÞÞ
cardðUÞ ; ð10Þ
where
POSCðDÞ ¼
[

X2U=D

C�ðX Þ; ð11Þ
called a positive region of the partition U/D with respect to C, is the set of all elements of U that can be un-
iquely classified to blocks of the partition U/D, by means of C.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially (to degree k) on C.
If k = 0 then the positive region of the partition U/D with respect to C is empty.

The coefficient k expresses the ratio of all elements of the universe, which can be properly classified to
blocks of the partition U/D, employing attributes C and will be called the degree of the dependency.

It can be easily seen that if D depends totally on C then I(C) � I(D). It means that the partition generated
by C is finer than the partition generated by D. Notice, that the concept of dependency discussed above cor-
responds to that considered in relational databases.

Summing up: D is totally (partially) dependent on C, if all (some) elements of the universe U can be uniquely
classified to blocks of the partition U/D, employing C.

Observe, that (10) defines only one of possible measures of dependency between attributes (see, e.g., [296]).
One also can compare the dependency discussed in this section with dependencies considered in databases [58].

3.5. Reduction of attributes

We often face a question whether we can remove some data from a data-table preserving its basic proper-
ties, that is – whether a table contains some superfluous data.

Let us express this idea more precisely.
Let C,D � A, be sets of condition and decision attributes respectively. We will say that C 0 � C is a D-reduct

(reduct with respect to D) of C, if C 0 is a minimal subset of C such that
cðC;DÞ ¼ cðC0;DÞ: ð12Þ
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The intersection of all D-reducts is called a D-core (core with respect to D). Because the core is the intersection
of all reducts, it is included in every reduct, i.e., each element of the core belongs to some reduct. Thus, in a
sense, the core is the most important subset of attributes, since none of its elements can be removed without
affecting the classification power of attributes. Certainly, the geometry of reducts can be more compound. For
example, the core can be empty but there can exist a partition of reducts into a few sets with non-empty
intersection.

Many other kinds of reducts and their approximations are discussed in the literature (see, e.g.,
[12,164,165,274,294,297,298]). For example, if one change the condition (12) to oA(x) = oB(x), then the defined
reducts are preserving the generalized decision. Other kinds of reducts are preserving, e.g.,: (i) the distance
between attribute value vectors for any two objects, if this distance is greater than a given threshold [274],
(ii) the distance between entropy distributions between any two objects, if this distance exceeds a given thresh-
old [294,297], or (iii) the so-called reducts relative to object used for generation of decision rules [12]. There are
some relationships between different kinds of reducts. If B is a reduct preserving the generalized decision, than
in B is included a reduct preserving the positive region. For mentioned above reducts based on distances and
thresholds one can find analogous dependency between reducts relative to different thresholds. By choosing
different kinds of reducts we select different degrees to which information encoded in data is preserved.
Reducts are used for building data models. Choosing a particular reduct or a set of reducts has impact on
the model size as well as on its quality in describing a given data set. The model size together with the model
quality are two basic components tuned in selecting relevant data models. This is known as the minimal length
principle (see, e.g., [263,264,297,298]). Selection of relevant kinds of reducts is an important step in building
data models. It turns out that the different kinds of reducts can be efficiently computed using heuristics based,
e.g., on the Boolean reasoning approach [16].

3.6. Discernibility and Boolean reasoning

Methodologies devoted to data mining, knowledge discovery, decision support, pattern classification,
approximate reasoning require tools for discovering templates (patterns) in data and classifying them into
certain decision classes. Templates are in many cases most frequent sequences of events, most probable events,
regular configurations of objects, the decision rules of high quality, standard reasoning schemes. Tools for
discovering and classifying of templates are based on reasoning schemes rooted in various paradigms [43].
Such patterns can be extracted from data by means of methods based, e.g., on Boolean reasoning and
discernibility.

The discernibility relations are closely related to indiscernibility and belong to the most important relations
considered in rough set theory.

The ability to discern between perceived objects is important for constructing many entities like reducts,
decision rules or decision algorithms. In the classical rough set approach the discernibility relation
DIS(B) � U · U is defined by xDIS(B)y if and only if non(xI(B)y). However, this is, in general, not the case
for the generalized approximation spaces (one can define indiscernibility by x 2 I(y) and discernibility by
I(x) \ I(y) = ; for any objects x,y where I(x) = B(x), I(y) = B(y) in the case of the indiscernibility relation
defined in Section 3.2 and in a more general case I(x), I(y) are neighborhoods of objects not necessarily defined
by the equivalence relation.

The idea of Boolean reasoning is based on construction for a given problem P of a corresponding Boolean
function fP with the following property: the solutions for the problem P can be decoded from prime implicants
of the Boolean function fP. Let us mention that to solve real-life problems it is necessary to deal with Boolean
functions having large number of variables.

A successful methodology based on the discernibility of objects and Boolean reasoning has been developed
for computing of many important ingredients for applications. These applications include generation of
reducts and their approximations, decision rules, association rules, discretization of real value attributes, sym-
bolic value grouping, searching for new features defined by oblique hyperplanes or higher order surfaces, pat-
tern extraction from data as well as conflict resolution or negotiation.

Most of the problems related to generation of the above mentioned entities are NP-complete or NP-hard.
However, it was possible to develop efficient heuristics returning suboptimal solutions of the problems. The
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results of experiments on many data sets are very promising. They show very good quality of solutions gen-
erated by the heuristics in comparison with other methods reported in literature (e.g., with respect to the clas-
sification quality of unseen objects). Moreover, they are very efficient from the point of view of time necessary
for computing of the solution. Many of these methods are based on discernibility matrices. Note, that it is
possible to compute the necessary information about these matrices using directly4 information or decision
systems (e.g., sorted in preprocessing [9,163,168,359]) which significantly improves the efficiency of algorithms.

It is important to note that the methodology makes it possible to construct heuristics having a very impor-
tant approximation property which can be formulated as follows: expressions generated by heuristics (i.e.,
implicants) close to prime implicants define approximate solutions for the problem.

3.7. Rough membership

Let us observe that rough sets can be also defined employing the rough membership function (see Eq. (13))
instead of approximation [213]. That is, consider
4 i.e.
lB
X : U ! h0; 1i;
defined by
lB
X ðxÞ ¼

cardðBðxÞ \ X Þ
cardðX Þ ; ð13Þ
where x 2 X � U.
The value lB

X ðxÞ can be interpreted as the degree that x belongs to X in view of knowledge about x expressed
by B or the degree to which the elementary granule B(x) is included in the set X. This means that the definition
reflects a subjective knowledge about elements of the universe, in contrast to the classical definition of a set.

The rough membership function can also be interpreted as the conditional probability that x belongs to X

given B. This interpretation was used by several researchers in the rough set community (see, e.g.,
[78,297,338,358,379,367,375]). Note also that the ratio on the right hand side of Eq. (13) is known as the con-
fidence coefficient in data mining [56,109]. It is worthwhile to mention that set inclusion to a degree has been
considered by Łukasiewicz [137] in studies on assigning fractional truth values to logical formulas.

It can be shown that the rough membership function has the following properties [213]:

(1) lB
X ðxÞ ¼ 1 iff x 2 B*(X)

(2) lB
X ðxÞ ¼ 0 iff x 2 U � B*(X)

(3) 0 < lB
X ðxÞ < 1 iff x 2 BNB(X)

(4) lB
U�X ðxÞ ¼ 1� lB

X ðxÞ for any x 2 U

(5) lB
X[Y ðxÞP maxðlB

X ðxÞ; lB
Y ðxÞÞ for any x 2 U

(6) lB
X\Y ðxÞ 6 minðlB

X ðxÞ; lB
Y ðxÞÞ for any x 2 U.

From the properties it follows that the rough membership differs essentially from the fuzzy membership
[370], for properties (5) and (6) show that the membership for union and intersection of sets, in general, cannot
be computed – as in the case of fuzzy sets – from their constituents membership. Thus formally the rough
membership is more general from fuzzy membership. Moreover, the rough membership function depends
on an available knowledge (represented by attributes from B). Besides, the rough membership function, in
contrast to fuzzy membership function, has a probabilistic flavor.

Let us also mention that rough set theory, in contrast to fuzzy set theory, clearly distinguishes two very
important concepts, vagueness and uncertainty, very often confused in the AI literature. Vagueness is the
property of sets and can be described by approximations, whereas uncertainty is the property of elements
of a set and can be expressed by the rough membership function.
, without the necessity of generation and storing of the discernibility matrices.
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Both fuzzy and rough set theory represent two different approaches to vagueness. Fuzzy set theory
addresses gradualness of knowledge, expressed by the fuzzy membership, whereas rough set theory addresses
granularity of knowledge, expressed by the indiscernibility relation. A nice illustration of this difference has
been given by Dider Dubois and Henri Prade [41] in the following example. In image processing fuzzy set the-
ory refers to gradualness of gray level, whereas rough set theory is about the size of pixels.

Consequently, both theories are not competing but are rather complementary. In particular, the rough set
approach provides tools for approximate construction of fuzzy membership functions. The rough-fuzzy
hybridization approach proved to be successful in many applications (see, e.g., [192,195]).

Interesting discussion of fuzzy and rough set theory in the approach to vagueness can be found in [262]. Let
us also observe that fuzzy set and rough set theory are not a remedy for classical set theory difficulties.

One of the consequences of perceiving objects by information about them is that for some objects one can-
not decide if they belong to a given set or not. However, one can estimate the degree to which objects belong to
sets. This is a crucial observation in building foundations for approximate reasoning. Dealing with imperfect
knowledge implies that one can only characterize satisfiability of relations between objects to a degree, not
precisely. One of the fundamental relations on objects is a rough inclusion relation describing that objects
are parts of other objects to a degree. The rough mereological approach [194,241,242,244] based on such a
relation is an extension of the Leśniewski mereology [126].

4. Rough sets and logic

The father of contemporary logic is a German mathematician Gottlob Frege (1848–1925). He thought that
mathematics should not be based on the notion of set but on the notions of logic. He created the first axio-
matized logical system but it was not understood by the logicians of those days.

During the first three decades of the 20th century, there was a rapid development in logic bolstered to a
great extent by Polish logicians, especially Alfred Tarski (1901–1983) (see,e.g., [330]).

Development of computers and their applications stimulated logical research and widened their scope.
When we speak about logic, we generally mean deductive logic. It gives us tools designed for deriving true

propositions from other true propositions. Deductive reasoning always leads to true conclusions. The theory
of deduction has well established generally accepted theoretical foundations. Deductive reasoning is the main
tool used in mathematical reasoning and found no application beyond it.

Rough set theory has contributed to some extent to various kinds of deductive reasoning. Particularly,
various kinds of logics based on the rough set approach have been investigated, rough set methodology
contributed essentially to modal logics, many valued logic, intuitionistic logic and others (see, e.g.,
[5,6,45,47,50,64,63,141,142,160,159,161,178,180,181,184,204,205,238,239,255–261,341,340,342,343]).

A summary of this research can be found in [237] and interested reader is advised to consult this volume.
In natural sciences (e.g., in physics) inductive reasoning is of primary importance. The characteristic feature

of such reasoning is that it does not begin from axioms (expressing general knowledge about the reality) like in
deductive logic, but some partial knowledge (examples) about the universe of interest are the starting point of
this type of reasoning, which are generalized next and they constitute the knowledge about wider reality than
the initial one. In contrast to deductive reasoning, inductive reasoning does not lead to true conclusions but
only to probable (possible) ones. Also in contrast to the logic of deduction, the logic of induction does not
have uniform, generally accepted, theoretical foundations as yet, although many important and interesting
results have been obtained, e.g., concerning statistical and computational learning and others.

Verification of validity of hypotheses in the logic of induction is based on experiment rather than the formal
reasoning of the logic of deduction. Physics is the best illustration of this fact.

The research on inductive logic has a few centuries’ long history and outstanding English philosopher John
Stuart Mill (1806–1873) is considered its father [146].

The creation of computers and their innovative applications essentially contributed to the rapid growth of
interest in inductive reasoning. This domain develops very dynamically thanks to computer science. Machine
learning, knowledge discovery, reasoning from data, expert systems and others are examples of new directions
in inductive reasoning. It seems that rough set theory is very well suited as a theoretical basis for inductive
reasoning. Basic concepts of this theory fit very well to represent and analyze knowledge acquired from
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examples, which can be next used as starting point for generalization. Besides, in fact rough set theory has
been successfully applied in many domains to find patterns in data (data mining) and acquire knowledge from
examples (learning from examples). Thus, rough set theory seems to be another candidate as a mathematical
foundation of inductive reasoning [14,167,290].

The most interesting from computer science point of view is common sense reasoning. We use this kind of
reasoning in our everyday life, and examples of such kind of reasoning we face in news papers, radio TV etc.,
in political, economic etc., debates and discussions.

The starting point to such reasoning is the knowledge possessed by the specific group of people (common

knowledge) concerning some subject and intuitive methods of deriving conclusions from it. We do not have
here possibilities of resolving the dispute by means of methods given by deductive logic (reasoning) or by
inductive logic (experiment). So the best known methods of solving the dilemma is voting, negotiations or even
war. See e.g., Gulliver’s Travels [319], where the hatred between Tramecksan (high-heels) and Slamecksan
(low-heels) or disputes between Big-Endians and Small-Endians could not be resolved without a war.

These methods do not reveal the truth or falsity of the thesis under consideration at all. Of course, such
methods are not acceptable in mathematics or physics. Nobody is going to solve by voting, negotiations or
declare a war – the truth of Fermat’s theorem or Newton’s laws.

Reasoning of this kind is the least studied from the theoretical point of view and its structure is not suffi-
ciently understood, in spite of many interesting theoretical research in this domain [57]. The meaning of com-
mon sense reasoning, considering its scope and significance for some domains, is fundamental and rough set
theory can also play an important role in it but more fundamental research must be done to this end [283].

In particular, the rough truth introduced in [204] and studied, e.g., in [6] seems to be important for inves-
tigating commonsense reasoning in the rough set framework.

Let us consider a simple example. In the considered decision table we assume U = Birds is a set of birds that
are described by some condition attributes from a set A. The decision attribute is a binary attribute Files with
possible values yes if the given bird flies and no, otherwise. Then, we define the set of abnormal birds by
AbA(Birds) = A*({x 2 Birds : Flies(x) = no}). Hence, we have, AbA(Birds) = Birds � A*({x 2 Birds : Flies(x) =
yes}) and Birds � AbA(Birds) = A*({x 2 Birds : Flies(x) = yes}). It means that for normal birds it is consis-
tent, with knowledge represented by A, to assume that they can fly, i.e., it is possible that they can fly.
One can optimize AbA(Birds) using A to obtain minimal boundary region in the approximation of
{x 2 Birds : Flies(x) = no}.

It is worthwhile to mention that in [38] has been presented an approach combining the rough sets with non-
monotonic reasoning. There are distinguished some basic concepts that can be approximated on the basis of
sensor measurements and more complex concepts that are approximated using so-called transducers defined
by first order theories constructed overs approximated concepts. Another approach to commonsense reason-
ing has been developed in a number of papers (see, e.g., [14,167,194,247,283]). The approach is based on an
ontological framework for approximation. In this approach approximations are constructed for concepts and
dependencies between the concepts represented in a given ontology expressed, e.g., in natural language. Still
another approach combining rough sets with logic programming is discussed in [346].

To recapitulate, the characteristics of the three above mentioned kinds of reasoning are given below:

(1) Deductive:

• reasoning method: axioms and rules of inference;
• applications: mathematics;
• theoretical foundations: complete theory;
• conclusions: true conclusions from true premisses;
• hypotheses verification: formal proof.
(2) Inductive:

• reasoning method: generalization from examples;
• applications: natural sciences (physics);
• theoretical foundation: lack of generally accepted theory;
• conclusions: not true but probable (possible);
• hypotheses verification – experiment.
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(3) Common sense:

• reasoning method based on common sense knowledge with intuitive rules of inference expressed in

natural language;
• applications: every day life, humanities;
• theoretical foundation: lack of generally accepted theory;
• conclusions obtained by mixture of deductive and inductive reasoning based on concepts expressed in

natural language, e.g., with application of different inductive strategies for conflict resolution (such as
voting, negotiations, cooperation, war) based on human behavioral patterns;

• hypotheses verification – human behavior.
5. Exemplary research directions and applications

In the article we have discussed some basic issues and methods related to rough sets. For more detail the
reader is referred to the literature cited at the beginning of this article (see also rsds.wsiz.rzeszow.pl).

We are now observing a growing research interest in the foundations of rough sets (see, e.g.,
[13,17,62,86,93,94,104,116–119,143,153,176,171,197,203,209,211–213,235,240,249,273,277,278,283–285, 289–
292,307,312,308,310,315,328,352,366,364,369,371,372]), including the various logical (see, e.g., [5,6,45,47,50,
63,64,141,142,160,159,161,178,180,181,183,184,204,205,238,239,255–261,341,340,342,343]), algebraic (see,
e.g., [7,21–24,29,49,98–100,173–175,185–187]), [248,252,353–355], philosophical aspects of rough sets (see,
e.g., [3,33,182,237,262,278]), and complexity issues (see, e.g.,[26,34,35,154,155,162,168,298]).

Some relationships have already been established between rough sets and other approaches as well as a
wide range of hybrid systems have been developed (see, e.g., [8,37,60,39,40,72,46,48,59,66,67,96,128,103,
127,134,136,139,148,149,157,189–196,207,208,216,219,229,230,232,236,244,245,251,265,188,279,281,286,288,
295,299,302,317,318,321–324,326,327,329,358–363,365,368]).

As a result, rough sets are linked with decision system modeling and analysis of complex systems, fuzzy sets,
neural networks, evolutionary computing, data mining and knowledge discovery, pattern recognition, machine
learning, data mining, and approximate reasoning, multicriteria decision making. In particular, rough sets are used
in probabilistic reasoning, granular computing (including information granule calculi based on rough mereology),
intelligent control, intelligent agent modeling, identification of autonomous systems, and process specification.

A wide range of applications of methods based on rough set theory alone or in combination with other
approaches have been discovered in the following areas: acoustics, bioinformatics, business and finance, chem-
istry, computer engineering (e.g., data compression, digital image processing, digital signal processing, parallel
and distributed computer systems, sensor fusion, fractal engineering), decision analysis and systems, econom-
ics, electrical engineering (e.g., control, signal analysis, power systems), environmental studies, digital image
processing, informatics, medicine, molecular biology, musicology, neurology, robotics, social science, software
engineering, spatial visualization, Web engineering, and Web mining. Below we list some suggestions for read-
ings in selected application domains:

• machine learning, pattern recognition, data mining and knowledge discovery (see, e.g., [2,8,12,27,36,
42,48,59,61,65,67,76–82,85,90–92,107,108,221,120,122,123,127,132,133,135,148,149,166,190–195,211,231,
241,244,245,250,265,269,270,275,276,281,282,316,321–323,325,338,351,357]);

• bioinformatics (see, e.g.,[95,121,144,145,150,151,172,301,344]);
• multicriteria decision making (see, e.g.,[68–71,73,234]);
• medicine (see, e.g.,[10,51,83,84,89,102,215,301,303,304,309,320,332–335,338],[339,348,349,373]);
• signal processing and image processing (see, e.g.,[30–32,111–115,220,356]);
• hierarchical learning, ontology approximation (see, e.g.,[11,14,167,170,169,277,283,286,287]);
• other domains (see, e.g., [152,156–158,198,217,222–224,233,253,254,313]).
6. Conclusions

In this article we have presented basic concepts of rough set theory. We have also listed some research direc-
tions and exemplary applications based on the rough set approach.
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A variety of methods for decision rules generation, reducts computation and continuous variable discret-
ization are very important issues not discussed here. We have only mentioned the methodology based on dis-
cernibility and Boolean reasoning for efficient computation of different entities including reducts and decision
rules. For more details the reader is referred to [214]. Several extensions of the rough set approach have been
proposed in the literature [210]. In particular, it has been shown that the rough set approach can be used for
synthesis and analysis of concept approximations in the distributed environment of intelligent agents. The
relationships of rough set theory to many other theories has been extensively investigated. In particular, its
relationships to fuzzy set theory, the theory of evidence, Boolean reasoning methods, statistical methods,
and decision theory have been clarified and seem now to be thoroughly understood. There are reports on
many hybrid methods obtained by combining the rough set approach with other approaches such as fuzzy
sets, neural networks, genetic algorithms, principal component analysis, and singular value decomposition.
Many important research topics in rough set theory such as various logics related to rough sets and many
advanced algebraic properties of rough sets were only mentioned in the article. The reader can find details
in the books, articles and journals cited in this paper.
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[70] S. Greco, B. Matarazzo, R. Słowiński, Data mining tasks and methods: classification: multicriteria classification, in: W. Kloesgen,
J. _Zytkow (Eds.), Handbook of KDD, Oxford University Press, Oxford, 2002, pp. 318–328.
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[120] M. Kryszkiewicz, K. Cichoń, Towards scalable algorithms for discovering rough set reducts. In: Peters et al. [228], pp. 120–143.
[121] A. Lægreid, T.R. Hvidsten, H. Midelfart, J. Komorowski, A.K. Sandvik, Discovering regulatory binding-site modules using rule-

based learning, Genome Researche 5 (13) (2003) 965–979.
[122] R. Latkowski, On decomposition for incomplete data, Fundamenta Informaticae 54 (1) (2003) 1–16.
[123] R. Latkowski, Flexible indiscernibility relations for missing attribute values, Fundamenta Informaticae 67 (1–3) (2005) 131–147.
[124] A.O.V. Le Blanc, Lesniewski’s Computative Protothetic. Report (Ph.D. thesis), University of Manchester, Manchester, UK, 2003.
[125] G.W. Leibniz, Discourse on metaphysics. In: Ariew and Garber [4], pp. 35–68.
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[294] D. Śle�zak, Approximate reducts in decision tables. In: Sixth International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems IPMU’1996. Granada, Spain, 1996, vol. III, pp. 1159–1164.

[295] D. Śle�zak, Approximate Markov boundaries and Bayesian networks. In: Inuiguchi et al. [97], pp. 109–121.
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[302] D. Śle�zak, W. Ziarko, The investigation of the Bayesian rough set model, International Journal of Approximate Reasoning 40 (2005)
81–91.
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[307] R. Słowiński, J. Stefanowski, Rough set reasoning about uncertain data, Fundamenta Informaticae 27 (1996) 229–244.
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