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Summary. This paper concerns a new approach to data analysis based on information flow
distribution study in flow graphs. The introduced flow graphs differ from that proposed by
Ford and Fulkerson, for they do not describe material flow in the flow graph but information
“flow” about the data structure.

Data analysis (mining) can be reduced to information flow analysis and the relationship
between data can be boiled down to information flow distribution in a flow network. Moreover,
it is revealed that information flow satisfies Bayes’ rule, which is in fact an information flow
conservation equation. Hence information flow has probabilistic character, however Bayes’
rule in our case can be interpreted in an entirely deterministic way, without referring toprior
andposteriorprobabilities, inherently associated with Bayesian philosophy.

Furthermore in this paper we study hierarchical structure of flow networks by allowing to
substitute a subgraph determined by branchesx andy by a single branch connectingx and
y, calledfusionof x andy. This “fusion” operation allows us to look at data with different
accuracy and move from details to general picture of data structure.
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1.1 Introduction

In [4] we presented a new approach to data analysis based on information flow dis-
tribution study in flow graphs. The introduced flow graphs differ from that proposed
by Ford and Fulkerson [1], for they do not describe material flow in the flow graph
but information “flow” about the data structure.

With every branch of the flow graph three coefficients are associated, called
strength, certaintyandcoveragefactors. These coefficients were widely used in data
mining and rough set theory, but in fact they were first introduced by Łukasiewicz
[2] in connection with his study of logic and probability. These coefficients have a
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probabilistic flavor, but here they are interpreted in a deterministic way, describing
information flow distribution in the flow graph.

We claim that data analysis (mining) can be reduced to information flow analysis
and the relationship between data can be boiled down to information flow distribution
in a flow network. Moreover, it is revealed that information flow satisfies Bayes’ rule,
which is in fact an information flow conservation equation. Hence information flow
has probabilistic character, however Bayes’ rule in our case can be interpreted in
an entirely deterministic way, without referring toprior andposteriorprobabilities,
inherently associated with Bayesian philosophy.

Furthermore in this paper we study hierarchical structure of flow networks by
allowing to substitute a subgraph determined by branchesx andy by a single branch
connectingx andy, calledfusionof x andy. This ”fusion” operation allows us to
look at data with different accuracy and move from details to general picture of data
structure.

This approach allows us to study different relationships in data and can be used
as a new mathematical tool for data mining.

Summing up, we advocate to use flow analysis to:

• searching for patterns in data,
• searching for dependencies in data,
• data classification,
• data fusion.

A simple tutorial example will be used to illustrate the introduced ideas.

1.2 Example 1 - Smoking and Cancer

First let us explain basic concepts of the proposed methodology on a simple example
taken from [3].

In Table 1.1 data concerning 60 people who do or do not smoke and do or do not
have cancer are shown.

Table 1.1.Smoking and Cancer

Not smoke SmokeTotal
Not cancer 40 10 50
Cancer 7 3 10
Total 47 13 60

With every data table like that in presented in Table 1.1 we associate a flow graph
as shown in Fig.1.1.

Nodesx0 andx1 are inputsof the graph, whereasy0 andy1 areoutputsof the
graph. The numbers assigned to the input nodesφ(x0) andφ(x1) of the flow graph
representinflow to the flow graph, whereas numbers associated with the inputsφ(y0)
andφ(y1) representoutflowof the graph. Every branch(x, y) of the flow graph is
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labeled by a number which represents athroughflowφ(x, y) through the branch from
nodesx to y.

This representation of data is intended to capture the relationships in the data and
is not meant to describe any material flow in the network.

Fig. 1.1.Flow graph for Table 1.1

We will show in the next sections that representation of data as flow in a flow
graph can be used to discover many important relationships in data, e.g. dependences.
However to this end we have to ”normalize” the flow graph by using instead of abso-
lute values of flowφ(x) their relative valuesσ(x), i.e. percentage of flow with respect
to total flow of the graph. The absolute throughflowφ(x, y) will be also replaced
by relative throghflowσ(x, y). This normalized representation has very interesting
mathematical properties, which can be use to discover patterns in data.

Beside, we will use two additional coefficients called thecertaintyandcoverage
factors, denotedcer(x, y) and cov(x, y) respectively, which characterize how the
flow is spread between nodesx andy.

Normalized flow graph for the flow graph given in Fig.1.1 is shown in Fig.1.2.

Fig. 1.2.Normalized flow graph for Table 1.1

From the flow graph we arrive at the following conclusions:

• 85% non-smoking persons do not have cancer(cer(x0, y0) = 40/47 ≈ 0.85),
• 15% non-smoking persons do have cancer(cer(x0, y1) = 7/47 ≈ 0.15),
• 77% smoking persons do not have cancer(cer(x1, y0) = 10/13 ≈ 0.77),
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• 23% smoking persons do have cancer(cer(x1, y1) = 3/13 ≈ 0.23).

From the flow graph we get the following reason for having or not cancer:

• 80% persons having not cancer do not smoke(cov(x0, y0) = 4/5 = 0.80),
• 20% persons having not cancer do smoke(cov(x1, y0) = 1/5 = 0.20),
• 70% persons having cancer do not smoke(cov(x0, y1) = 7/10 = 0.70),
• 30% persons having cancer do smoke(cov(x1, y1) = 3/10 = 0.30).

Let us observe that in the statistical terminologyσ(x0), σ(x1) are priors while
σ(x0, y0), . . . , σ(x1, y1) are joint distributions,cov(x0, y0), . . . , cov(x1, y1) arepos-
teriorsandσ(y0), σ(y1) are marginal probabilities.

1.3 Flow Graphs Basic Concepts

1.3.1 Flow Graphs

In this section the fundamental concept of the proposed approach flow graph is de-
fined and discussed.

A flow graph is adirected, acyclic, finitegraphG = (N,B, φ), whereN is a set
of nodes, B ⊆ N ×N is a set ofdirected branches, φ : B → R+ is aflow function
andR+ is the set of non-negative reals.

Input of a nodex ∈ N is the setI(x) = {y ∈ N : (y, x) ∈ B}; outputof a node
x ∈ N is defined asO(x) = {y ∈ N : (x, y) ∈ B}.

We will also need the concept ofinput andoutputof a graphG, defined, respec-
tively, as follows:I(G) = {x ∈ N : I(x) = ∅}, O(G) = {x ∈ N : O(x) = ∅}.

Inputs and outputs ofG areexternal nodesof G; other nodes areinternal nodes
of G.

If (x, y) ∈ B thenφ(x, y) is athroughflowfrom x to y.
With every nodex of a flow graphG we associate itsinflow

φ+(x) =
∑

y∈I(x)
φ(y, x), (1.1)

andoutflow
φ−(x) =

∑

y∈O(x)

φ(x, y). (1.2)

Similarly, we define an inflow and an outflow for the whole flow graph, which
are defined as

φ+(G) =
∑

y∈I(G)

φ−(x), (1.3)

φ−(G) =
∑

x∈I(O)

φ+(x). (1.4)

We assume that for any internal nodex, φ+(x) = φ−(x) = φ(x), whereφ(x) is a
throughflowof nodex.
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Obviously,φ+(G) = φ−(G) = φ(G), whereφ(G) is atroughflowof graphG.
The above formulas can be considered asflow conservation equations[4].

We will define now anormalized flow graph.
A normalized flow graph is adirected, acyclic, finitegraphG = (N,B, σ),

whereN is a set ofnodes, B ⊆ N × N is a set ofdirected branchesand
σ : B → < 0, 1 > is anormalized flowof (x, y) and

σ(x, y) =
φ(x, y)
φ(G)

, (1.5)

is a strengthof (x, y). Obviously,0 ≤ σ(x, y) ≤ 1. The strength of the branch
expresses simply the percentage of a total flow through the branch.

In what follows we will use normalized flow graphs only, therefore by flow
graphs we will understand normalized flow graphs, unless stated otherwise.

With every nodex of a flow graphG we associate itsinflow andoutflowdefined
as

σ+(x) =
φ+(x)
φ(G)

=
∑

y∈I(x)
σ(y, x), (1.6)

σ−(x) =
φ−(x)
φ(G)

=
∑

y∈O(x)

σ(x, y). (1.7)

Obviously for any internal nodex, we haveσ+(x) = σ−(x) = σ(x), whereσ(x) is
anormalized throughflowof x.

Moreover, let

σ+(G) =
φ+(G)
φ(G)

=
∑

x∈I(G)

σ−(x), (1.8)

σ−(G) =
φ−(G)
φ(G)

=
∑

x∈O(G)

σ+(x). (1.9)

Obviously,σ+(G) = σ−(G) = σ(G) = 1.

If we invert direction of all branches inG, then the resulting graphG = (N,B′, σ′)
will be called aninvertedgraph ofG. Of course the inverted graphG′ is also a flow
graph and all inputs and outputs ofG become inputs and outputs ofG′, respectively.

1.3.2 Certainty and Coverage Factors

With every branch(x, y) of a flow graphG we associate thecertaintyand thecover-
age factors.

Thecertaintyand thecoverageof (x, y) are defined as

cer(x, y) =
σ(x, y)
σ(x)

, (1.10)
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and

cov(x, y) =
σ(x, y)
σ(y)

. (1.11)

respectively.
Evidently,cer(x, y) = cov(y, x), where(x, y) ∈ B and(y, x) ∈ B′.
Below some properties, which are immediate consequences of definitions given

above are presented: ∑

y∈O(x)

cer(x, y) = 1, (1.12)

∑

x∈I(y)
cov(x, y) = 1, (1.13)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (1.14)

σ(y) =
∑

x∈I(y)
cov(x, y)σ(y) =

∑

xy∈I(y)
σ(x, y), (1.15)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
, (1.16)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
. (1.17)

Obviously the above properties have a probabilistic flavor, e.g., equations (14) and
(15) have a form of total probability theorem, whereas formulas (16) and (17) are
Bayes’ rules. However, these properties in our approach are interpreted in a deter-
ministic way and they describe flow distribution among branches in the network.

1.3.3 Paths, Connections and Fusion

A (directed) path fromx to y, x 6= y in G is a sequence of nodesx1, . . . , xn such
thatx1 = x, xn = y and(xi, xi+1) ∈ B for everyi, 1 ≤ i ≤ n − 1. A path fromx
to y is denoted by[x . . . y].

Thecertaintyof the path[x1 . . . xn] is defined as

cer[x1 . . . xn] =
n−1∏

i=1

cer(xi, xi+1), (1.18)

thecoverageof the path[x1 . . . xn] is

cov[x1 . . . xn] =
n−1∏

i=1

cov(xi, xi+1), (1.19)

and thestrengthof the path[x . . . y] is
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σ[x . . . y] = σ(x)cer[x . . . y] = σ(y)cov[x . . . y]. (1.20)

The set of all paths fromx to y(x 6= y) in G denoted< x, y >, will be called a
connectionfrom x to y in G. In other words, connection< x, y > is a sub-graph of
G determined by nodesx andy.

Thecertaintyof the connection< x, y > is

cer < x, y >=
∑

[x...y]∈<x,y>
cer[x . . . y], (1.21)

thecoverageof the connection< x, y > is

cov < x, y >=
∑

[x...y]∈<x,y>
cov[x . . . y], (1.22)

and thestrengthof the connection< x, y > is

σ < x, y > =
∑

[x...y]∈<x,y>
σ[x . . . y] =

= σ(x)cer < x, y >= σ(y)cov < x, y > . (1.23)

If we substitute simultaneously every sub-graph< x, y > of a given flow graphG,
wherex is an input node andy an output node ofG, by a single branch(x, y) such
thatσ(x, y) = σ < x, y >, then in the resulting graphG′, called thefusionof G, we
havecer(x, y) = cer < x, y >, cov(x, y) = cov < x, y > andσ(G) = σ(G′).

Thus fusion of a flow graph can be understood as a simplification of the graph
and can be used to get a general picture of relationships in the flow graph.

1.3.4 Dependences in Flow Graphs

Let x andy be nodes in a flow graphG = (N,B, σ), such that(x, y) ∈ B.
Nodesx andy areindependentin G if

σ(x, y) = σ(x)σ(y). (1.24)

From (21) we get
σ(x, y)
σ(x)

= cer(x, y) = σ(y), (1.25)

and
σ(x, y)
σ(y)

= cov(x, y) = σ(x). (1.26)

If
cer(x, y) > σ(y), (1.27)

or
cov(x, y) > σ(x), (1.28)
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thenx andy arepositively dependsonx in G.
Similarly, if

cer(x, y) < σ(y), (1.29)

or
cov(x, y) < σ(x), (1.30)

thenx andy arenegatively dependentin G.
Relations of independency and dependences are symmetric ones, and are analo-

gous to those used in statistics.
For every branch(x, y) ∈ B we define adependency(correlation) factorη(x, y)

defined as

η(x, y) =
cer(x, y)− σ(y)
cer(x, y) + σ(y)

=
cov(x, y)− σ(x)
cov(x, y) + σ(x)

. (1.31)

Obviously−1 ≤ η(x, y) ≤ 1; η(x, y) = 0 if and only if cer(x, y) = σ(y) and
cov(x, y) = σ(x); η(x, y) = −1 if and only if cer(x, y) = cov(x, y) = 0; η(x, y) =
1 if and only if σ(y) = σ(x) = 0.

It is easy to check that ifη(x, y) = 0, thenx andy are independent, if−1 ≤
η(x, y) < 0 thenx andy are negatively dependent and if0 < η(x, y) ≤ 1 then
x andy are positively dependent. Thus the dependency factor expresses a degree
of dependency, and can be seen as a counterpart of correlation coefficient used in
statistics.

Fig. 1.3.Initial data
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1.4 Example 2 - Medical Test

Now we are ready to illustrate the basic concepts presented in this paper by a simple
tutorial example.

Various patient groups are put to the test for certain drug effectiveness. Initial
data are shown in Fig.1.3. Corresponding flow graph is presented in Fig.1.4.

Fig. 1.4.Relationship betweenDisease, AgeandTest

Fig.1.5 shows the corresponding fusion, ofDiseaseandTest.

Fig. 1.5.Fusion of the flow graph presented in Fig.1.4

This flow graph leads to the following conclusions:
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• If the disease is present then the test result is positive with certainty 0.68
• It the disease is absent then the test result is negative with certainty 0.78

Explanation of test results is as follows:

• If the test result is positive then the disease is present with certainty 0.87
• If the test result is negative then the disease is absent with certainty 0.61

From the flow graph we get:

• There is slight positive correlation between presence of the disease and positive
test result(η = 0.10).

• There is low positive correlation between absence of the disease and negative test
result(η = 0.27).

• There is slight negative correlation between presence of the disease and negative
test result(η = −0.17).

• There is higher negative correlation between absence of the disease and positive
test result(η = −0.40).

1.5 Conclusions
We proposed in this paper to represent relationships in data by means of flow graphs.
Flow in the flow graph is meant to capture structure of data rather than to describe
any physical material flow in the network. It is revealed the information flow in
the flow graph is governed by Bayes’ formula, however the formula can interpreted
in entirely deterministic way, without referring to its probabilistic character. This
representation allows us to study different relationships in the data and can be used
as a new mathematical tool for data mining.

Summing up:

• flow graphs can be used to knowledge representation,
• flow distribution represents relationships in data,
• flow conservation is described by Bayes’ formula,
• Bayes’ formula has deterministic interpretation.
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