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ABSTRACT 
 
In this paper we propose a new approach to data (mining) and 
knowledge discovery based on information flow distribution 
study in a flow graph. Flow graphs introduced in this paper are 
different from those proposed by Ford and Fulkerson for 
optimal flow analysis and they model rather, e.g., flow 
distribution in a network, than the optimal flow. The flow 
graphs considered in this paper are not meant to physical 
media (e.g., water) flow analysis, but to information flow 
examination in decision algorithms. It is revealed that flow in 
the flow graph is governed by Bayes’ rule, but the rule has 
entirely deterministic interpretation, not referring to its 
probabilistic roots. Besides, decision algorithm induced by the 
flow graph and dependency between conditions and decisions 
of decision rules are defined and studied. This idea is based on 
statistical concept of dependency but in our setting it has 
deterministic meaning. 
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1. INTRODUCTION 
 

In this paper we propose a new approach to data (mining) and 
knowledge discovery based on information flow distribution 
study in a flow graph. 
 
Flow graphs introduced in this paper are different from those 
proposed by Ford and Fulkerson [1] for optimal flow analysis 
and they model rather, e.g., flow distribution in a network, 
than the optimal flow.  
 
The flow graphs considered in this paper are not meant to 
physical media (e.g., water) flow analysis, but to information 
flow examination in decision algorithms. To this end branches 
of a flow graph can be interpreted as decision rules. With 
every decision rule (i.e. branch) three coefficients are 
associated, the strength, certainty and coverage factors.  
 
This coefficient have been used under different names in data 
mining (see e.g., [2], [3]) but they were used first by 
Łukasiewicz [4] in his study of logic and probability. 
 
This interpretation, in particular, leads to a new look on 
Bayes’ theorem. Let us also observe that despite Bayes’ rule 
fundamental role in statistical inference it has led to many 
philosophical discussions concerning its validity and meaning, 
and has caused much criticism [5], [6], [7]. 

This paper is a continuation of some authors’ ideas presented 
in [8], where the relationship between Bayes’ rule and flow 
graphs has been introduced and studied. 
 
First we introduce basic concepts of the proposed approach, 
i.e., flow graph and its fundamental properties. It is revealed 
that flow in the flow graph is governed by Bayes’ rule, but the 
rule has entirely deterministic interpretation, not referring to 
its probabilistic roots. Besides decision algorithm induced by 
the flow graph and dependency between conditions and 
decisions of decision rules are defined and studied. This idea 
is based on statistical concept of dependency but in our setting 
it has deterministic meaning. Simple tutorial examples is used 
to illustrate how the introduced ideas work in data mining. The 
presented ideas can be used, as a new tool for data mining, and 
knowledge discovery. Besides, it also throw a new light on the 
concept of probability. 
 
 

2. FLOW GRAPHS 
 

2.1 Overview 
 
In this part the fundamental concepts of the proposed approach 
are defined and discussed. In particular flow graphs, certainty 
and coverage factors of branches of the flow graph are defined 
and studied. Next these coefficient are extended to paths and 
some classes of sub-graphs, called connections. Further a 
notion of a fusion of a flow graph is defined. 
 
Further dependences of flow are introduced and examined. 
Finally dependency factor (correlation coefficient) is defined. 
 
2.2 Basic Concepts 
 
A flow graph is a directed, acyclic, finite graph G = (N, B, ϕ), 
where N is a set of nodes, B ⊆ N × N is a set of directed 
branches, ϕ : B →R+ is a flow function and R+ is the set of 
non-negative reals. Input of a node x∈N is the set 
I(x)={y∈N: ),( xy ∈B}; output of a node x∈N is defined as 
O(x) = {y∈N: ),( yx ∈B}.We will also need the concept of 
input and output of a graph G, defined, respectively, as 
follows: I(G) = {x∈N : I(x) = ∅}, O(G) = {x∈N : O(x) = ∅}. 
Inputs and outputs of G are external nodes of G; other nodes 
are internal nodes of G.  

 
If ),( yx ∈B then ϕ ),( yx  is a throughflow from x to y.  
 



 

With every node x of a flow graph G we associate its inflow  
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Similarly, we define an inflow and an outflow for the whole 
flow graph, which are defined as  
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We assume that for any internal node x, 
)()()( xxx ϕϕϕ == −+ , where )(xϕ  is a throughflow of node 

x. 
 
Obviously, )()()( GGG ϕϕϕ == −+ , where )(Gϕ is a 
throughflow of graph G. 
 
The above formulas can be considered as flow conservation 
equations [1]. 

Example. We will illustrate basic concepts of flow graphs by 
an example of a group of 1000 patients put to the test for 
certain drug effectiveness. 
 
Assume that patients are grouped according to presence of the 
disease, age and test results, as shown in Fig. 1.  
 

 
 

Fig. 1. Flow graph 
 
E.g., 600)( 1 =xϕ  means that these are 600 patients suffering 
from the disease, 570)( 1 =yϕ  means that these are 570 old 
patients 471)( 1 =zϕ  means that 471 patients have positive 
test result; 450),( 11 =yxϕ means that these are 450 old 
patients which suffer from disease etc. 
 

Thus the flow graph gives clear insight into the relationship 
between different groups of patients. 
 
Let us now explain the flow graph in more details. 
 
Nodes of the flow graph are depicted by circles, labeled by x1, 
x2, y1, y2, y3, z1, z2. A branch ),( yx  is denoted by an arrow 
from node x to y. E.g., branch ),( 11 zx  is represented by an 
arrow from x1 to z1, inputs of node y1 are nodes x1 and x2, 
outputs of node x1 are nodes y1, y2 and y3. 
 
Inputs of the flow graph are nodes x1 and x2 and x3, whereas 
outputs of the flow graph are nodes z1 and z2. 
 
Nodes y1, y2 and y3 are internal nodes of the flow graph. The 
throughflow of the branch ),( 11 yx  is 450),( 11 =yxϕ . Inflow 
of node y1 is 570120450)( 1 =+=+ yϕ . Outflow of node y1 is 

570171399)( 1 =+=− yϕ . 
 
Inflow of the flow graph is )()( 21 xx ϕϕ + = 600 + 400 = 
1000, and outflow of the flow graph is )()( 21 zz ϕϕ + = 471 + 
529 = 1000. 
 
Throughflow of node ),(),()( 121111 yxyxyy ϕϕϕ +==  

570),(),( 2211 =+= zyzy ϕϕ .                                                � 
 
We will define now a normalized flow graph. A normalized 
flow graph is a directed, acyclic, finite graph 
G = (N, B, σ), where N is a set of nodes, B ⊆ N × N is a set 
of directed branches and σ : B → <0,1> is a normalized flow 
of ),( yx  and 
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is a strength of ),( yx . Obviously, 0 ≤ σ ),( yx ≤ 1. The 
strength of the branch expresses simply the percentage of a 
total flow through the branch. 
 
In what follows we will use normalized flow graphs only, 
therefore by flow graphs we will understand normalized flow 
graphs, unless stated otherwise. 
 
With every node x of a flow graph G we associate its inflow 
and outflow defined as  
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Obviously for any internal node x, we have 
)()()( xxx σσσ == −+ , where )(xσ  is a normalized 

throughflow of x. 
 



 

Moreover, let 
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Obviously, 1)()()( === −+ GGG σσσ . 
 
Example (cont.). The normalized flow graph of the flow 
graph presented in Fig. 1 is given in Fig. 2. 

 
Fig. 2. Normalized flow graph 

 
In the flow graph e.g., 60.0)( 1 =xσ , that means that 60% of 
total inflow is associated with input x1. The strength 

45.0),( 11 =yxσ  means that 45% of total flow flows through 
the branch ),( 11 yx . etc.                                                          � 
 
Let G = (N, B, σ) be a flow graph. If we invert direction of all 
branches in G, then the resulting graph G = (N, B′, σ′) will be 
called an inverted graph of G. Of course the inverted graph G′ 
is also a flow graph and all inputs and outputs of G become 
inputs and outputs of G′, respectively. 
 
2.3 Certainty and Coverage Factors 
 
With every branch ),( yx  of a flow graph G we associate the 
certainty and the coverage factors.  
 
The certainty and the coverage of ),( yx  are defined as  
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respectively. 

Evidently, cer(x, y) = cov(y, x), where (x, y)∈B and  
(y, x)∈B′. 
 
Example (cont.). The certainty and the coverage factors for 
the flow graph presented in Fig. 2 are shown in Fig. 3. 

 
Fig. 3. Certainty and coverage 
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Example (cont.). The inverted flow graph of the flow graph 
from Fig. 3 is shown in Fig. 4. 

 
Fig. 4. Inverted flow graph 

� 
 

Below some properties of certainty and coverage factors, 
which are immediate consequences of definitions given above, 
are presented: 
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Obviously the above properties have a probabilistic flavor, 
e.g., equations (14) and (15) have a form of total probability 
theorem, whereas formulas (16) and (17) are Bayes’ rules. 
However, these properties in our approach are interpreted in a 
deterministic way and they describe flow distribution among 
branches in the network. 
 
2.4 Paths, Connections and Fusion 
 
A (directed) path from x to y, x ≠ y in G is a sequence of nodes 
x1,…,xn such that x1 = x, xn = y and (xi, xi+1) ∈B for every i,  
1 ≤ i ≤ n-1. A path from x to y is denoted by [x…y]. 
 
The certainty of the path [x1…xn] is defined as 
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the coverage of the path [x1… xn] is  
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and the strength of the path [x…y] is 

σ [x…y] = σ (x) cer[x…y] = σ (y) cov[x…y]. (20)

The set of all paths from x to y (x ≠ y) in G denoted >< yx, , 
will be called a connection from x to y in G. In other words, 
connection >< yx, is a sub-graph of G determined by nodes x 
and y. 
 
The certainty of the connection >< yx,  is 
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and the strength of the connection >< yx,  is 
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Let x, y (x ≠ y) be nodes of G. If we substitute simultaneously 
every for the sub-graph >< yx,  of a given flow graph G, 

where x and y are input and output nodes of G respectively, by 
single branch ),( yx  such that ),( yxσ , then in the resulting 
graph G ′ , called the fusion of G, we have =),( yxcer  

>< yxcer , , ><= yxcovyxcov ,),(  and )()( GG ′= σσ . 
 
Example (cont.). In the flow graph presented in Fig. 3 for the 
path p = [x1, y1, z1] we have cer(p) =0.75 × 0.70 ≈ 0.53, cov(p) 
= 0.85 × 0.79 ≈ 0.67.  
 
The connection >< 11, zx  in the flow graph consists of paths 
[x1, , y1, z1] and [x1, y2, z1]. This connection is shown in Fig. 5. 
 

 
 

Fig. 5. Connection >< 11, zx  
 

For this connection we have cer <x1, z1> = 0.75 × 0.70 + 0.20 
× 0.58 ≈ 0.64; cov<x1,z1> = 0.85 × 0.79 + 0.15 × 1.00 ≈ 0.82. 
 
The strength of the connection x1, z1 is 0.64 × 0.60 ≈ 0.82 × 
0.47 ≈ 0.38.  

Connections >< 21 , zx , >< 12 , zx  and >< 12 , zx  are 
presented in Fig. 6, Fig. 7 and Fig. 8, respectively. 

 

Fig. 6. Connection >< 12 , zx  



 

 

Fig. 7. Connection >< 32 , zx  

 

Fig. 8. Connection >< 31, zx  
� 

Example (cont.). The fusion of the flow graph shown in Fig. 
3 is given in Fig. 9. 

 
Fig. 9. Fusion of a flow graph 

 
The fusion of a flow graph gives information about the flow 
distribution between input and output of the flow graph, i.e., it 
leads to the following conclusions: 

− if the disease is present then the test result is positive with 
certainty 0.64, 

− it the disease is absent then the test result is negative with 
certainty 0.79. 

 
Explanation of test results is as follows: 
− if the test result is positive then the disease is present with 

certainty 0.81, 
− if the test result is negative then the disease is absent with 

certainty 0.60.  � 
 
2.5 Dependences in Flow Graphs 
 
Let x and y be nodes in a flow graph G = (N, B, σ), such that 
(x,y)∈B. Nodes x and y are independent in G if 

σ ),( yx  = σ(x) σ(y). (24)

From (21) we get 
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If 

cer(x,y) > σ(y), (27)
or 

cov ),( yx  > σ(x), (28)

then x and y are positively dependent on x in G. Similarly, if 

cer ),( yx  < σ(y), (29)

or 

cov ),( yx  < σ(x), (30)

then x and y are negatively dependent in G. 
 
Let us observe that relations of independency and 
dependences are symmetric ones, and are analogous to those 
used in statistics. 
 
For every branch (x, y)∈B we define a dependency 
(correlation) factor ),( yxη  defined as  
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Obviously 1),(1 ≤≤− yxη ; 0),( =yxη  if and only if 
)(),( yyxcer σ=  and )(),( xyxcov σ= ; 1),( −=yxη  if and 

only if 0),(),( == yxcovyxcer ; 1),( =yxη  if and only if 
.0)()( == xy σσ  It is easy to check that if 0),( =yxη , then 

x and y are independent, if 0),(1 <≤− yxη  then x and y are 
negatively dependent and if 1),(0 ≤< yxη  then x and y are 
positively dependent. Thus the dependency factor expresses a 
degree of dependency, and can be seen as a counterpart of 
correlation coefficient used in statistics. 



 

Example (cont.). Dependency factors for the flow graph 
shown in Fig. 9 are given Fig. 10. 
 

 
Fig. 10. Dependencies in a flow graph 

 
Thus, there is positive dependency between presence of the 
disease and positive test result as well as between absence of 
disease and negative test result. However there is much 
stronger negative dependency between presence of the disease 
and negative test result or similarly − between absence of the 
disease and positive test result.                                                � 
 
2.6 Flow Graph and Decision Algorithms 
 
Flow graphs can be interpreted as decision algorithms [8]. 
 
Let us assume that the set of nodes of a flow graph is 
interpreted as a set of logical formulas. The formulas are 
understood as propositional functions and if x is a formula, 
then )(xσ  is to be interpreted as a truth value of the formula. 
Let us observe that the truth values are numbers from the 
closed interval <0, 1>, i.e., 1)(0 ≤≤ xσ . 
 
According to [4] these truth values can be also interpreted as 
probabilities. Thus )(xσ  can be understood as flow 
distribution ratio (percentage), truth value or probability. We 
will stick to the first interpretation.  
 
With every branch ),( yx  we associate a decision rule 

yx → , read if x then y; x will be referred to as condition, 
whereas y − decision of the rule. Such a rule is characterized 
by three numbers, ),( yxσ , cer ),( yx  and cov ),( yx . 
 
Thus every path ][ 1 nxx K  determines a sequence of decision 

21 xx → , nn xxxx →→ −132 ,,K .  
 
From previous considerations it follows that this sequence of 
decision rules can be interpreted as a single decision rule 

nn xxxx →−121 K , in short nxx →∗ , where ,121 −
∗ = nxxxx K  

characterized by  
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The set of all decision rules 
nn iiii xxxx →

−121
K  associated with 

all paths ],[
1 nii xx  such that 

1i
x  and 

ni
x  are input and output of 

the graph respectively will be called a decision algorithm 
induced by the flow graph. 
 
If yx →  is a decision rule then we say that condition and 
decision of the decision rule are independent if x and y are 
independent, otherwise condition and decision of the decision 
rule are dependent (positively or negatively). 
 
To measure the degree of dependency between condition and 
decision of the decision rule yx →  we can use the 
dependency factor ),( yxη . 
 
Thus every decision rule beside strength, certainty and 
coverage factor can be also characterized by the degree of 
dependency between its condition and decision. This measure 
can be used as a new tool for data mining in pursuit of patterns 
in data. 
 
Example (cont.). The decision algorithm induced by the flow 
graph shown in Fig. 3 is given below. 
 

 certainty coverage strength 
111, zyx →  0.71 0.67 0.32 

211, zyx →  0.29 0.25 0.14 

121, zyx →  0.58 0.15 0.07 

221, zyx →  0.42 0.09 0.05 

231, zyx →  0.05 0.06 0.03 

112 , zyx →  0.67 0.18 0.08 

212 , zyx →  0.33 0.08 0.04 

232 , zyx →  1.00 0.53 0.28 
 
The corresponding flow graph is presented in Fig. 11. 
 



 

 
Fig. 11. Flow graph for the decision algorithm 

 
From the decision algorithm we can see e.g., that 71% ill and 
old patients have positive test result, whereas 100% young 
healthy patients have negative test results. We can also 
conclude that positive test result have mostly ill and old 
patients and negative test result display mostly young healthy 
patients. 
 
For the above decision rules dependency factors are 19.0≈η  
and 31.0≈η  respectively. That means that the relationship 
between young healthy patients and negative test results is 
more substantial then - between ill old patients and positive 
test result. 

CONCLUSIONS 
 
We propose in this paper a new approach to knowledge 
representation and data mining, based on flow analysis in a 
new kind of flow networks. 
 
We advocate in this paper to represent relationships in data by 
means of flow graphs. Flow in the flow graph is meant to 
capture structure of data rather than to describe any physical 
material flow in the network. It is revealed the information 
flow in the flow graph is governed by Bayes' formula, 
however the formula can interpreted in entirely deterministic 
way, without referring to its probabilistic character. This 
representation allows us to study different relationships in data 
and can be used as a new mathematical tool for data mining. 
 
Summing up 
− flow graphs can be used to knowledge representation, 
− flow distribution represents relationships in data, 

− flow conservation is described by Bayes' formula, 
− Bayes' formula has deterministic interpretation. 
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