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Abstract. We proposed in this paper to use some ideas of Jan tukasiewdozerning indepen-
dence of logical formulas, to study dependencies in datsbas

1. Introduction

This paper concerns the application of some ideas givenrbullasiewicz in [1], in connection with his
study of logic and probability — to data mining and data asialyThe relationship between implication
and decision rules is formulated and studied along the Ipreposed by the author in [2, 3]. More-
over, the independence of propositional functions, inioedl by tukasiewicz, is generalized and used
to characterization of decision rules — leading to a new lmoklependencies in databases. The proposed
approach seems to give a new tool to discovering patternata d

2. Decisionrules

LetU be a non empty finite set, called tbeiverseand let® , ¥ be logical formulas. The meaning of
in U, denoted by®|, is the set of all elements &f, that satisfie in U. The truth value ofe denoted
val(®) is defined agard|®|/card(U).
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A decision ruleis an expressiod — ¥, read if ® then ¥, where® and ¥ are referred to as
conditionsanddecisionsof the rule, respectively.

The numbersupp(®, ¥) = card(|® A ¥|) will be called thesupportof the rule® — ¥. We will
consider non void decision rules only, i.e., rules such ¢hap(®, ¥) # 0.

With every decision rul@ — ¥ we associate itstrengthdefined as

supp(®, V)

str(®, ¥) = card(U)

Moreover, with every decision rué — ¥ we associate theertainty factordefined as

_ str(®, V)
cer(®,V) = val (D) (@h)
and thecoverage factoof & — ¥
str(®, )
V)= ——~~ 2
cou(®, W) = =, @

whereval (®) # 0 andval(¥) # 0.

If a decision ruled — ¥ uniquely determines decisions in terms of conditions, if.eer(®, V) = 1,
then the rule icertain otherwise the rule isncertain

If a decision ruled — W covers all decisions, i.e., dov(®, ¥) = 1 then the decision rule i®tal,
otherwise the decision rule prtial.

Immediate consequences of (1) and (2) are:

cov(®, ¥)val (V)

cer(®,0) = oal (D) ,

®3)

cer(®, U)val (D)
val (P)
Note, that (3) and (4) are Bayes' formulas. This relatiopshist was observed by tukasiewicz [1].

(4)

cov(Q, V) =

3. Decision rules and inference rules

We have 1(®)cer(®, D) 1(®, )
val(®)cer(®, V)  wval(?,
val(¥) = cov(®,T)  cov(®,T) ®)
and
val(@) = val(¥)cov(®, V)  wval(®, V) ©)

cer(®, W)  cer(®,V0)’

Formulas (5) and (6) are direct consequences of (3) andg@pectively and consequently they are
Bayes'’ rules, too.
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It is easily seen that formulas resemble well knawodus ponenandmodus tollengnference rules,
which have the form

if o - v is true

and P is true

then v is true
and

if o — U is true

and ~ U is true

then ~ & is true
respectively.

Inference rules allow us to obtain true consequences framgremises. In reasoning about data
(data analysis) the situation is slightly different. Irateof true propositions we consider propositional
functions, which are true to a “degree”, i.e., they assumi tvalues which lie between 0 and 1, in other
words, they are probable, not true [1].

Let us formulate this idea more exactly.

We can write

if o — U hascer(®, ) andcov(®, ¥)

and @ is true to a degreeval (®)

then v is true to a degreeval (V) = aval(®).
Similarly

if o — v hascer(®, V) andcov(®, V)

and v is true to a degreeval ()

then v is true to a degreeval (¥) = a~tval (¥),
where

and

cer(®, W)

= cov (P, V)

val (V) = aval(P),

val(V) = o tval ().

The above inference rules can be considered as countsrgfanbdus ponenandmodus tollengor
data analysis.
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4. Independence in decision rules

Independency of logical formulas considered in this sediist was proposed by tukasiewicz [1].
Let® — W be a decision rule. Formulasand¥ are independent on each other if

str(®, V) = val(®)val (V).

Consequently
str(®,¥) B
W = cer({), ‘1’) = ’Ual(\I/),
and
str(®, ) B B
T(\ll) = CO’U(@7 \I/) = ’Ual(@)
If
cer(®, V) > val(V),
or

cov(®,U) > val(P),
then® andW¥ depend positivelpn each other. Similarly, if
cer(®, V) < val(V),
or
cov(P,¥) < val(P),

then® andW¥ depend negatively on each other.
Let us observe that relations of independency and depeesare symmetric ones, and are analo-
gous to that used in statistics.

Example 4.1. LetU = {1,2,...,6}, z € U and let®, denote X is divisible by 2", &, — “x is not
divisible by 2”. Similarly,¥; stands for X is divisible by 3" and¥, — “x is not divisible by 3". Because
there are 50% elements divisible by 2 and 50% elements nigild& by 2 inU, therefore we have
val(®1) = 1/2 andval(®g) = 1/2. Similarly, val(¥;) = 1/3 andval(¥) = 2/3, respectively.
The situation is presented in Fig. 1.

Formulas®, and¥,, ®; and¥,, &; and¥,, ®; and ¥, are pair-wise independent on each other,
because, e.gcer(Pg, Vo) = val(Vy)(cov(Pg, ¥o) = val(P)).
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val(®,)=1/2 val(‘¥,)=1/3

Figure 1. Divisibility by “2” and “3”

@ cer=100 str=12 cov=2/3
0, 4\"},
v

val(®g) = 1/2

val(®))=1/2 val(‘¥)) = 1/4

Figure 2. Divisibility by “2” and “4”

Example 4.2. LetU = {1,2,...,8}, z € U and®,; stand for % is divisible by 2", &, — “x is not
divisible by 27, ¥; — “x is divisible by 4" and¥ — “Xx is not divisible by 4”. As in Example 4.1
val(®g) = 1/2 andval(®,) = 1/2; val(Vy) = 3/4 andwval(¥,) = 1/4 because there are 75%
elements not divisible by 4 and 25% divisible by 4lin

The situation is shown in Fig. 2.

The pairs of formulagg and ¥, ®; and ¥, ®; and®; are dependent. Pairs of formulég and
vy, @; and ¥, are positively dependent on each other, becaus@d,, V) > val(V)(cov(Pgy, ¥o) >
val(®p)) and —cer(®q, V1) > val(V1)(cov(P1, V1) > val(Py)). Formulas®; and ¥, are negatively
dependent on each other, becausd ®,, V) < val(¥g)(cov(P1, ¥y) < val(Py)).

Example 4.3. Consider a population in which 20% are blond, 80% are danketad0% have blue eyes
and 60% have hazel eyes. The relationship between cololircdie eyes is shown in Fig. 3.

It can be seen that blond hair and blue eyes are positivelgrakgmt (correlated) on each other, as
well as dark hair and hazel eyes. However, dark hair and htas, @nd negatively dependent on each
other in this population.
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5. Dependency factor

For every decision rul@ — ¥ we define alependency factof(®, ¥) defined as

_cer(®,¥) —wval(¥)  cov(®, V) —val(P)
(@, V) = cer(®, ) +val(¥)  cov(®, V) + val(®)’

It is easy to check that if(®, ¥) = 0, then® andV are independent on each other-if < (@, ¥),
then® and ¥ are negatively dependent and)ikk n(®, ¥) < 1 then® and ¥ are positively dependent
on each other. Thus the dependency factor expresses a aggiependency, and can be seen as a
counterpart of correlation coefficient used in statistics.

For example, for situation presented in Fig. 1 we hawé®,, ¥,) = 0, n(®y,¥;) = 0 and
n(®1, 1) = 0. However, for Fig. 2 we haveg(®q, Vo) = 1/7, n(®1,¥y) = —1/5 andn(®, V) =
—1/3. The meaning of the above results is obvious.

For Example 4.3 results are shown in Fig. 3.

Cop

J00> hazel

n=0.08
val(®,) = 0.80 val(¥,) = 0.60

Figure 3. Correlation between color of hair and eyes

Another dependency factor has been proposed in [4].

6. Summary

We proposed in this paper a new look on dependencies in dasiased on some ides of Lukasiewcz
proposed in his study of logic and probability.
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