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MOTTO: 
“It is a capital mistake to theorize before one has data” 

Sherlock Holmes 
In: A Scandal in Bohemia 

Abstract 
Rough set theory is a new approach to vagueness and uncertainty. The theory of rough 
sets has an overlap with many other theories. Specially interesting is the relationship to 
fuzzy set theory and the theory of evidence. Recently, it turned out that the theory has 
very interesting connections with Bayes’ theorem. The look on Bayes’ theorem offered 
by rough set theory reveals that any data set (decision table) satisfies total probability 
theorem and Bayes’ theorem. These properties can be used directly to draw conclusions 
from objective data without referring to subjective prior knowledge and its revision if 
new evidence is available. Thus the rough set view on Bayes’ theorem is rather objective 
in contrast to subjective “classical” interpretation of the theorem. Besides, it is revealed 
that Bayes‘ theorem can be interpreted as a flow conservation equation in a flow graph. 
However the flow graphs considered here are different from those introduced by Ford 
and Fulkerson. This property gives new perspective for applications of Bayes’ theorem. 
Thus the paper brings two new interpretation of Bayes’ theorem, without referring to its 
classical probabilistic interpretation: as properties of data tables and properties of flow 
graphs. 
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1 Introduction 
Rough set theory is a new approach to vagueness and uncertainty. Foundation of rough 
sets can be found in [9] .  The theory has found many applications, in particular in data 
analysis and data mining, offering new look and tools for these domains. 
The theory of rough sets has an overlap with many other theories. Specially interesting 
is the relationship to fuzzy set theory and the theory of evidence. Recently, it turned out 
that the theory has very interesting connections with Bayes’ theorem. This link gives a 
new look on Bayes‘ theorem which is significant not only from philosophical point of 
view but also offers new methods of data analysis. 
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The look on Bayes’ theorem offered by rough set theory reveals that any data set 
(decision table) satisfies total probability theorem and Bayes’ theorem. These properties 
can be used directly to draw conclusions from objective data without referring to 
subjective prior knowledge and its revision if new evidence is available. Thus the rough 
set view on Bayes’ theorem is rather objective in contrast to subjective “classical” 
interpretation of the theorem [6 ,  7, 81. 
It is also interesting that Bayes’ theorem can be interpreted as afrow conservation 
equation in a flow graph. However the flow graphs considered here are different from 
those introduced by Ford and Fulkerson [4]. 

2 
In this section we define basic concepts of rough set theory: information system and 
approximation of sets. 
An information system is a data table, whose columns are labeled by attributes, rows are 
labeled by objects of interest and entries of the table are attribute values. 
Formally, by an information system we will understand a pair S = (U, A) ,  where U and 
A ,  are finite, nonempty sets called the universe, and the set of attributes, respectively. 
With every attribute a E A we associate a set V,, of its values, called the domain of a. 
Any subset B of A determines a binary relation Z(B) on U, which will be called an 
indiscernibility relation, and defined as follows: (x,  y )€ I (B)  if and only if a(x) = a b )  for 
every aEA, where a(x) denotes the value of attribute a for element x. Obviously Z(B) is 
an equivalence relation. The family of all equivalence classes of Z(B), i.e., a partition 
determined by B, will be denoted by UIZ(B), or simply by UIB; an equivalence class of 
Z(B), i.e., block of the partition UIB, containing x will be denoted by B(x). 
If (x,  y )  belongs to Z(B) we will say that x and y are B-indiscernible (indiscernible with 
respect to B). Equivalence classes of the relation Z(B) (or blocks of the partition UIB) are 
referred to as B-elementary sets or B-granules. If we distinguish in an information 
system two disjoint classes of attributes, called condition and decision attributes, 
respectively, then the system will be called a decision table and will be denoted by 
S = (U, C, D), where C and D are disjoint sets of condition and decision attributes, 
respectively. 
Thus the decision table determines decisions which must be taken, when some 
conditions are satisfied. In other words each row of the decision table specifies a 
decision rule which determines decisions in terms of conditions. 
Observe, that elements of the universe are in the case of decision tables simply labels of 
decision rules. 
Suppose we are given an information system S = (U, A ) ,  XcU,  and BgA. Our task is to 
describe the set X in terms of attribute values from B. To this end we define two 
operations assigning to every X c U  two sets BI(X) and B*(X) called the B-lower and the 
B-upper approximation of X, respectively, and defined as follows: 

Rough Set Theory - Basic Concepts 

B, (x) = u {B(x): B(x)  E x} 9 

X€U 

B * ( X ) =  u {B(x): B ( x ) n  X f 0} .  
xsu 
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Hence, the B-lower approximation of a set is the union of all B-granules that are 
included in the set, whereas the B-upper approximation of a set is the union of all B- 
granules that have a nonempty intersection with the set. The set 

BN, (x) = B’(X)-  B, (x) 
will be referred to as the B-boundary region of X. 
If the boundary region of X is the empty set, i.e., BNB(X) = 0, then X is crisp (exact) 
with respect to B; in the opposite case, i.e., if BNB(X) z 0, X is referred to as rough 
(inexact) with respect to B. 
Rough sets can be also defined employing instead of approximations rough membership 
fimction, which is defined as follows: 

p; : u + [0,1] 

and 

where X E U, B E A and card(X) denotes the cardinality of X. 
The function measures the degree that x belongs to X in view of information about x 
expressed by the set of attributes B. 
The rough membership function has the following properties [ 9 ] :  

1. 

2. 

3. 

4. 

5 .  pxvy (x) 2 mM: (p; (x), p; (x)) for any x E u 
6. pXnY (x) min (pi  (x), puy” (x)) for any x E U 

Compare these properties to those of fuzzy membership. Obviously rough membership 
is a generalization of fuzzy membership. 
The rough membership function can be used to define approximations and the boundary 
region of a set, as shown below: 

B, (X)= {x E U : pi (x)=  l), 

p i  (x)= 1 iff x E B, (X) 

p i  (x) = 0 iff x E U - B’(X) 

0 < p i  (x)< 1 iff x E BN,(X) 

(x) = 1 - p i  (x) for any x E u 

qx) =G( E U :  &(XI .o} 3 

Bn,C(X) ={x EU: O<&(X) <I}. 
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3 Decision Rules 
Every decision table describes decisions determined, when some conditions are 
satisfied. In other words each row of the decision table specifies a decision rule which 
determines decisions in terms of conditions. 
Let us describe decision rules more exactly. 
Let S = (U, C, D )  be a decision table. Every X E  U determines a sequence C I ( X ) ,  ..., c,,(x), 
dl(x),.. .,d,(x) where {cl,. ..,c,} = C and {dl ,..., d,} = D. 
The sequence will be called a decision rule induced by x (in S) and denoted by 
cI(x),. . .,c,(x) dl(x) ,..., d,(x), in short C +, D. 
The number supp,(C, D )  = card(C(x) n D(x)) will be called the support of the decision 
rule C +, D and the number 

will be referred to as the strength of the decision rule C +, D. With every decision rule 
C +, D we associate the certainty factor of the decision rule, denoted cer,(C, D )  and 
defined as follows: 

card( C(x))  where o,(C) = 
card(U) * 

The certainty factor may be interpreted as conditional probability that y belongs to D(x) 
given y belongs to C(x), symbolically o,(DIC). If cer,(C, D )  = 1, then C +, D will be 
called a certain decision rule in S; if 0 < cer,(C, D )  < 1 the decision rule will be referred 
to as an uncertain decision rule in S. 
Besides, we will also use a coverage factor of the decision rule, denoted cov,(C, 0) and 
defined as 

card( D(x)) where a,(D) = 
card(U) ‘ 

Similarly 

COV, (c, D) = 0, (C I D )  , 

The certainty and coverage factors have been for a long time used in machine learning 
and data mining, [ l l ,  121 but in fact they have been first introduced in 1913 by Jan 
Lukasiewicz, in connection with his study of logic and probability [ 5 ] .  
If C +, D is a decision rule then D +, C will be called an inverse decision rule. The 
inverse decision rules can be used to give explanations (reasons) for decisions. 
Let us observe that 
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That means that the certainty factor expresses the degree of membership of x to the 
decision class D(x), given C, whereas the coverage factor expresses the degree of 
membership of x to condition class C(x), given D. 
Decision rules are often represented in the form of “$..then...” implications. Thus any 
decision table can be transformed in a set of “$ .. then ...” rules, called a decision 
algorithm. Generation of minimal decision algorithms from decision tables is rather 
difficult. Many methods for solving this problem have been proposed but we will not 
discuss this issue in this paper. 

4 Properties of Decision Rules 
Decision rules have important properties which are discussed below. 
Let C +x D be a decision rule in S.  Then the following properties are valid: 

YeC ?cery(cyD)=l x) 

?cOvY(c’ D)=l  Y S D  x i  

q & D )  o,(D)= ?cer,(C,D).cr,(C)= 
Y S C  x) Y S C  1) 

&)= ~ c 0 ~ , ( c , D ) ~ 0 , ( D ) =  C O , ( C , D )  
Y 4 X )  y e D ( x )  

Observe that (3) and (4) refer to the well known total probability theorem, whereas ( 5 )  
and (6 )  refer to Bayes‘theorem. 
Thus in order to compute the certainty and coverage factors of decision rules according 
to formulas ( 5 )  and ( 6 )  it is enough to know the strength (support) of all decision rules 
only. The strength of decision rules can be computed from data or can be a subjective 
assessment. 

5 Dependences in decision Tables 
Next important issue in decision table analysis is the dependency of attributes, 
particularly dependency of decision attributes on condition attributes [lo]. 
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Intuitively speaking the set of decision attributes depends on the set of condition 
attributes if values of decision attributes are totally (or partially) determined by values 
of condition attributes. 
In other words, this kind of dependency describes which decisions specified in a 
decision table are to by obeyed if some conditions are satisfied. 
In this paper we will introduce another kind of dependences in decision tables, based on 
some ideas of statistics. 
Let S = (U,C,D) be a decision table and let X E  U. We say that decisions dl(x), ..., dm(x) 
are independent on conditions c,(x),. . .,cn(x), where C = {cl,. . .,cn}, D = {d,,. . .,dm}, if 

o,(C, 0) = o,(C)o,(D). 

In other words conditions and decisions in a decision rule C +x D are independent if 

or 

If 

or 

We say that D dependspositively on C in a decision rule C +x D. Similarly if 

or 

We say that D depends negatively on C in a decision rule C +x D. 
Obviously, the relations of independence and positive and negative dependence are 
symmetric ones. 
Again borrowing from statistics the idea of a correlation coefficient we can determine 
the degree of dependency numerically, defining the correlation factor, defined as 
follows: 

Obviously, 0 I q,(C, D )  I 1 and if qx(C, D )  = 0 then C and D are independent, if 
q,(C, D )  < 0 then C and D are negatively dependent if q,(C, D )  > 0 ,  then C and D are 
positively dependent. 

6 Flow Graphs 
With every decision table we associate ajlow graph, i.e., a directed, connected, acyclic 
graph defined as follows: to every decision rule C+,D we assign a directed branch x 
connecting the input node C(x) and the output node D(x). Strength of the decision rule 
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5 

6 

represents a throughflow of the corresponding branch. The throughflow of the graph is 
governed by formulas (1),.,.,(6), and can be considered as aflow conservation equation 
similar to that introduced by Ford and Fulkerson [4]. However, let us observe that flow 
graphs presented in this paper are different from flow networks of Ford and Fulkerson. 
Formulas (1) and (2) say that the outflow of an input node or an output node is equal to 
their inflows. Formula (3) states that the outflow of the output node amounts to the sum 
of its inflows, whereas formula (4) says that the sum of outflows of the input node 
equals to its inflow. Finally, formulas ( 5 )  and (6)  reveal how throughflow in the flow 
graph is distributed between its inputs and outputs. 
It is obvious that the idea of flow graph can be also formulated more generally, 
independently of decision tables, but we will not consider this issue here. 

no young woman - 220 

yes middle woman - 60 

7 AnExample 
Let us now illustrate the above ideas by means of a simple example shown in Table 1. 

Table 1 : Decision table 

~ ~~ ~~~ ~ 

Attributes DISEASE, AGE and SEX are condition attributes, whereas TEST is the 
decision attribute. 
Below a decision algorithm associated with Table 1 is presented. 

1. 
2. 
3. 
4. 
5. 
The certainty and coverage factors for the above algorithm are given in Table 2 ,  

$(disease, yes) and (age, old) then (test, +) 
$(age, middle) then (test, +) 
$(disease, no) then (test, -) 
$(disease, yes) and (age, old) then (test, -) 
$(age, middle) then (test, -) 
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Table 2: Certainty and coverage factors 

Remark. Due to the round-off errors in computations the properties (1). . .(6) may not 
always be satisfied in the table. 

The certainty factors of the decision rules lead to the following conclusions: 

- 
- 
- 
- 
- 

In other words: 

90% ill and old patients have positive test result 
56% ill and middle aged patients have positive test result 
all healthy patients have negative test result 
8% ill and old patients have negative test result 
44% ill and middle aged patients have negative test result 

- 
- 
- 

The inverse decision algorithm is given below: 

1 '. $(test, f) then (disease, yes) and (age, old) 
2'. if(test, +) then (age, middle) 
3'. $(test, -) then (disease, no) 
4'. $(test, -) then (disease, yes) and (age, old) 
5'.  $(test, -) then (age. middle) 

Employing the inverse decision algorithm and the coverage factors we get the following 
explanation of test result: 

- 

ill and old patients most probably have positive test result (probability = 0.90) 
middle aged patients most probably have positive test result (probability = 0.56) 
healthy patients have certainly negative test result (probability = 1 .OO) 

reasons for positive test results are most probably disease and old age (probability = 
0.83) 

- reason for negative test result is most probably lack of the disease (probability = 
0.77) 

The flow graph for the decision algorithm is presented in Fig. 1. 
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= 6,) = 

0.49 

0.16 

0.36 

o(yl) = 0.53 

o(y2) = 0.47 

Figure 1: Flow graph 

Intheflowgraphwehavexl= {1,4},x2= (2,6},x3= {3,5},yl= {1,2} andyZ= {3,4, 

That means that we have in our data base the following groups of patients: 

440 - ill and old (xl) 
140 - middle aged (x2) 
320 -healthy (x3) 
and 
480 - with positive test result oil) 
420 - with negative test result 02) 
Each input node of the flow graph represents a condition of corresponding decision rule, 
whereas each output node reveals decisions of the rules. The associated numbers can be 
understood as probabilities (frequencies) of conditions and decisions respectively. 
Branches of the graph are labeled by strength of associated decision rules. 
The flow graph of a decision algorithm shows how probabilities of decisions and 
conditions are related. 
Each node of the graph satisfies equations (1)..,(6). Observe, that in order to compute all 
the conditional and total probabilities it is enough to know the strength of the decision 
rules only, which makes the computations very easy, and gives also clear insight into 
the structure of the decision algorithms. 
Let us notice that, for example, old age and illness are positively correlated with 
positive test result, whereas old age and illness are negatively correlated with negative 
test result. 
The corresponding correlation coefficients are 0.26 and - 0.71 respectively. 

5,6}. 

8 Conclusion 
It is clearly seen from the above considerations the difference between Bayesian data 
analysis and the rough set approach. In the Bayesian inference the data is used to update 
prior probability (knowledge) into a posterior probability, whereas rough set based 
Bayesian inference is used to reason directly from data. 
The relationship of rough set theory with Bayes' theorem and flow graphs gives new 
look on Bayesian inference and leads to efficient algorithms for data analysis. 
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