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Abstract — This paper concerns some relationship between
Bayes’ theorem and rough sets. It is revealed that any decision
algorithm satisfies Bayes’ theorem, without referring to either
prior or posterior probabilities inherently associated with clas-
sical Bayesian methodology. This leads to a new simple form
of this theorem, which results in new algorithms and applica-
tions. Besides, it is shown that with every decision algorithm
a flow graph can be associated. Bayes’ theorem can be viewed
as a flow conservation rule of information flow in the graph.
Moreover, to every flow graph the Euclidean space can be as-
signed. Points of the space represent decisions specified by
the decision algorithm, and distance between points depicts
distance between decisions in the decision algorithm.
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mining.

1. Introduction

Decision algorithm is a finite set of “if .. then” decision
rules. With every decision rule three coefficients are asso-
ciated: the strength, the certainty and the coverage factors
of the rule. The coefficients can be computed from the data
or can be a subjective assessment. It is shown that these
coefficients satisfy Bayes’ formula.

Bayesian inference methodology consists in updating prior
probabilities by means of data to posterior probabilities,
which express updated knowledge when data become avail-
able. The strength, certainty and coverage factors can be
interpreted either as probabilities (objective), or as a de-
gree of truth, along the line proposed by Lukasiewicz [5].
Moreover, they can be also interpreted as a deterministic
flow distribution in flow graphs associated with decision al-
gorithms. This leads to a new look on Bayes’ theorem and
its applications in reasoning from data, without referring to
its probabilistic character.

In this context it is worthwhile to mention that in spite
of great power of statistical Bayesian methodology of
inference methods, the theorem raised wide criticism.
E.g., “The technical result at the heart of the essay is what
we now know as Bayes’ theorem. However, from a purely
formal perspective there is no obvious reason why this es-
sentially trivial probability result should continue to excite
interest” [1]. “Opinion as to the values of Bayes’ theorem
as a basic for statistical inference has swung between ac-
ceptance and rejection since its publication on 1763 [2].
In the proposed setting Bayes’ theorem has been set free
from its mystic flavor. With every decision algorithm a flow
graph can be associated. It is revealed that the throughflow
in the graph is ruled by Bayes’ theorem. The flow graphs

98

considered in this paper are different to flow networks in-
troduced by Ford and Fulkerson [4], which are intended to
model the flow in transportation network — in contrast to
flow graphs, which are meant to be used as a model for de-
cision analysis in decision algorithms. Besides, with every
decision algorithm the Euclidian decision space is associ-
ated. The decision space is intended to be used to depict
differences between decisions of a decision algorithm in
a geometrical way.

2. Decision algorithms

A decision rule is an expression in the form ® — WV, read
“if @ then W, where ® and W are logical formulas called
condition and decision of the rule, respectively [8].

Let |®| denote the set of all objects from the universe U,
having the property ®.

If ®— W is a decision rule then supg®, W) =card(|PAW|)
will be called the support of the decision rule and

supd®,¥)
gdP,¥Y)= ————
(®,%) card(U)
will be referred to as the strength of the decision rule.

With every decision rule ® — W we associate a certainty
factor

_ sup®,¥)
cer(d,¥) = “card([®])
and a coverage factor
_ sup®,¥)
cov(d,¥) = “card(| V)

Remark. These coefficients for a long time have been used
in data bases and machine learning [9, 10], but first they
have been introduced by Lukasiewicz [5] in connection with
his study of logic and probability.

If cer(®,W) = 1, then the decision rule ® — W will be
called certain, otherwise the decision rule will be referred
to as uncertain.

A set of decision rules De®,W) = {®; - W}, n>2,
will be called a decision algorithm if all its decision rules
are:

— admissible, i.e., SUpg®P;, W), # @ forevery 1 <i<n,

— mutually exclusive (independent),
ie., for every ®;, — W, and CDJ- — Wj, P, = ‘Pj,
or CDI/\LIJJ =0 and LPI :LIJJ or LIJI/\CDJ :®,

VL o = |V W =U.
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If Ded®,¥W) = {®, — W} ; is a decision algorithm,
then DeqW,®) = {W, — ®;} ; is also a decision algo-
rithm and will be called an inverse decision algorithm
of Deq(®, W).

DeqW,d) gives reasons (explanations) for decisions of
the algorithm Deq ®, V).

3. Properties of decision algorithms

Let Dec(®, W) be a decision algorithm and let ® — W
be a decision rule in the decision algorithm. By D (®)
and C(¥W) we denote the set of all decisions of ® and
the set of all conditions of W in Dec(®, W), respec-
tively [8].

It can be shown that every decision algorithm has the fol-
lowing probabilistic properties:

co@d', W) =1, (1)
P'eC(W)
> cer(®, Wy =1, 2)
W ED(d)

mw)= 3 ce(®, W) (@)= % o(®¥), 3)
' EC(W) P EC(V)
me)= % co(d,W) mgW)= % o(@W), @
W ED(®) W ED(®)
_coMd,¥)- (W)  o(W, )
W ED(D)
_cern®d,W)-m®d)  o(d,W¥)
> EC(W)
where (W) = C:a“rjd((‘;) ;) and 11(P) = Cg?d((‘ﬁ;).

Let us observe that formally formulas (1)—(6) have prob-
abilistic favor. In particular, formulas (3) and (4) can be
understood as total probability theorems, whereas formu-
las (5) and (6) have the form of Bayes’ theorem. As men-
tioned before, if we interpret strength, certainty and cover-
age factors as probabilities (frequencies) then these formu-
las describe some relationships between data in the decision
algorithm. However, we can also interpret these factors in
a deterministic way, as a degree of truth. In this case the
coverage factor co(®, W) expresses to which degree the
conclusion W of a decision rule ® — W is true if the con-
dition @ of the rule is true to the degree cer(®, W), whereas
o(P,W) can be regarded as a truth value of the decision
rule (implication) ® — W.
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The idea to replace probability by truth values is due to
Lukasiewicz [5], but we will not discuss this issue here.

4. Flow graphs

With every decision algorithm we associate a directed,
acyclic, connected graph defined in the following way: to
every condition and decision of the decision rule in the de-
cision algorithm we associate a node of the graph. To every
decision rule ® — W we assign a directed branch connect-
ing the input node ® and the output node W. Strength
of the decision rule represents the throughflow of the cor-
responding branch. More about flow graphs and decision
algorithms can be found in [7].

The throughflow of the graph is governed by formulas (1)—
(6), and can be considered as a flow conservation equation
similar to that of Ford and Fulkerson [4].

Consequently, the flow graphs can be regarded as a third
model of Bayes’ theorem, in which the theorem describes
flow distribution in a flow graph.

5. Decision space

With every decision algorithm with n-valued decisions we
can associate N-dimensional Euclidean space, where values
of decisions determine N axis of the space and condition
attribute values (equivalence classes) determine point of the
space. Strengths of decision rules are to be understood as
coordinates of corresponding points.

Distance 0(X,Y) between point X and Y in an n-dimensional
decision space is defined as

n

509) =[5, 05~ )°,

where X = (X;,...,%n) and Y = (Y;,...,Yn) are vectors of
strengths of corresponding decision rules.

6. An example

For the sake of illustration let us consider a very simple de-
cision algorithm describing vote distribution for two polit-
ical parties X;, and X, from three mutually disjoint sample
group of voters Y, Y, and Y;:

LY, =X, (400)
2. Y, =X, (200)
3. Y, X, (250)
4. Y,=X, (50
5. Y3 X, (90)

6. Y3=X,  (10).

Number given at the end of each rule is the support of the
rule, i.e., the number of voters from group X voting for
party ;.
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The strength, certainty and coverage factors for each deci- we get, for example, that for party X; voted 54% voters of
sion rule are given in Table 1. group Y;, 34% — of group Y,, and 12% — of group Y.
The corresponding distance space is shown in Fig. 2.
Table 1 Distances between voters are presented in Table 2.
Parameters of the decision rules
- Table 2
Rule Strength Certainty Coverage Distances between voters

1 0.40 0.67 0.54

2 0.20 0.33 0.77 Y Y2 hE

3 0.25 0.83 0.34 il 020

4 0.05 0.17 0.19 2 ’

Y3 0.37 0.22
5 0.09 0.90 0.12
6 0.01 0.10 0.04

7. Summary

Th ding fl h is sh in Fig. 1.
© cottesponcing ow grapil 1 sUOWLL 1n T8 In this paper a relationship between decision algorithms,

flow graphs and Bayes’ theorem are defined and briefly an-
alyzed. It is shown that decision algorithms satisfy Bayes’
theorem, and that the theorem can be also interpreted with-
out referring to its probabilistic connotation — in a purely
deterministic way. This property leads to a new look on
Bayes’ theorem and new applications of Bayes’ rule in data
analysis.
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