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MOTTO:
”I had come to an entirely erroneus conclusions,

which shows, my dear Watson, how dangerous
it always is to reason from insufficient data”

Sherlock Holmes
In: ”The speckled band”

Abstract. Rough set theory offers new insight into Bayes’ theorem. It does not
refer either to prior or posterior probabilities, inherently associated with Bayesian
reasoning, but reveals some probabilistic structure of the data being analyzed. This
property can be used directly to draw conclusions from data.

It is also worth mentioning the relationship between Bayes’ theorem and flow
graphs.

1 Introduction

This article is a modified version of paper [9].
Bayes’ theorem is the essence of statistical inference.
Bayes formulated the following problem: ”Given the number of times in

which an unknown event has happened and failed: required the chance that
the probability of its happening in a single trial lies somewhere between any
two degrees of probability that can be named” [2].

In spite of great power of Bayesian inference process the method also has
caused many criticism, as it can be seen, e.g., from the following excerpts.

”The technical results at the heart of the essay is what we now know
as Bayes’ theorem. However, from a purely formal perspective there is no
obvious reason why this essentially trivial probability result should continue
to excite interest” [3].

”Opinion as to the values of Bayes’ theorem as a basic for statistical
inference has swung between acceptance and rejection since its publication
on 1763” [4].

In fact ”... it was Laplace (1774 – 1886) – apperently unaware of Bayes’
work – who stated the theorem in its general (discrete) from” [3].

Rough set theory throws a new light on Bayes’ theorem. The proposed
approach does not refer either to prior or posterior probabilities, inherently
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associated with Bayesian reasoning, but it reveals some probabilistic structure
of the data being analyzed, i.e., it states that any data set (decision table)
satisfies total probability theorem and Bayes’ theorem, which can be used
directly to draw conclusions from data.

The rough set approach to Bayes’ theorem shows close relationship be-
tween logic of implications and probability, which was first observed by
�Lukasiewicz [7] and also independly studied by Adams [1] and others. Bayes’
theorem in this context can be used to ”invert” implications, i.e. to give
reasons for decisions.

Besides, we propose a new form of Bayes’ theorem where basic role is
played by strength of decision rules (implications) derived from the data.
The strength of decision rules is computed from the data or it can be also a
subjective assessment. This formulation gives new look on Bayesian method-
ology of inference and also essentially simplifies computations.

It is also worth mentioning the relationship between Bayes’ theorem and
flow graphs, which leads to a new kind of flow networks, different than those
of Ford and Fulkerson [6].

2 Bayes’ Theorem

In this section we recall basic ideas of Bayesian inference philosophy, after
[3–5].

”In its simplest form, if H denotes an hypothesis and D denotes data, the
theorem says that

P (H |D) = P (D|H) × P (H) /P (D) .

With P (H) regarded as a probabilistic statement of belief about H before
obtaining data D, the left-hand side P (H |D) becomes an probabilistic state-
ment of belief about H after obtaining D. Having specified P (D|H) and
P (D), the mechanism of the theorem provides a solution to the problem of
how to learn from data.

In this expression, P (H), which tells us what is known about H without
knowing of the data, is called the prior distribution of H , or the distribution
of H a priori. Correspondingly, P (H |D), which tells us what is known about
H given knowledge of the data, is called the posterior distribution of H given
D, or the distribution of H a posteriori” [3].

”A prior distribution, which is supposed to represent what is known about
unknown parameters before the data is available, plays an important role in
Baysian analysis. Such a distribution can be used to represent prior knowledge
or relative ignorance” [4].

Let us illustrate the above by a simple example taken from [5].

Example 1. ”Consider a physician’s diagnostic test for presence or absence
of some rare disease D, that only occurs in 0.1% of the population, i.e.,
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P (D) = .001. It follows that P (D) = .999, where D indicates that a person
does not have the disease. The probability of an event before the evaluation
of evidence through Bayes’ rule is often called the prior probability. The
prior probability that someone picked at random from the population has
the disease is therefore P (D) = .001.

Furthermore we denote a positive test result by T +, and a negative test
result by T−. The performance of the test is summarized in Table 1.

Table 1. Performance of diagnostic test

T+ T−

D 0.95 0.05

D 0.02 0.98

What is the probability that a patient has the disease, if the test result
is positive? First, notice that D, D is a partition of the outcome space. We
apply Bayes’ rule to obtain

P
(
D|T +

)
=

P (T +|D) P (D)
P (T +|D) P (D) + P

(
T +|D)

P
(
D

) =

=
.95 · .001

.95 · .001 + .02 · .999
= .045.

Only 4.5% of the people with a positive test result actually have the dis-
ease. On the other hand, the posterior probability (i.e. the probability after
evaluation of evidence) is 45 times as high as the prior probability”.

3 Information Systems and Approximation of Sets

In this section we define basic concepts of rough set theory: information
system and approximation of sets. Rudiments of rough set theory can be
found in [8,11].

An information system is a data table, whose columns are labeled by
attributes, rows are labeled by objects of interest and entries of the table are
attribute values.

Formally, by an information system we will understand a pair S = (U, A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va, of
its values, called the domain of a. Any subset B of A determines a binary
relation I(B) on U , which will be called an indiscernibility relation, and
defined as follows: (x, y) ∈ I(B) if and only if a(x) = a(y) for every a ∈ A,
where a(x) denotes the value of attribute a for element x. Obviously I(B) is
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an equivalence relation. The family of all equivalence classes of I(B), i.e., a
partition determined by B, will be denoted by U/I(B), or simply by U/B;
an equivalence class of I(B), i.e., block of the partition U/B, containing x
will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible
(indiscernible with respect to B). Equivalence classes of the relation I(B)
(or blocks of the partition U/B) are referred to as B-elementary sets or B-
granules.

If we distinguish in an information system two disjoint classes of at-
tributes, called condition and decision attributes, respectively, then the sys-
tem will be called a decision table and will be denoted by S = (U, C, D), where
C and D are disjoint sets of condition and decision attributes, respectively.

Thus the decision table determines decisions which must be taken, when
some conditions are satisfied. In other words each row of the decision table
specifies a decision rule which determines decisions in terms of conditions.

Observe, that elements of the universe are in the case of decision tables
simply labels of decision rules.

Suppose we are given an information system S = (U, A), X ⊆ U , and
B ⊆ A. Our task is to describe the set X in terms of attribute values from
B. To this end we define two operations assigning to every X ⊆ U two sets
B∗(X) and B∗(X) called the B-lower and the B-upper approximation of X ,
respectively, and defined as follows:

B∗ (X) =
⋃

x∈U

{B (x) : B (x) ⊆ X},

B∗ (X) =
⋃

x∈U

{B (x) : B (x) ∩ X �= ∅}.

Hence, the B-lower approximation of a set is the union of all B-granules that
are included in the set, whereas the B-upper approximation of a set is the
union of all B-granules that have a nonempty intersection with the set. The
set

BNB (X) = B∗ (X) − B∗ (X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X

is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅,
X is referred to as rough (inexact) with respect to B.

4 Rough Membership

Rough sets can be also defined employing instead of approximations rough
membership function [10], which is defined as follows:

µB
X : U → [0, 1]
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and

µB
X (x) =

|B (x) ∩ X |
|B (x) | ,

where X ⊆ U , B ⊆ A and |X | denotes the cardinality of X.
The function measures the degree that x belongs to X in view of infor-

mation about x expressed by the set of attributes B.
It can be shown [10] that the rough membership function has the following

properties:

1. µB
X (x) = 1 iff x ∈ B∗ (X)

2. µB
X (x) = 0 iff x ∈ U − B∗ (X)

3. 0 < µB
X (x) < 1 iff x ∈ BNB (X)

4. µB
U−X (x) = 1 − µB

X (x) for any x ∈ U

5. µB
X∪Y (x) ≥ max

(
µB

X (x) , µB
Y (x)

)
for any x ∈ U

6. µB
X∩Y (x) ≤ min

(
µB

X (x) , µB
Y (x)

)
for any x ∈ U

Observe that the rough membership function is a generalization of fuzzy
membership function since properties 5) and 6) are more general than the
corresponding properties for fuzzy membership.

5 Decision Language

It is often useful to describe decision tables in logical terms. To this end we
associate with every decision table S = (U, C, D) a formal language called a
decision language denoted L (S).

Let S = (U, A) be a decision table. With every B ⊆ A = C ∪ D we
associate a set of formulas For (B) . Formulas of For (B) are built up from
attribute-value pairs (a, v) where a ∈ B and v ∈ Va by means of logical
connectives ∧ (and), ∨ (or), ∼ (not) in the standard way.

For any Φ ∈ For (B) by ‖Φ‖S we denote the set of all objects x ∈ U
satisfying Φ in S defined inductively as follows:
‖(a, v)‖S = {x ∈ U : a (v) = x} for all a ∈ B and v ∈ Va, ‖Φ ∨ Ψ‖S =
‖Φ‖S ∪ ‖Ψ‖S , ‖Φ ∧ Ψ‖S = ‖Φ‖S ∩ ‖Ψ‖S , ‖∼ Φ‖S = U − ‖Φ‖S .

A decision rule in L (S) is an expression Φ →S Ψ , or simply Φ → Ψ if S
is understood, read if Φ then Ψ , where Φ ∈ For (C), Ψ ∈ For (D) and C, D
are condition and decision attributes, respectively; Φ and Ψ are referred to
as conditions part and decisions part of the rule, respectively.

The number suppS (Φ, Ψ) = | (||Φ ∧ Ψ ||S) | will be called the support of
the rule Φ → Ψ in S. We consider a probability distribution pU (x) = 1/|U |
for x ∈ U where U is the (nonempty) universe of objects of S; we have
pU (X) = |X |/|U | for X ⊆ U . For any formula Φ we associate its probability
in S defined by

πS (Φ) = pU (||Φ||S) .
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With every decision rule Φ → Ψ we associate a conditional probability

πS (Ψ |Φ) = pU (‖Ψ‖S| ‖Φ‖S)

called the certainty factor of the decision rule, denoted cerS (Φ, Ψ) . This idea
was used first by �Lukasiewicz [7] (see also [1]) to estimate the probability of
implications. We have

cerS (Φ, Ψ) = πS (Ψ |Φ) =
| (||Φ ∧ Ψ ||S) |
| (||Φ||S) |

where ||Φ||S �= ∅.
This coefficient is now widely used in data mining and is called confidence

coefficient.
If πS (Ψ |Φ) = 1, then Φ → Ψ will be called a certain decision rule in S; if

0 < πS (Ψ |Φ) < 1 the decision rule will be referred to as a uncertain decision
rule in S.

There is an interesting relationship between decision rules and their ap-
proximations: certain decision rules correspond to the lower approximation,
whereas the uncertain decision rules correspond to the boundary region.

Besides, we will also use a coverage factor of the decision rule, denoted
covS (Φ, Ψ) (used e.g., by Tsumoto and Tanaka [12] for estimation of the
quality of decision rules) defined by

πS (Φ|Ψ) = pU (‖Φ‖S | ‖Ψ‖S) .

Obviously we have

covS (Φ, Ψ) = πS (Φ|Ψ) =
| (||Φ ∧ Ψ ||S) |
| (||Ψ ||S) | .

There are several possibilities to interpret the certainty and the coverage
factors: statistical (frequency), probabilistic (conditional probability), logi-
cal (degree of truth), mereological (degree of inclusion) and set theoretical
(degree of membership).

We will use here mainly the statistical interpretation, i.e., the certainty
factors will be interpreted as the frequency of objects having the property Ψ
in the set of objects having the property Φ and the coverage factor – as the
frequency of objects having the property Φ in the set of objects having the
property Ψ .

Let us observe that the factors are not assumed arbitrarily but are com-
puted from data.

The number

σS (Φ, Ψ) =
suppS (Φ, Ψ)

|U | = πS (Ψ |Φ) · πS (Φ)

will be called the strength of the decision rule Φ → Ψ in S, and will play an
important role in our approach.
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We will need also the notion of equivalence of formulas.
Let Φ, Ψ be formulas in For (A) where A is the set of attributes in S =

(U, A) .
We say that Φ and Ψ are equivalent in S, or simply, equivalent if S is

understood, in symbols Φ ≡ Ψ, if and only if Φ → Ψ and Ψ → Φ. It means
that Φ ≡ Ψ if and only if ||Φ||S = ||Ψ ||S .

We need also approximate equivalence of formulas which is defined as
follows:

Φ ≡k Ψ if and only if cer (Φ, Ψ) = cov (Φ, Ψ) = k.

Besides, we define also approximate equivalence of formulas with the accuracy
ε (0 ≤ ε ≤ 1) , which is defined as follows:

Φ ≡k,ε Ψ if and only if k = min{cer (Φ, Ψ) , cov (Φ, Ψ)}

and |cer (Φ, Ψ) − cov (Φ, Ψ) | ≤ ε.

6 Decision Algorithms

In this section we define the notion of a decision algorithm, which is a logical
counterpart of a decision table.

Let Dec (S) = {Φi → Ψi}m
i=1, m ≥ 2, be a set of decision rules in L (S).

1) If for every Φ → Ψ , Φ′ → Ψ ′ ∈ Dec (S) we have Φ = Φ′ or ‖Φ ∧ Φ′‖S = ∅,
and Ψ = Ψ ′ or ‖Ψ ∧ Ψ ′‖S = ∅, then we will say that Dec (S) is the set of
pairwise mutually exclusive (independent) decision rules in S.

2) If
∥∥∥∥

m∨
i=1

Φi

∥∥∥∥
S

= U and
∥∥∥∥

m∨
i=1

Ψi

∥∥∥∥
S

= U we will say that the set of decision

rules Dec (S) covers U.
3) If Φ → Ψ ∈ Dec (S) and suppS (Φ, Ψ) �= 0 we will say that the decision

rule Φ → Ψ is admissible in S.

4) If
⋃

X∈U/D

C∗ (X) =

∥∥∥∥∥
∨

Φ→Ψ∈Dec+(S)

Φ

∥∥∥∥∥
S

, where Dec+ (S) is the set of all

certain decision rules from Dec (S), we will say that the set of decision
rules Dec (S) preserves the consistency part of the decision table S =
(U, C, D) .

The set of decision rules Dec (S) that satisfies 1), 2) 3) and 4), i.e., is
independent, covers U , preserves the consistency of S and all decision rules
Φ → Ψ ∈ Dec (S) are admissible in S – will be called a decision algorithm in
S.

Hence, if Dec (S) is a decision algorithm in S then the conditions of rules
from Dec (S) define in S a partition of U . Moreover, the positive region of D
with respect to C, i.e., the set

⋃

X∈U/D

C∗ (X)
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is partitioned by the conditions of some of these rules, which are certain in
S.

If Φ → Ψ is a decision rule then the decision rule Ψ → Φ will be called an
inverse decision rule of Φ → Ψ.

Let Dec∗ (S) denote the set of all inverse decision rules of Dec (S) .
It can be shown that Dec∗ (S) satisfies 1), 2), 3) and 4), i.e., it is a decision

algorithm in S.
If Dec (S) is a decision algorithm then Dec∗ (S) will be called an inverse

decision algorithm of Dec (S) .
The inverse decision algorithm gives reasons (explanations) for decisions

pointed out by the decision algorithms.
A decision algorithm is a description of a decision table in the decision

language.
Generation of decision algorithms from decision tables is a complex task

and we will not discuss this issue here, for it does not lie in the scope of this
paper. The interested reader is advised to consult the references.

7 Decision Rules in Information Systems

Decision rules can be also defined, without decision language, referring only
to decision tables.

Let S = (U, C, D) be a decision table. Every x ∈ U determines a sequence
c1(x), . . . , cn(x), d1(x), . . . , dm(x) where {c1, . . . , cn} = C and {d1, . . . , dm} =
D.

The sequence will be called a decision rule (induced by x) in S and denoted
by c1(x), . . . , cn(x) → d1(x), . . . , dm(x) or in short C →x D.

The number suppx(C, D) = |C(x) ∩ D(x)| will be called a support of the
decision rule C →x D and the number

σx (C, D) =
suppx (C, D)

|U | ,

will be referred to as the strength of the decision rule C →x D. With every
decision rule C →x D we associate the certainty factor of the decision rule,
denoted cerx(C, D) and defined as follows:

cerx (C, D) =
|C (x) ∩ D (x) |

|C (x) | =
suppx (C, D)

|C (x) | =

=
σx (C, D)
π (C (x))

,

where π (C (x)) = |C(x)|
|U| .

The certainty factor may be interpreted as a conditional probability that
y belongs to D (x) given y belongs to C (x), symbolically πx (D|C), i.e.,
cerx (C, D) = πx (D|C) .
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If cerx (C, D) = 1, then C →x D will be called a certain decision rule in
S; if 0 < cerx (C, D) < 1 the decision rule will be referred to as an uncertain
decision rule in S.

The coverage factor of the decision rule, denoted covx (C, D) is defined as

covx (C, D) =
|C (x) ∩ D (x) |

|D (x) | =
suppx (C, D)

|D (x) | =

=
σx (C, D)
π (D (x))

,

where π (D (x)) = |D(x)|
|U| .

Obviously we have

covx (C, D) = πx (C|D) .

If C →x D is a decision rule then D →x C will be called an inverse
decision rule.

Let us observe that

cerx (C, D) = µC
D(x) (x) and covx (C, D) = µD

C(x) (x) .

That means that the certainty factor expresses the degree of membership of
x to the decision class D (x), given C, whereas the coverage factor expresses
the degree of membership of x to condition class C (x), given D.

Observe the difference between definitions of decision rules given in section
5 and this section. The previous definition can be regarded as syntactic one,
whereas the definition given in this section is rather semantic.

8 Properties of Decision Rules

Decision rules have important properties which are discussed next.
Let C →x D be a decision rule in S. Then the following properties are

valid: ∑

y∈C(x)

cery (C, D) = 1 (1)

∑

y∈D(x)

covy (C, D) = 1 (2)

π (D (x)) =
∑

y∈C(x)

cery (C, D) · π (C (y)) = (3)

=
∑

y∈C(x)

σy (C, D)
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π (C (x)) =
∑

y∈D(x)

covy (C, D) · π (D (y)) = (4)

=
∑

y∈D(x)

σy (C, D)

cerx (C, D) =
covx (C, D) · π (D (x))∑

y∈D(x)

covy (C, D) · π (D (y))
= (5)

=
σx (C, D)∑

y∈D(x)

σy (C, D)
=

σx (C, D)
π (C (x))

covx (C, D) =
cerx (C, D) · π (C (x))∑

y∈C(x)

cery (C, D) · π (C (y))
= (6)

=
σx (C, D)∑

y∈C(x)

σy (C, D)
=

σx (C, D)
π (D (x))

Thus, any decision table, satisfies (1),...,(6). Let us notice that (3) and (4)
refer to the well known total probability theorem, whereas (5) and (6) refer to
Bayes’ theorem.

Hence in order to compute the certainty and coverage factors of decision
rules according to formulas (5) and (6) it is enough to know the strength
(support) of all decision rules only.

Let us observe that the above properties are valid also for syntactic deci-
sion rules, i.e., any decision algorithm satisfies (1),...,(6). Therefore, in what
follows, we will use the concept of the decision table and the decision algo-
rithm equivalently.

9 Decision Tables and Flow Graphs

With every decision table we associate a flow graph, i.e., a directed, connected,
acyclic graph defined as follows: to every decision rule C →x D we assign a
directed branch x connecting the input node C (x) and the output node D (x) .
Strength of the decision rule represents a throughflow of the corresponding
branch. The throughflow of the graph is governed by formulas (1),...,(6).
Compare with flow conservation equations in classical network theory [6]

Formulas (1) and (2) are obvious. Formula (3) states that the outflow
of the output node amounts to the sum of its inflows, whereas formula (4)
says that the sum of outflows of the input node equals to its inflow. Finally,
formulas (5) and (6) reveal how throughflow in the flow graph is distributed
between its inputs and outputs.
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10 Illustrative Examples

Let us illustrate the above ideas by simple examples. These examples in-
tend to show the difference between ”classical” Bayesian approach and that
proposed by the rough set theory.

Observe that we are not using data to verify prior knowledge, inherently
associated with Bayesian data analysis, but the rough set approach shows
that any decision table safisties Bayes’ theorem and total probability theorem.
These properties form the basis of drawing conclusions from data, without
referring either to prior or posterior knowledge.

Example 2. This example, which is a modification of example 1 given in
section 2, will clearly show the different role of Bayes’ theorem in classical
statistical inference and that in rough set based data analysis.

Let us consider the data table shown in Table 2.

Table 2. Data table

T+ T−

D 95 5

D 1998 97902

In Table 2, instead of probabilities, like those given in Table 1, numbers
of patients belonging to the corresponding classes are given. Thus we start
from the original data (not probabilities) representing outcome of the test.

Now from Table 2 we create a decision table and compute strength of
decision rules. The results are shown in Table 3.

Table 3. Decision table

fact D T support strength

1 + + 95 0.00095

2 − + 1998 0.01998

3 + − 5 0.00005

4 − − 97902 0.97902

In Table 3 D is the condition attribute, wheras T is the decision attribute.
The decision table is meant to represent a ”cause–effect” relation between
the disease and result of the test. That is, we expect that the disease causes
positive test result and lack of the disease results in negative test result.

The decision algorithm is given below:
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1’) if (disease, yes) then (test, positive)
2’) if (disease, no) then (test, positive)
3’) if (disease, yes) then (test, negative)
4’) if (disease, no) then (test, negative)

The certainty and coverage factors of the decision rules for the above decision
algorithm are given is Table 4.

Table 4. Certainty and coverage

rule strength certainty coverage

1 0.00095 0.95 0.04500

2 0.01998 0.02 0.95500

3 0.00005 0.05 0.00005

4 0.97902 0.98 0.99995

The decision algorithm and the certainty factors lead to the following
conclusions:

- 95% persons suffering from the disease have positive test result
- 2% healthy persons have positive test result
- 5% persons suffering from the disease have negative test result
- 98% healthy persons have negative test result

That is to say that if a person has the disease most probably the test result
will be positive and if a person is healthy the test result will be most probably
negative. In other words, in view of the data there is a causal relationship
between the disease and the test result.

The inverse decision algorithm is the following:

1) if (test, positive) then (disease, yes)
2) if (test, positive) then (disease, no)
3) if (test, negative) then (disease, yes)
4) if (test, negative) then (disease, no)

From the coverage factors we can conclude the following:

- 4.5% persons with positive test result are suffering from the disease
- 95.5% persons with positive test result are not suffering from the disease
- 0.005% persons with negative test result are suffering from the disease
- 99.995% persons with negative test result are not suffering from the dis-

ease
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That means that if the test result is positive it does not necessarily indicate
the disease but negative test result most probably (almost for certain) does
indicate lack of the disease.

It is easily seen from Table 4 that (disease, no) ≡0.98,0.02 (test, no).
That means that the set of all healthy patients and the set of all patients

having negative test result is ”almost” the same.
That is to say that the negative test result almost exactly identifies healthy

patients.
For the remaining rules the accuracy is much smaller and consequently

test results are not indicating the presence or absence of the disease.

Example 3. Let us now consider a more complex example, shown in Table 5.

Table 5. Decision table

fact disease age sex test support

1 yes old man + 400

2 yes middle woman + 80

3 no old man − 100

4 yes old man − 40

5 no young woman − 220

6 yes middle woman − 60

Attributes disease, age and sex are condition attributes, wheras test is the
decision attribute.

The strength, certainty and coverage factors for decision table are shown
in Table 6.

Table 6. Certainty and coverage

fact strength certainty coverage

1 0.44 0.92 0.83

2 0.09 0.56 0.17

3 0.11 1.00 0.23

4 0.04 0.08 0.09

5 0.24 1.00 0.51

6 0.07 0.44 0.15



14 Zdzis�law Pawlak

The flow graph for Table 5 is presented in Fig. 1.

Fig. 1. Flow graph of the decision table

A decision algorithm associated with Table 5 is given below.

1) if (disease, yes) and (age, old) then (test, +)
2) if (disease, yes) and (age, middle) then (test, +)
3) if (disease, no) then (test, −)
4) if (disease, yes) and (age, old) then (test, −)
5) if (disease, yes) and (age, middle) then (test, −)

The certainty and coverage factors for the above algorithm are given in Table
7.

Table 7. Certainty and coverage factors

rule strength certainty coverage

1 0.44 0.92 0.83

2 0.09 0.56 0.17

3 0.36 1.00 0.76

4 0.04 0.08 0.09

5 0.07 0.44 0.15
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The flow graph for the decision algorithm is presented in Fig. 2.

Fig. 2. Flow graph of the decision algorithm

The certainty factors of the decision rules lead to the following conclusions:

- 92% ill and old patients have positive test result
- 56% ill and middle aged patients have positive test result
- all healthy patients have negative test result
- 8% ill and old patients have negative test result
- 44% ill and middle aged patients have negative test result

or in short:

- ill and old patients most probably have positive test result (probability
= 0.92)

- ill and middle aged patients most probably have positive test result (prob-
ability = 0.56)

- healthy patients have certainly negative test result (probability = 1.00)

From the inverse decision algorithm:

1’) if (test, +) then (disease, yes) and (age, old)
2’) if (test, +) then (disease, yes) and (age, middle)
3’) if (test, −) then (disease, no)
4’) if (test, −) then (disease, yes) and (age, old)
5’) if (test, −) then (disease, yes) and (age, middle)

and the coverage factors we get the following explanation of test results:

- reasons for positive test results are most probably disease and old age
(probability = 0.83)
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- reason for negative test result is most probably lack of the disease (prob-
ability = 0.76)

From the discussed examples it is easily seen the difference between de-
cision tables and decision algorithms. Decision table is a collection of data,
whereas a decision algorithm is a linguistic expression, which describes some
properties of data in logical (minimal) form.

It follows from Table 6 that there are two interesting approximate equiv-
alences of test results and the disease.

According to rule 1) the disease and old age are approximately equivalent
to positive test result (k = 0.83, ε = 0.11), and lack of the disease according to
rule 3) is approximately equivalent to negative test result (k = 0.76, ε = 0.24).

It is interesting to examine closely this example but we leave it to the
interested reader.

11 Conclusion

From examples 1, 2 and 3 it is easily seen the difference between employing
Bayes’ theorem in statistical reasoning and the role of Bayes’ theorem in
rough set based data analysis.

Bayesian inference consists in updating prior probabilities by means of
data to posterior probabilities.

In the rough set approach to Bayes’ theorem reveals data patterns, which
are used next to draw conclusions from data, in form of decision rules.

In other words, classical Bayesian inference is based rather on subjective
prior probability, whereas the rough set view on Bayes’ theorem refers to
objective probability inherently associated with decision tables.

It is also important to notice that in the rough set formulation of Bayes’
theorem has a new mathematical form: the conditional probabilitics are ex-
pressed in terms of strength of decision rules. This essentially simplifies com-
putations and also gives a new look on Bayesian methodology.

Besides the rough set approach to Bayes’ theorem enables us to invert
decision rules, i.e. to give reasons for decisions.

Let us also observe that conclusions are valid only for the data set consid-
ered. Other data may lead to different conclusions. This is inherent property
of inductive reasoning, and reflects the relationship between data sample and
the ”whole” set of data. This fact is well known not only to philosphers and
logicians but also was known to Sherlock Holmes (see Motto).

It seems also important that with every decision table (decision algorithm)
a flow graph can be associated, which gives a new tool to decision analysis.
The flow graphs considered here are different from those introduced by Ford
and Fulkerson and can be formulated in general terms, not associated with
decision tables, but this issue has not been considered in this paper.
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