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Abstract

In this paper we will study the granular structure of
data in the language of rough set theory. It is shown that
the granularity of data can be represented in a form of a
flow graph, and the relationship between granules obeys
Bayes’ theorem. This leads to a new method of data
analysis.

Motto:

., 1t is a capital mistake to theorise
before one has data”

Sherlock Holmes

In: A Scandal in Bohemia

This paper is dedicated to the renowned Mr. Sherlock
Holmes for his mastery in theorizing about data.

1. Introduction

In the rough set approach to data analysis, patterns in
data are characterized by means of approximations, or
equivalently by decision rules induced by the data,
presented in a form of a decision table. With every
decision rule in a decision table three coefficients are
associated: the strength, the certainty and the coverage
factors of the rule. These coefficients satisfy Bayes’
theorem and the total probability theorem. This enables us
to use Bayes’ theorem to discover patterns in data in a
different way from that offered by standard Bayesian
inference technique without referring to prior and
posterior probabilities, intrinsically embedded in Bayesian
inference methodology.

In the presented approach granularity imposed by the
indiscernibility relation on data plays an important role.
With every decision table a flow graph is associated,
which defines a connection between condition and
decision granules in the decision table. The certainty and
coverage factors determine granular structure of data,
which shows the relationship between condition and
decision granules determined by the decision table.

The granular structure of data can be represented in a
Euclidean ,,decision space”, in which dimensions are

determined by decision granules, points in the space are
condition granules and coordinates of the points are
strengths of the corresponding rules. Distance in the
decision space between condition granules allows to
determine how ,.distant” are decision granules in terms of
data.

A simple tutorial example will be used to illustrate the
basic ideas of the presented approach.

2. Basic concepts

In this section we define basic concepts of rough set
theory.

An information system is a data table, whose columns are
labeled by attributes, rows are labeled by objects of
interest and entries of the table are attribute values.
Formally, an information system is a pair S = (U,4), where
U and 4, are non-empty finite sets called the universe, and
the set of attributes, respectively such that a:U —V,,
where V,, is the set of all values of a called the domain of
a. Any subset B of 4 determines a binary relation /(B) on
U, which will be called an indiscernibility relation, and
defined as follows: (x, y)el(B) if and only if a(x) = a(y)
for every aeA, where a(x) denotes the value of attribute a
for element x. Obviously /(B) is an equivalence relation.
The family of all equivalence classes of I(B), i.e., a
partition determined by B, will be denoted by U/I(B), or
simply by U/B; an equivalence class of /(B), i.e., block of
the partition U/B, containing x will be denoted by B(x) and
called B-granule induced by x.

If (x, y) belongs to /(B) we will say that x and y are B-
indiscernible  (indiscernible — with  respect to B).
Equivalence classes of the relation /(B) (or blocks of the
partition U/B) are referred to as B-elementary sets or B-
granules.

If we distinguish in the information system two
disjoint classes of attributes, called condition and decision
attributes, respectively, then the system will be called a
decision table and will be denoted by S = (U, C, D), where
C and D are disjoint sets of condition and decision
attributes, respectively and C U D = 4.



C(x) and D(x) will be referred to as the condition
granule and the decision granule induced by x,
respectively.

3. Decision rules

Every row of a decision table determines a decision
rule.

Let S = (U, C, D) be a decision table. Every xeU
determines a sequence c((x),..., c(x), di(x),..., du(x)
where {cy,..., ¢,} =Cand {d,,..., d,} =D.

The sequence will be called a decision rule induced by
x (in S) and denoted by ¢ (x),..., c,(X) = di(x),..., d(x) or
in short C——D.

The number supp,(C,D) = |A(x)| = |C(x) N D(x)| will
be called a support of the decision rule C —— D and
the number
supp ., (C , D)

Ul
will be referred to as the strength of the decision rule
C——> D, where |X] denotes the cardinality of X.

o (C.D)=

b

With every decision rule C———>D we associate a
certainty factor of the decision rule, denoted cer(C, D)
and defined as follows:

Ic(x)nD(x) o.(C,D)

C(x) n(C(x))

|C(x)|
ol

The certainty factor may be interpreted as conditional
probability that y belongs to D(x) given y belongs to C(x),
symbolically z(D|C), i.e., cer(C, D) = m(D|C).

If cer(C, D)= 1, then C ——> D will be called a
certain decision rule; if 0 < cer(C, D) < 1 the decision
rule will be referred to as an uncertain decision rule.

Besides, we will also use a coverage factor (see [5]) of
the decision rule, denoted cov,(C, D) defined as

_lex)nD(x) _ s, (c,D)
cov,(C,D)= RO COE

where D(x) # & and n(D(x)) = D— .

cer, (C,D) =

where C(x) # & and n(C(x)) =

Similarly
covx(C,D): Tcx(C | D).
If C——Diis a decision rule then D——>C will
be called a inverse decision rule. The inverse decision

rules can be used to give explanations (reasons) for a
decision.

4. Properties of decision rules

Decision rules have important probabilistic properties
which are discussed next.
Let C —> D be a decision rule. Then the following

properties are valid:

Zcery(C,D)zl (1)
yeC(x)
> cov,(C,D)=1 @)
yeD(x)
w(Dlx))= 2ycer,(C.D)wlCL)= Fo,(C.D) @)
wCl)= 3 cov, (€D)nlDl))= 20,(6.0) 4

con(C,D) n(D(x)) G (C,D)

= 5
M) owct)
cer,(C,D) n(C(x)) o,(C,D) ©)
(D(y)) n(D(x))

That is, any decision table, satisfies (1) - (6). Observe
that (3) and (4) refer to the well known fotal probability
theorem, whereas (5) and (6) refer to Bayes' theorem.

Thus in order to compute the certainty and coverage
factors of decision rules according to formula (5) and (6)
it is enough to know the strength (support) of all decision

cer, (C,D) =

cov, (C,D) =

2
S

rules only.
Formulas (5) and (6) can be rewritten as
cer.(C,D)=cov,(C,D)-v,(C,D) (7)
cov, (C,D): cer, (C,D)~y;1(C,D) (8)
where y,(C,D) = DG cer,(C.D)
|C(x)[  cov.(C,D)

called a granularity factor of the decision rule induced by
x, reveals the granular structure of the decision rule.

Besides, the granularity factor exhibits the granular
structure of Bayes’ theorem and thus enables us to connect
Bayes’ theorem with granular structure of data.

5. Granularity of data and flow graphs

With every decision table we associate a flow graph,
i.e., a directed acyclic graph defined as follows: to every
decision rule €' ———> D we assign a directed branch x

connecting the input node C(x) and the output node D(x).
Strength of the decision rule represents a throughflow of
the corresponding branch. The throughflow of the graph is
governed by formulas (1),...,(6).

The application of flow graphs to represent
relationship between data granules gives a clear insight
into the granular structure of data analysis process.
Classification of objects in this representation boils down
to finding the maximal output flow in the flow graph,
whereas explanation of decisions is connected with the
maximal input flow associated with the given decision.



6. Decision space and granularity of data

With every decision table having one n-valued
decision attribute we can associate n-dimensional
Euclidean space, where decision granules determine # axis
of the space and condition granules determine points of
the space. Strengths of decision rules are to be understood
as coordinates of corresponding granules.

Distance o (x, y) between granules x and y in an »n-
dimensional decision space is defined as

n
5(x,y)= Z(xf _yi)2
i=1
where x = (xi,....x,) and y = (y,...,y,) are vectors of
strengths of corresponding decision rules.

It follows from the above example that granules B, C
and D are ,,close” and form a cluster which is ,,distant”
from granule A.

7. An example

An example of a simple decision table is shown below.
Table 1. Decision table

decision . .
ule age sex profession | disease
1 old male yes no
2 med. | female no yes
3 med. | male yes no
4 old male yes yes
5 young | male no no
6 med. | female no no

In the table age, sex and profession are condition
attributes, whereas disease is the decision attribute.

The table contains data concerning relationship
between age, sex, profession and certain vocational
disease.

In Table 2 below a modified version of Table 1 is
shown.

Table 2. Support and strength

ere age sex prof. | disease |supp. | stren.
1 |old male yes no 200 |0.18
2 |med. |female | no yes 70 10.06
3 |med. |male yes no 250 10.23
4 |old male yes yes 450 1041
5 |young | male no no 30 10.03
6 |med. |female | no no 100 |0.09

Certainty and coverage factors for the decision table
presented in Table 2 are shown in Table 3.

Table 3. Certainty and coverage factors

f’jlcelswn strength certainty | coverage
1 0.18 0.31 0.34
2 0.06 0.40 0.13
3 0.23 1.00 0.43
4 0.41 0.69 0.87
5 0.03 1.00 0.06
6 0.09 0.60 0.17

Cov = 0.87
cov=013 T =0.47
2

26 =0.23

Figure 1. Flow graph
Flow graph associated with decision table presented in
Table 2 is shown in Fig. 1.
Decision space for Table 1 is shown in Figure 2

€(0.00, 0.23)

B(0.09, 0.06)
D(0.00,0.03) ‘
0.5

Figure 2. Decision space
Distances between granules A, B, C and D are shown
in Table 4.

A(0.41,0.18)

> yes

A B C D
A
B 0.4511
C 0.4130 |0.1523
D 0.4365 |0.0849 |0.2000

Table 4. Distance matrix



8. Conclusions

The indiscernibility relation, the basic concept of
rough set theory imposes granularity as a fundamental
paradigm in data analysis.

It is shown in this paper a relationship between rough
set theory, and Bayes’ theorem in terms of granularity of
data. Besides, the relation between condition and decision
granules is represented as a flow graph. Moreover, a
decision space is defined to analyze similarity of data
granules.
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