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1 Introduction

In recent years we witness a rapid grow of interest in
rough set theory and its applications, worldwide.

Many international workshops, conferences and
seminars included rough sets in their programs. A
large number of high quality papers on various as-
pects of rough sets and their applications have been
published in last years.

The aim of this paper is to give the basic concepts
of rough set theory.

2 Basic Philosophy

The rough set philosophy is founded on the assump-
tion that with every object of the universe of discourse
we associate some information (data, knowledge). For
example, if objects are patients suffering from a cer-
tain disease, symptoms of the disease form informa-
tion about patients. Objects characterized by the
same information are indiscernible (similar) in view
of the available information about them. The indis-
cernibility relation generated in this way is the math-
ematical basis of rough set theory.

Any set of all indiscernible (similar) objects is called
an elementary set, and forms a basic granule (atom)
of knowledge about the universe. Any union of some
elementary sets is referred to as crisp (precise) set —
otherwise the set is rough (imprecise, vague).

Consequently each rough set has boundary-line
cases, i.e., objects which cannot be with certainty
classified neither as members of the set nor of its com-
plement. Obviously crisp sets have no boundary-line
elements at all. That means that boundary-line cases
cannot, be properly classified by employing the avail-
able knowledge.

Thus, the assumption that objects can be ”seen”
only through the information available about them
leads to the view that knowledge has granular struc-
ture. Due to the granularity of knowledge some ob-
jects of interest cannot be discerned and appear as the
same (or similar). As a consequence vague concepts,
in contrast to precise concepts, cannot be character-
ized in terms of information about their elements.
Therefore, in the proposed approach, we assume that
any vague concept is replaced by a pair of precise con-
cepts — called the lower and the upper approxima-
tion of the vague concept. The lower approximation
consists of all objects which surely belong to the con-
cept and the upper approximation contains all objects
which possibly belong to the concept. Obviously, the
difference between the upper and the lower approxi-
mation constitutes the boundary region of the vague
concept. Approximations are two basic operations in
rough set theory.

3 Approximations and Rough
Sets

As mentiones in Section 2, the starting point of rough
set theory is the indiscernibility relation, generated
by information about objects of interest. The indis-
cernibility relation is intended to express the fact that
due to the lack of knowledge we are unable to discern
some objects employing the available information. It
means that, in general, we are unable to deal with
each particular object but we have to consider clus-
ters of indiscernible objects, as fundamental concepts
of our theory.

Now we present above considerations more for-
mally.
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Suppose we are given two finite, non-empty sets U
and A, where U is the universe of objects, and A — a set
of attributes. The pair (U, A) is called an information
table. With every attribute a € A we associate a set
Vi, of its walues, called the domain of a. Any subset
B of A determines a binary relation I(B) on U, called
an indiscernibility relation, defined as follows:

zI(B)y if and only if a(z) = a(y) for every a € B,

where a(z) denotes the value of attribute a for object
x.
Obviously I(B) is an equivalence relation. The
family of all equivalence classes of I(B), i.e., the par-
tition determined by B, will be denoted by U/I(B),
or simply U/B; an equivalence class of I(B), i.e., the
block of the partition U/B, containing z will be de-
noted by B(z).

If (z,y) € I(B) we will say that z and y are B-
indiscernible. Equivalence classes of the relation I(B)
(or blocks of the partition U/B) are referred to as
B-elementary sets. In the rough set approach the
elementary sets are the basic building blocks (con-
cepts) of our knowledge about reality. The unions of
B-elementary sets are called B-definable sets.

The indiscernibility relation will be further used to
define basic concepts of rough set theory. Let us define
now the following two operations on sets

B.(X) =
B*(X) =

{r €U :B(z) C X},
{reU:B(x)nX #0},

assigning to every subset X of the universe U two sets
B.(X) and B*(X) called the B-lower and the B-upper
approzimation of X, respectively. The set

BNs(X) = B*(X) — B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e.,
BNgp(X) = 0, then the set X is crisp (exact) with
respect to Bj; in the opposite case, i.e., if BNg(X) #
0, the set X is referred to as rough (inezact) with
respect to B.

Rough set can be also characterized numerically by
the following coefficient

B« (X))

aB(X) ‘B*(X)|,
called the accuracy of approzimation, where |X| de-
notes the cardinality of X # (. Obviously 0 <
ap(X) < 1. If ag(X) = 1 then X is crisp with
respect to B (X is precise with respect to B), and
otherwise, if ap(X) < 1 then X is rough with respect
to B (X is vague with respect to B).

Several generalizations of the classical rough set
approach based on approximation spaces defined by
(U, R), where R is an equivalence relation (called in-
discernibility relation) in U, have been reported in the

literature (for references see the papers and bibliog-
raphy in [PaS], [PS1], [PS2]). Let us mention two of
them.

A generalized approximation space can be defined
by AS = (U, I,v) where I is the uncertainty function
defined on U with values in the powerset P(U) of U
(I(z) is the neighboorhood of x) and v is the inclusion
function defined on the Cartesian product P(U) x
P(U) with values in the interval [0, 1] measuring the
degree of inclusion of sets. The lower AS, and upper
AS* approximation operations can be defined in AS
by

AS,(X) =
AS*(X) =

{zeU:v((x),X) =1},
{reU:v(I(x),X)>0}.

In the classical case I(z) is equal to the equivalence
class B(z) of the indiscernibility relation I(B); in case
when a tolerance (similarity) relation 7 C U x U is
given we take I(xz) = {y € U : 27y}, i.e., I(z) is equal
to the tolerance class of 7 defined by z. The standard

inclusion relation is defined by v(X,Y) = % if

X is non-empty, and otherwise v(X,Y) = 1. For ap-
plications it is important to have some constructive
definitions of I and v.

One can consider another way to define I(z). Usu-
ally together with AS we consider some set F' of for-
mulae describing sets of objects in the universe U of
AS defined by semantics || - ||as, i.e., ||a|]las C U for
any a € F. Now, one can take the set

Np(z) ={a € F:z € ||a]|as}

and I(z) = ||a]|as where a is selected or constructed
from Np(z). Hence, more general uncertainty func-
tions having values in P(P(U)) can be defined. The
parametric approximation spaces are examples of such
approximation spaces. These spaces have interesting
applications. For example, by tuning of their param-
eters one can search for the optimal, under chosen
criteria (e.g. the minimal description length), approx-
imation space for concept description.

The approach based on inclusion functions has been
generalized to the rough mereological approach. The
inclusion relation zp,y with the intended meaning z
is a part of y in a degree r has been taken as the basic
notion of the rough mereology being a generalization
of the Lesniewski mereology. Rough mereology offers
a methodology for synthesis and analysis of objects
in distributed environment of intelligent agents, in
particular, for synthesis of objects satisfying a given
specification in satisfactory degree or for control in
such complex environment. Moreover, rough mere-
ology has been recently used for developing founda-
tions of the information granule calculus, an attempt
towards formalization of the Computing with Words
paradigm, recently formulated by Lotfi Zadeh.

Research on rough mereology has shown impor-
tance of another notion, namely closeness of com-
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plex objects (e.g., concepts). This can be defined by
xzcly vy if and only if zp,y and yp, 2.

The inclusion and closeness definitions of complex
information granules are dependent on applications.
However, it is possible to define the granule syntax
and semantics as a basis for the inclusion and close-
ness definitions.

4 Rough Sets and Membership
Function

Rough sets can be also introduced using a rough mem-
bership function, defined by

5y _ X0B@)

Obviously 0 < p%(z) < 1. The membership function
ix (x) is a kind of conditional probability and its value
can be interpreted as a degree of certainty to which x
belongs to X.

The rough membership function, can be used to
define approximations and the boundary region of a
set, as shown below:

B.(X) = {zeU:px(z)=1},
B(X) = {reU:ub@) >0},
BNg(X) = {zecU:0<uf(x) <1}

5 Decision Tables and Decision
Rules

Sometimes we distinguish in an information table
(U,A) a partition of A into two classes C,D C A
of attributes, called condition and decision (action)
attributes, respectively. The tuple A = (U,C, D) is
called a decision table.

Let V. = U{Va|a € C} UV, Atomic formulae
over BC CUD and V are expressions a = v called
descriptors (selectors) over B and V, where a € B
and v € V,. The set F(B,V) of formulae over B and
V is the least set containing all atomic formulae over
B and V and closed with respect to the propositional
connectives A (conjunction), V (disjunction) and —
(negation).

By ||l¢|l4 we denote the meaning of ¢ € F(B,V)
in the decision table A which is the set of all objects
in U with the property ¢. These sets are defined as
follows: |la =v||a={z €U |a(z) =v}, [ A¢'||la =
lolla O lle'llas e Vv @'lla = llella Ulle'llas [I-eplla =
U — |l¢lla The formulae from F(C,V), F(D,V) are
called condition formulae of A and decision formulae
of A, respectively.

Any object x € U belongs to a decision class
| Aacp@ = a(x)]la of A. All decision classes of A
create a partition of the universe U.
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A decision rule for A is any expression of the form
¢ = 1, where ¢ € F(C,V), v € F(D,V), and
llolla # 0. Formulae ¢ and ¢ are referred to as the
predecessor and the successor of decision rule ¢ = ).
Decision rules are often called "IF ... THEN...”
rules.

Decision rule ¢ = 9 is true in A if and only if
llolla C l|¥]]la- Otherwise one can measure its truth
degree by introducing some inclusion measure of ||¢|| 4
in (] 4.

Each object = of a decision table determines a de-
cision rule \,cca = a(x) = A,cpa = a(x). De-
cision rules corresponding to some objects can have
the same condition parts but different decision parts.
Such rules are called inconsistent (nondeterministic,
conflicting, possible); otherwise the rules are referred
to as consistent (certain, sure, deterministic, noncon-
flicting) rules. Decision tables containing inconsistent
decision rules are called inconsistent (nondeterminis-
tic, conflicting); otherwise the table is consistent (de-
terministic, nonconflicting).

Numerous methods have been developed for differ-
ent decision rule generation (see, e.g., [PaS, PS1, PS2,
PS3)).

When a set of rules have been induced from a deci-
sion table containing a set of training examples, they
can be inspected to see if they reveal any novel rela-
tionships between attributes that are worth pursuing
for further research. Furthermore, the rules can be
applied to a set of unseen cases in order to estimate
their classificatory power. For a systematic overview
of rule application methods the reader is referred to
papers in [PaS, PS1, PS2].

6 Dependency of Attributes

Another important issue in data analysis is discover-
ing dependencies between attributes. Intuitively, a set
of attributes D depends totally on a set of attributes
C, denoted C = D, if the values of attributes from C
uniquely determine the values of attributes from D.
In other words, D depends totally on C, if there exists
a functional dependency between values of C and D.

Formally dependency can be defined in the follow-
ing way. Let D and C be subsets of A.

We will say that D depends on C'in a degree k (0 <
k < 1), denoted C =, D, if

k=1(c.p) = o2l

where
POSc(D)= | Cu(X),
XeU/D

called a positive region of the partition U/D with re-
spect to C, is the set of all elements of U that can be
uniquely classified to blocks of the partition U/D, by
means of C.
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If k =1 we say that D depends totally on C, and if
k < 1, we say that D depends partially (in a degree k)
on C.

The coefficient k& expresses the ratio of all elements
of the universe, which can be properly classified to
blocks of the partition U/D, employing attributes C
and will be called the degree of the dependency.

It can be easily seen that if D depends totally on
C then I(C) C I(D). It means that the partition
generated by C' is finer than the partition generated
by D. Notice, that the concept of dependency dis-
cussed above corresponds to that considered in rela-
tional databases.

Summing up: D is totally (partially) dependent on
C, if all (some) elements of the universe U can be
uniquely classified to blocks of the partition U/ D, em-
ploying C.

7 Reduction of Attributes

We often face a question whether we can remove some
data from a data-table preserving its basic properties,
that is — whether a table contains some superfluous
data.

Let us express this idea more precisely.

Let C,D C A, be sets of condition and decision
attributes respectively. We will say that C' C C is
a D-reduct (reduct with respect to D) of C, if C’ is a
minimal subset of C such that v(C, D) = v(C", D).

The intersection of all D-reducts is called a D-core
(core with respect to D).

Because the core is the intersection of all reducts,
it is included in every reduct, i.e., each element of the
core belongs to some reduct. Thus, in a sense, the
core is the most important subset of attributes, since
none of its elements can be removed without affecting
of the classification power of attributes.

Many other kinds of redutcs and their approxima-
tions are discussed in literature. It turns out that they
can be efficiently computed using heuristics based on
Boolean reasoning approach.

8 Discernibility and Boolean
Reasoning

The ability to discern between perceived objects is
important for constructing many entities like reducts,
decision rules or decision algorithms. In the clas-
sical rough set approach the discernibility relation
DIS(B) C U x U is defined by 2DIS(B)y if and
only if non(zI(B)y). However, this is in general not
the case for the generalized approximation spaces (one
can define indiscernibility by x € I(y) and discerni-
bility by I(xz) N I(y) = @ for any objects z,y).

The idea of Boolean reasoning is based on construc-
tion for a given problem P a corresponding Boolean

function fp with the following property: the solutions
for the problem P can be decoded from prime impli-
cants of the Boolean function fp. Let us mention that
to solve real-life problems it is necessary to deal with
Boolean functions having large number of variables.

A successful methodology based on the discernibil-
ity of objects and Boolean reasoning has been devel-
oped for computing of many important for applica-
tions entities like reducts and their approximations,
decision rules, association rules, discretization of real
value attributes, symbolic value grouping, searching
for new features defined by oblique hyperplanes or
higher order surfaces, pattern extraction from data
as well as conflict resolution or negotiation (for refer-
ences see the papers and bibliography in [PaS], [PS1],
PS2))).

Most of the problems related to generation of the
above mentioned entities are NP-complete or NP-
hard. However, it was possible to develop efficient
heuristics returning suboptimal solutions of the prob-
lems. The results of experiments on many data sets
are very promising. They show very good quality of
solutions generated by the heuristics in comparison
with other methods reported in literature (e.g. with
respect to the classification quality of unseen objects).
Moreover, they are very efficient from the point of
view of time necessary for computing of the solution.

It is important to note that the methodology al-
lows to construct heuristics having a very important
approzimation property which can be formulated as
follows: expressions generated by heuristics (i.e., im-
plicants) close to prime implicants define approximate
solutions for the problem.

9 Conclusions

In this paper we gave the basic concepts of rough set
theory.

It turned out, however that the ”basic model” of
rough set presented here was not sufficient for many
applications and needed some extensions. Besides,
theoretical inquiry into the rough set concept also led
to its various generalizations. Some of them have been
mentioned in the paper.

A variety of methods for decision rules genera-
tion, reducts computation and continuous variable
discretization are very important issues not discussed
here. We have only emphasized the developed power-
ful methodology based on discernibility and Boolean
reasoning for efficient computation of different entities
including reducts and decision rules.

Also the relationship of rough set theory to many
other theories has been extensively investigated. In
particular, its relationship to fuzzy set theory the the-
ory of evidence, Boolean reasoning methods, statisti-
cal methods, and decision theory has been clarified
and seems to be thoroughly understood.
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There are reports on many hybrid methods ob-
tained by combining rough set approach with other
ones like fuzzy sets, neural networks, genetic algo-
rithms, principal component analysis, singular value
decomposition.

Recently, it has been shown that rough set approach
can be used for synthesis of concept approximations
in distributed environment of intelligent agents. In
particular, the rough set methods are used for con-
struction of interfaces between agents equipped with
different sets of concepts [SZ1].

Readers interested in the above issues are advised
to consult the enclosed references (e.g. [PaS, PS1,
PS2, PS3, SZ1)).

Many important issues, like for example, various
logics related to rough sets and many advanced alge-
braic properties of rough sets are not covered by the
paper. These issues have rather advanced structures
and are deliberately dropped here. The reader can
find details in [Or1, PaS, PS1, PS2, PS3].
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