
Bulletin of International Rough Set Society Volume 3, Number 3
Rough Set RudimentsZdzis law Pawlak�1 zpw@ii.pw.edu.plAndrzej Skowron�2 skowron@mimuw.edu.pl�1 Institute of Theoretical and Applied InformaticsPolish Academy of Sciencesul. Baltycka 5, 44-000 Gliwice, Poland�2 Institute of MathematicsWarsaw UniversityBanacha 2, 02-097 Warsaw, PolandAbstract: The aim of this paper is to give the basic concepts of rough set theory.Keywords: Indiscernibility, Set approximations, Rough sets, Rough membership function, Reducts,Decision tables, Decision rules, Dependency of attributes.1 IntroductionIn recent years we witness a rapid grow of interest inrough set theory and its applications, worldwide.Many international workshops, conferences andseminars included rough sets in their programs. Alarge number of high quality papers on various as-pects of rough sets and their applications have beenpublished in last years.The aim of this paper is to give the basic conceptsof rough set theory.2 Basic PhilosophyThe rough set philosophy is founded on the assump-tion that with every object of the universe of discoursewe associate some information (data, knowledge). Forexample, if objects are patients su�ering from a cer-tain disease, symptoms of the disease form informa-tion about patients. Objects characterized by thesame information are indiscernible (similar) in viewof the available information about them. The indis-cernibility relation generated in this way is the math-ematical basis of rough set theory.Any set of all indiscernible (similar) objects is calledan elementary set, and forms a basic granule (atom)of knowledge about the universe. Any union of someelementary sets is referred to as crisp (precise) set {otherwise the set is rough (imprecise, vague).Consequently each rough set has boundary-linecases, i.e., objects which cannot be with certaintyclassi�ed neither as members of the set nor of its com-plement. Obviously crisp sets have no boundary-lineelements at all. That means that boundary-line casescannot be properly classi�ed by employing the avail-able knowledge.

Thus, the assumption that objects can be "seen"only through the information available about themleads to the view that knowledge has granular struc-ture. Due to the granularity of knowledge some ob-jects of interest cannot be discerned and appear as thesame (or similar). As a consequence vague concepts,in contrast to precise concepts, cannot be character-ized in terms of information about their elements.Therefore, in the proposed approach, we assume thatany vague concept is replaced by a pair of precise con-cepts { called the lower and the upper approxima-tion of the vague concept. The lower approximationconsists of all objects which surely belong to the con-cept and the upper approximation contains all objectswhich possibly belong to the concept. Obviously, thedi�erence between the upper and the lower approxi-mation constitutes the boundary region of the vagueconcept. Approximations are two basic operations inrough set theory.3 Approximations and RoughSetsAs mentiones in Section 2, the starting point of roughset theory is the indiscernibility relation, generatedby information about objects of interest. The indis-cernibility relation is intended to express the fact thatdue to the lack of knowledge we are unable to discernsome objects employing the available information. Itmeans that, in general, we are unable to deal witheach particular object but we have to consider clus-ters of indiscernible objects, as fundamental conceptsof our theory.Now we present above considerations more for-mally.



Rough Set RudimentsSuppose we are given two �nite, non-empty sets Uand A, where U is the universe of objects, and A { a setof attributes. The pair (U;A) is called an informationtable. With every attribute a 2 A we associate a setVa, of its values, called the domain of a. Any subsetB of A determines a binary relation I(B) on U , calledan indiscernibility relation, de�ned as follows:xI(B)y if and only if a(x) = a(y) for every a 2 B;where a(x) denotes the value of attribute a for objectx:Obviously I(B) is an equivalence relation. Thefamily of all equivalence classes of I(B), i.e., the par-tition determined by B, will be denoted by U=I(B),or simply U=B; an equivalence class of I(B), i.e., theblock of the partition U=B, containing x will be de-noted by B(x):If (x; y) 2 I(B) we will say that x and y are B-indiscernible. Equivalence classes of the relation I(B)(or blocks of the partition U=B) are referred to asB-elementary sets. In the rough set approach theelementary sets are the basic building blocks (con-cepts) of our knowledge about reality. The unions ofB-elementary sets are called B-de�nable sets.The indiscernibility relation will be further used tode�ne basic concepts of rough set theory. Let us de�nenow the following two operations on setsB�(X) = fx 2 U : B(x) � Xg;B�(X) = fx 2 U : B(x) \X 6= ;g;assigning to every subset X of the universe U two setsB�(X) and B�(X) called the B-lower and the B-upperapproximation of X , respectively. The setBNB(X) = B�(X) �B�(X)will be referred to as the B-boundary region of X:If the boundary region of X is the empty set, i.e.,BNB(X) = ;, then the set X is crisp (exact) withrespect to B; in the opposite case, i.e., if BNB(X) 6=;, the set X is referred to as rough (inexact) withrespect to B.Rough set can be also characterized numerically bythe following coe�cient�B(X) = jB�(X)jjB�(X)j ;called the accuracy of approximation, where jX j de-notes the cardinality of X 6= ;. Obviously 0 ��B(X) � 1. If �B(X) = 1 then X is crisp withrespect to B (X is precise with respect to B), andotherwise, if �B(X) < 1 then X is rough with respectto B (X is vague with respect to B).Several generalizations of the classical rough setapproach based on approximation spaces de�ned by(U;R), where R is an equivalence relation (called in-discernibility relation) in U , have been reported in the

literature (for references see the papers and bibliog-raphy in [PaS], [PS1], [PS2]). Let us mention two ofthem.A generalized approximation space can be de�nedby AS = (U; I; �) where I is the uncertainty functionde�ned on U with values in the powerset P (U) of U(I(x) is the neighboorhood of x) and � is the inclusionfunction de�ned on the Cartesian product P (U) �P (U) with values in the interval [0; 1] measuring thedegree of inclusion of sets. The lower AS� and upperAS� approximation operations can be de�ned in ASby AS�(X) = fx 2 U : �(I(x); X) = 1g;AS�(X) = fx 2 U : �(I(x); X) > 0g:In the classical case I(x) is equal to the equivalenceclass B(x) of the indiscernibility relation I(B); in casewhen a tolerance (similarity) relation � � U � U isgiven we take I(x) = fy 2 U : x�yg, i.e., I(x) is equalto the tolerance class of � de�ned by x. The standardinclusion relation is de�ned by �(X;Y ) = jX\Y jjXj ifX is non-empty, and otherwise �(X;Y ) = 1: For ap-plications it is important to have some constructivede�nitions of I and �.One can consider another way to de�ne I(x). Usu-ally together with AS we consider some set F of for-mulae describing sets of objects in the universe U ofAS de�ned by semantics k � kAS, i.e., k�kAS � U forany � 2 F: Now, one can take the setNF (x) = f� 2 F : x 2 k�kASgand I(x) = k�kAS where � is selected or constructedfrom NF (x): Hence, more general uncertainty func-tions having values in P (P (U)) can be de�ned. Theparametric approximation spaces are examples of suchapproximation spaces. These spaces have interestingapplications. For example, by tuning of their param-eters one can search for the optimal, under chosencriteria (e.g. the minimal description length), approx-imation space for concept description.The approach based on inclusion functions has beengeneralized to the rough mereological approach. Theinclusion relation x�ry with the intended meaning xis a part of y in a degree r has been taken as the basicnotion of the rough mereology being a generalizationof the Le�sniewski mereology. Rough mereology o�ersa methodology for synthesis and analysis of objectsin distributed environment of intelligent agents, inparticular, for synthesis of objects satisfying a givenspeci�cation in satisfactory degree or for control insuch complex environment. Moreover, rough mere-ology has been recently used for developing founda-tions of the information granule calculus, an attempttowards formalization of the Computing with Wordsparadigm, recently formulated by Lot� Zadeh.Research on rough mereology has shown impor-tance of another notion, namely closeness of com-



Bulletin of International Rough Set Society Volume 3, Number 3plex objects (e.g., concepts). This can be de�ned byxclr;r0y if and only if x�ry and y�r0x:The inclusion and closeness de�nitions of complexinformation granules are dependent on applications.However, it is possible to de�ne the granule syntaxand semantics as a basis for the inclusion and close-ness de�nitions.4 Rough Sets and MembershipFunctionRough sets can be also introduced using a rough mem-bership function, de�ned by�BX(x) = jX \ B(x)jjB(x)j :Obviously 0 � �BX(x) � 1: The membership function�X (x) is a kind of conditional probability and its valuecan be interpreted as a degree of certainty to which xbelongs to X .The rough membership function, can be used tode�ne approximations and the boundary region of aset, as shown below:B�(X) = fx 2 U : �BX (x) = 1g;B�(X) = fx 2 U : �BX (x) > 0g;BNB(X) = fx 2 U : 0 < �BX(x) < 1g:5 Decision Tables and DecisionRulesSometimes we distinguish in an information table(U;A) a partition of A into two classes C;D � Aof attributes, called condition and decision (action)attributes, respectively. The tuple A = (U;C;D) iscalled a decision table.Let V = SfVa j a 2 Cg [ Vd. Atomic formulaeover B � C [ D and V are expressions a = v calleddescriptors (selectors) over B and V , where a 2 Band v 2 Va. The set F(B; V ) of formulae over B andV is the least set containing all atomic formulae overB and V and closed with respect to the propositionalconnectives ^ (conjunction), _ (disjunction) and :(negation).By k'kA we denote the meaning of ' 2 F(B; V )in the decision table A which is the set of all objectsin U with the property '. These sets are de�ned asfollows: ka = vkA = fx 2 U j a(x) = vg; k' ^ '0kA =k'kA \ k'0kA; k' _ '0kA = k'kA [ k'0kA; k:'kA =U � k'kA The formulae from F(C; V ), F(D;V ) arecalled condition formulae of A and decision formulaeof A, respectively.Any object x 2 U belongs to a decision classkVa2D a = a(x)kA of A: All decision classes of Acreate a partition of the universe U .

A decision rule for A is any expression of the form' )  , where ' 2 F(C; V ),  2 F(D;V ), andk'kA 6= ;. Formulae ' and  are referred to as thepredecessor and the successor of decision rule ')  .Decision rules are often called "IF : : : THEN : : : "rules.Decision rule ' )  is true in A if and only ifk'kA � k kA. Otherwise one can measure its truthdegree by introducing some inclusion measure of k'kAin k kA.Each object x of a decision table determines a de-cision rule Va2C a = a(x) ) Va2D a = a(x): De-cision rules corresponding to some objects can havethe same condition parts but di�erent decision parts.Such rules are called inconsistent (nondeterministic,con
icting, possible); otherwise the rules are referredto as consistent (certain, sure, deterministic, noncon-
icting) rules. Decision tables containing inconsistentdecision rules are called inconsistent (nondeterminis-tic, con
icting); otherwise the table is consistent (de-terministic, noncon
icting).Numerous methods have been developed for di�er-ent decision rule generation (see, e.g., [PaS, PS1, PS2,PS3]).When a set of rules have been induced from a deci-sion table containing a set of training examples, theycan be inspected to see if they reveal any novel rela-tionships between attributes that are worth pursuingfor further research. Furthermore, the rules can beapplied to a set of unseen cases in order to estimatetheir classi�catory power. For a systematic overviewof rule application methods the reader is referred topapers in [PaS, PS1, PS2].6 Dependency of AttributesAnother important issue in data analysis is discover-ing dependencies between attributes. Intuitively, a setof attributes D depends totally on a set of attributesC, denoted C ) D, if the values of attributes from Cuniquely determine the values of attributes from D.In other words, D depends totally on C, if there existsa functional dependency between values of C and D:Formally dependency can be de�ned in the follow-ing way. Let D and C be subsets of A.We will say that D depends on C in a degree k (0 �k � 1), denoted C )k D, ifk = 
(C;D) = jPOSC(D)jjU jwhere POSC(D) = [X2U=DC�(X);called a positive region of the partition U=D with re-spect to C, is the set of all elements of U that can beuniquely classi�ed to blocks of the partition U=D, bymeans of C:



Rough Set RudimentsIf k = 1 we say that D depends totally on C, and ifk < 1, we say that D depends partially (in a degree k)on C.The coe�cient k expresses the ratio of all elementsof the universe, which can be properly classi�ed toblocks of the partition U=D; employing attributes Cand will be called the degree of the dependency.It can be easily seen that if D depends totally onC then I(C) � I(D): It means that the partitiongenerated by C is �ner than the partition generatedby D: Notice, that the concept of dependency dis-cussed above corresponds to that considered in rela-tional databases.Summing up: D is totally (partially) dependent onC, if all (some) elements of the universe U can beuniquely classi�ed to blocks of the partition U=D, em-ploying C:7 Reduction of AttributesWe often face a question whether we can remove somedata from a data-table preserving its basic properties,that is { whether a table contains some super
uousdata.Let us express this idea more precisely.Let C;D � A, be sets of condition and decisionattributes respectively. We will say that C 0 � C isa D-reduct (reduct with respect to D) of C; if C 0 is aminimal subset of C such that 
(C;D) = 
(C 0; D):The intersection of all D-reducts is called a D-core(core with respect to D).Because the core is the intersection of all reducts,it is included in every reduct, i.e., each element of thecore belongs to some reduct. Thus, in a sense, thecore is the most important subset of attributes, sincenone of its elements can be removed without a�ectingof the classi�cation power of attributes.Many other kinds of redutcs and their approxima-tions are discussed in literature. It turns out that theycan be e�ciently computed using heuristics based onBoolean reasoning approach.8 Discernibility and BooleanReasoningThe ability to discern between perceived objects isimportant for constructing many entities like reducts,decision rules or decision algorithms. In the clas-sical rough set approach the discernibility relationDIS(B) � U � U is de�ned by xDIS(B)y if andonly if non(xI(B)y): However, this is in general notthe case for the generalized approximation spaces (onecan de�ne indiscernibility by x 2 I(y) and discerni-bility by I(x) \ I(y) = ; for any objects x; y).The idea of Boolean reasoning is based on construc-tion for a given problem P a corresponding Boolean

function fP with the following property: the solutionsfor the problem P can be decoded from prime impli-cants of the Boolean function fP . Let us mention thatto solve real-life problems it is necessary to deal withBoolean functions having large number of variables.A successful methodology based on the discernibil-ity of objects and Boolean reasoning has been devel-oped for computing of many important for applica-tions entities like reducts and their approximations,decision rules, association rules, discretization of realvalue attributes, symbolic value grouping, searchingfor new features de�ned by oblique hyperplanes orhigher order surfaces, pattern extraction from dataas well as con
ict resolution or negotiation (for refer-ences see the papers and bibliography in [PaS], [PS1],[PS2])).Most of the problems related to generation of theabove mentioned entities are NP-complete or NP-hard. However, it was possible to develop e�cientheuristics returning suboptimal solutions of the prob-lems. The results of experiments on many data setsare very promising. They show very good quality ofsolutions generated by the heuristics in comparisonwith other methods reported in literature (e.g. withrespect to the classi�cation quality of unseen objects).Moreover, they are very e�cient from the point ofview of time necessary for computing of the solution.It is important to note that the methodology al-lows to construct heuristics having a very importantapproximation property which can be formulated asfollows: expressions generated by heuristics (i.e., im-plicants) close to prime implicants de�ne approximatesolutions for the problem.9 ConclusionsIn this paper we gave the basic concepts of rough settheory.It turned out, however that the "basic model" ofrough set presented here was not su�cient for manyapplications and needed some extensions. Besides,theoretical inquiry into the rough set concept also ledto its various generalizations. Some of them have beenmentioned in the paper.A variety of methods for decision rules genera-tion, reducts computation and continuous variablediscretization are very important issues not discussedhere. We have only emphasized the developed power-ful methodology based on discernibility and Booleanreasoning for e�cient computation of di�erent entitiesincluding reducts and decision rules.Also the relationship of rough set theory to manyother theories has been extensively investigated. Inparticular, its relationship to fuzzy set theory the the-ory of evidence, Boolean reasoning methods, statisti-cal methods, and decision theory has been clari�edand seems to be thoroughly understood.
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